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Abstract: The skin, including the hypodermis, is the largest body organ and is in constant contact
with the environment. Neurogenic inflammation is the result of the activity of nerve endings and
mediators (neuropeptides secreted by nerve endings in the development of the inflammatory reaction
in the skin), as well as interactions with other cells such as keratinocytes, Langerhans cells, endothelial
cells and mast cells. The activation of TRPV–ion channels results in an increase in calcitonin gene-
related peptide (CGRP) and substance P, induces the release of other pro-inflammatory mediators
and contributes to the maintenance of cutaneous neurogenic inflammation (CNI) in diseases such as
psoriasis, atopic dermatitis, prurigo and rosacea. Immune cells present in the skin (mononuclear cells,
dendritic cells and mast cells) also express TRPV1, and their activation directly affects their function.
The activation of TRPV1 channels mediates communication between sensory nerve endings and
skin immune cells, increasing the release of inflammatory mediators (cytokines and neuropeptides).
Understanding the molecular mechanisms underlying the generation, activation and modulation
of neuropeptide and neurotransmitter receptors in cutaneous cells can aid in the development of
effective treatments for inflammatory skin disorders.

Keywords: molecular mechanisms; neurogenic inflammation

1. Introduction

The primary role of skin nerve endings is to sense and respond to external factors, as
well as to provide the body with an organized means of protection from environmental
threats [1]. Afferent fibers, unmyelinated C-fibers, myelin-type Aδ fibers and autonomic
nerve fibers are present in the skin, and are characterized by a dense distribution through-
out all of its layers. Neuropeptides are released from these fibers, and are also part of
the cutaneous neuroendocrine system and stimulated by nociceptive stimuli [2,3]. The
role of neuropeptides (neuromodulators, neurotransmitters and neurohormones) in the
regulation of lympho- cells, mast cells and other cells of the immune system consists in
the transduction of neurological impulses from afferent nerve fibers to signals that can be
read by immunocompetent cells, and this carries the potential to exacerbate the inflam-
matory response [4–7]. The observation that various chronic inflammatory skin disorders,
e.g., atopic dermatitis and psoriasis, are characterized by enhanced neurotrophin expres-
sion and peptidergic nerve fibers supports these pathophysiologic phenomena [8]. Various
chronic inflammatory skin disorders, such as atopic dermatitis, prurigo nodularis, rosacea
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and psoriasis, exhibit increased expression of neurotrophins and the presence of nerve
fibers that contain peptides. These observations provide evidence that these diseases share
similar pathophysiological mechanisms. The neuropeptides released from nerve fibers
can stimulate keratinocytes, which then trigger the release of proinflammatory cytokines
such as IL-1α, IL-6 and IL-8 in the epidermis [2,9,10]. The epidermis undergoes close
interaction with nerve endings, as well as the epidermis and nerves, thus producing factors
for mutual communication. Secreted from the skin nerve endings, neuropeptides, such
as SP (substance P) and CGRP, bind to receptors on the surface of mast cells and activate
them, leading to degranulation and the release of many pro-inflammatory cytokines and
vasoactive amines. SP, CGRP and VIP are powerful histamine releasers from mast cells,
and function via an independent reaction with IgE bound to the surface of mast cells.
Tachykinins directly cause dilatation and increase capillary permeability, which leads to
edema and indirectly causes erythema by releasing histamine from mast cells. The media-
tors released during mast cell degranulation increase inflammation. Mrgprs (Mas-related
G-coupled protein receptors), TRPA1 and PAR-2 (protease-activated receptor 2) [11,12]
play a significant role in inducing itching and inflammation. When the MrgprX1 receptor
is activated, it triggers the degranulation of mast cells. This, in turn, can result in the
development of neurogenic inflammation through communication with cutaneous and
sensory nerve cells [4]. As a result of this physiological process within the skin, mediators
are released directly from the cutaneous nerves and initiate an inflammatory response,
which leads to erythema, swelling and pain.

Cutaneous neurogenic inflammation is a common element of chronic inflammatory
skin disorders such as psoriasis, atopic dermatitis (AD), sensitive skin [13], rosacea [14],
and hypertrophic scars [15].

2. Neuroimmune Communication (NIC)

The neuro-immuno-cutaneous (NIC) and neuro-immuno-cutaneous-endocrine (NICE)
systems are based on a complex and ongoing communication network involving neu-
ropeptides, cytokines, neurotransmitters, small molecules and other less defined factors,
such as psychological stress [16]. These elements collaborate to maintain skin homeostasis,
allowing the skin to detect and interpret environmental changes through the cutaneous
neuroendocrine system, which uses chemical, physical and biological signals to regulate
both local and global homeostasis. Neurogenic factors play an important role in the patho-
genesis of skin inflammation, and there is a close relationship between the peripheral and
central nervous systems, as well as between the endocrine and immune systems. The
presence of numerous nerve cell endings in the skin, its rich vascularity, and the fact that
it is the largest and most exposed organ to the action of harmful factors emphasizes its
unique and important role in the pathogenesis and regulation local inflammation [1].

2.1. Neuropeptides (NPs)

The expression of receptors for neuropeptides (NPs), such as SP, has been found on
endothelial cells, where after the activation of NK-1R receptors, endothelial cell proliferation
and vascularization occur, increasing the expression of (VCAM)-1. ICAM-1 expression is
increased both by the direct action of SP via NK-1R and by TNF-α, IL-1 and IFN-γ [4,17–19].

SP, together with CGRP released from peripheral nerve endings under the influence
of a nociceptive stimulus, induces the translocation of P-selectin to the membranes of
endothelial cells and the expression of E-selectin, intensifying inflammation. In addition,
SP enhances the migration and endothelial adhesion of leukocytes and monocytes, and
affects the vascular and cellular components of inflammation [6,20–22].

2.2. Neurotrophins (NTs)

The presence of neurotrophins (NTs) in the skin is crucial at every stage of the in-
flammatory response. Neuropeptides produced by cells present in the skin belong to
three groups: opioid and non-opioid neuropeptides, and neurotrophins. Receptors for
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neurotrophins are found on keratinocytes, hair follicles, inflammatory cells such as T lym-
phocytes, macrophages, leukocytes and MCs. The most important neurotrophins produced
in the skin include NT-3, NT-4, NGF (nerve growth factor) and BDNF (brain-derived
neurotrophic factor). NGF is synthesized and released by keratinocytes, Merkel cells, fi-
broblasts and mast cells. NGF is the most important neurotrophic factor in dermal sensory
nerves [6]. Skin diseases, which are clinically characterized by intense itching and histolog-
ically characterized by an increased number of nerve fibers in the skin, are regulated by
neurotrophins [16,23,24].

2.2.1. Calcitonin Gene-Related Peptide (CGRP)

The calcitonin gene-related peptide (CGRP) is one of the most prominent neuropep-
tides and is localized throughout the peripheral and central nervous system [25].

In thin unmyelinated sensory fibers in the dermal papillae, and in epidermal free
nerve endings present in the dermal papillae, CGRP coexists with SP and causes pruritus.
CGRP is also found in the perivascular region and is responsible for vasodilation in the
skin without causing pruritus [26]. Neuroimmune reactions of the skin are bidirectional.
The cutaneous nervous system can also be activated by cytokines released by immune
cells [27]. The immune system takes note of pathogenic events through a set of receptors
that recognize pathogen-associated molecular patterns (PAMPs), e.g., LPS and CpG, and
damage-associated molecular patterns (DAMPs); some examples include high-mobility
group box 1 (HMGB1), S100 proteins, and heat-shock proteins (HSPs) [28–30]. After binding
with PAMPs or DAMPs, the described pattern-recognition receptors (PRRs), including
Toll-like receptors (TLRs) and IL-1R, elicit inflammatory and immune responses through
signaling to nuclear factor κB (NF-κB), thus inducing the expression of proinflammatory
cytokines, for example, IL-1, -6, -31, IFN-γ (interferon-γ) and TNF-α (tumor necrosis
factor-α) [31]. The cytokines that are released play the roles of ligands and activators of
sensory nerves, and downstream neuronal effects take place. One example is IL-6, which
triggers the expression of NGF and NT-3, 4 and 5; on the other hand, IL-31 exerts pruritic
effects [32–34].

Melanocytes and sensory nerve endings interact via CGRP, which affects melanocytes
by upregulating melanogenesis and increases melanocyte dendriticity by inducing
keratinocyte-derived melanotropic factors [27]. CGRP affects the melanogenesis process
when the skin is exposed to CGRP and when melanocytes are stimulated. During the
melanogenesis process, the addition of CGRP-stimulated keratinocyte conditioned medium
(CGRP-KCM) has been shown to stimulate melanogenesis; therefore, it is likely that ker-
atinocytes produce melanotropic factors when stimulated with CGRP [6].

2.2.2. Substance P (SP) and Its Role in Neuroinflammation

Substance P (SP) is a protein that consists of 10 amino acids. Together with neurokinin
A and neurokinin B, it belongs to the family of neuropeptide tachykinins, whose wide
range of activity is possible due to their presence in the nervous, digestive and immune
systems. When substance P is released, it binds to its NK-1R receptors on various target
cells. The linkages between neuropeptides and immune cells play an important role in the
modulation of the inflammatory neurogenic process [35,36].

Substance P is released from the terminals of afferent unmyelinated C-fibers and
myelin-type delta A-fibers in response to nociceptive stimulation [37], and plays a bigger
part in itching than in pain [22]. It binds to keratinocytes or MCs [38], or induces the release
of interleukins (as well as other cytokines) [39]. We can distinguish three main directional
effects of SP activity: vasodilation, the activation of B lymphocytes and the increased
proliferation of keratinocytes and fibroblasts [22,34,38,40,41]. SP plays an important role
in AD, where the degranulation of mast cell granules leads to the release of proteases and
histamine. The secondary mediators are leukotrienes and prostaglandins, while the sub-
stances secreted after the activation of MCs are interleukins such as IL-1, IL-2, IL-4, TNF-α
and INF-γ [42,43]. At the level of the spinal cord, SP plays a role in pain neurotransmission
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and the modulation of autonomic stimuli. In the peripheral nervous system, SP receptors
have been demonstrated on primary sensory neurons, where SP is regulated by nerve
growth factor (NGF) [39]. SP initiates the degranulation of MCs, resulting in the release
of activators of the inflammatory process and the hypervascularization and infiltration
of mononuclear cells [34,38,41]. Individual neuropeptides/mediators and their roles in
neuroinflammation are summarized in Table 1.

Table 1. Selected neuropeptides/mediators and their roles in neuroinflammation.

Neuropeptide/
Mediator Sources/Expressed by Cell types Expressing

the Receptor Overall Function in Skin Association with Skin
Diseases Ref.

SP (substance P)

Secreted by sensory C
fibers and DRG
- Endothelial cells,
keratinocytes and MCs

- NK-1R (neurokinin-1
receptors)
- Endothelial cells,
connective tissue mast
cells producing tryptase
and chymase,
fibroblasts and
Langerhans cells

- Initiates the inflammatory
response, leading to proliferation
of specific T-lymphocytes, as well
as the activation and
degranulation of mast cells in
early stages of psoriasis
- Vasodilatation
- Local inflammation
- Increased cellular proliferation
- Skin HPA axis activation

- Psoriasis
- Rosacea
- Atopic dermatitis
- High concentration is
observed in the blood of
patients, which
correlates with the
activity of the disease
process and the
intensity of itching

[4,17–22,35,36]

NGF (nerve
growth factor)
neurotrophin

Secreted by cutaneous
cells (keratinocytes,
fibroblasts and
adipocytes nerves)

NGF-TrkA
keratinocytes, MCs,
fibroblasts and
eosinophils

- Correlated with the intensity of
pruritus
- Modulates nerve innervation
and neuropeptide release,
degranulates mast cells and
induces keratinocyte
hyperproliferation
- Responsible for proliferation
and growth of nerve cells
- Favors the survival of certain
immune cells in the
cutaneous system

- Psoriasis
- Atopic dermatitis
- Allergic diseases
- Prurigo nodularis

[6,16,23,24]

CGRP (calcitonin
gene-related
peptide)

- One of the main
peptides involved in
neurogenic
inflammation
- Is released after the
activation of TRPV1 or
TRPA1
- Secreted by
sensory neurons

CGRP receptors and
mast cell surface

- Induces vasodilatation
- Can activate eosinophils to
release proinflammatory
mediators
- Stimulates the proliferation of
keratinocytes
- Is responsible for the
appearance of erythema

- Psoriasis
- Prurigo nodularis
- Atopic dermatitis
- Rosacea

[18,25,26,32–34,44]

VIP (vasoactive
intestinal peptide)

Secreted by:
- Sensory and
autonomic neurons
- Keratinocytes,
endothelial cells and
T lymphocytes

Membrane receptors
VPAC1 and 2R coupled
with G protein are
found on keratinocytes,
T lymphocytes and
mast cells

- MC degranulation and the
production of proinflammatory
cytokines
- Induces vasodilatation

- Eczema
- Psoriasis
- Atopic dermatitis

[18,43,45]

CRF (corticotropin-
releasing factor)
the central
neuropeptide of
the HPA axis

- Keratinocytes,
melanocytes, fibroblasts
and mast cells

- CRF1 receptors are
found on the cells of the
epidermis
(keratinocytes and
melanocytes) and the
dermis (fibroblasts and
mast cells)
- CRF2 receptors are
found on the cells of
skin appendages (hair
follicles, sebaceous and
sweat glands)

- Stimulates the production and
release of MCs, keratinocytes and
fibroblasts of cytokines with a
Th2 profile

- Psoriasis
- Acne
- Alopecia areata
- Atopic dermatitis
- Vitiligo
- Lichen planus
- Seborrheic dermatitis
- Rosacea
- Urticaria

[46–49]

Substances that inhibit the neurogenic inflammatory process

SST (somatostatin)

- Receptors (SSTR2) are
found on T
lymphocytes,
Langerhans cells,
epithelium cells and
fibroblasts

- Sensory neurons
- Merkel cells
- Langerhans cells
- Sweat gland cells

- Inhibits the secretion of
pro-inflammatory cytokines
- Inhibits the secretion endocrine
glands
- Inhibits intracellular cAMP

[18,19,50]

(α-MSH)—
α-melanocyte
stimulating
hormone

MC1R−MC5R
melanocytes,
keratinocytes,
fibroblasts and immune
cells

- Is formed on the skin
by the POMC
prohormone
- Melanocytes,
keratinocytes, MCs,
macrophages and
monocytes

- Inhibits the synthesis of
cytokines with anti-inflammatory
properties

[18,51]
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3. Receptors in Neuro-Immune Interaction
3.1. Neurokinin Receptor (NK-R)

Cells that are resident and temporarily present in the skin express different types of
receptor for neuropeptides. SP, NKA and NKB bind to the G protein-coupled receptors
NK-1R, NK-2R and NK-3R, respectively [52]. When NK-1R is activated via SP, it causes
multiple signaling cascades that involve the degranulation of mast cells and release of
proinflammatory mediators; examples include histamine, and NGF expression and the
production of leukotriene B4 (LTB4) in keratinocytes, leading to neurogenic inflammation
and pruritus [53–55]. Several studies have researched the role played by SP and NK-1R
in the mechanism of itching in various diseases such as atopic dermatitis, psoriasis and
chronic idiopathic urticaria (CSU) [56,57].

It is suggested that NGF and its receptor TrkA play a major role in pruritus and allergic
diseases. In an active process of inflammation, NGF expression is markedly upregulated
in nerves related to the inflamed area, while increased levels of NGF are associated with
skin dermatoses such as psoriasis [58]. The role of NGF consists in the maintenance, pro-
liferation and growth of nerve cells. The process of cutaneous inflammation involves the
NGF-dependent production of SP, CGRP and other neurotransmitters and neuropeptides
or molecules linked with nociception. Furthermore, NGF has a direct stimulating effect on
the degranulation of mast cells, enhancing the count of mast cells in peripheral tissues and
favoring the growth of myeloid cells [59], thus promoting the survival of several immune
cells in the cutaneous system, including eosinophils, monocytes, neutrophils, T cells and
macrophages. NGF also induces the proliferation and differentiation of B cells and encour-
ages the release of histamine from basophils. NGF can also stimulate IL-1 expression in
PC12 cells and suppress the production of LTC4 in human eosinophils [52,60,61].

3.2. Tropomyosin Receptor Kinase A

The first information about TrK receptors appeared in 1986. A family of tyrosine kinase
receptors, which include TrkA, TrkB and TrkC, was isolated. Trk receptors are stimulated by
multiple neurotrophins, including NGF, BDNF, NT-3 and NT-4 [52,62]. Keratinocytes are
the most important NGF exit point in the skin. In addition, NGF is produced by immune
cells and neurons in a dynamic inflammatory process [63,64].

Increased concentrations of cytosolic Ca2+ induce the release of neuropeptides from
the sensory nerves in the skin. There are five important GPCRs that play leading roles in
neurogenic inflammation, including PAR-2 and PAR-4, and the Mas-related G-coupled
protein receptors C11, A3 and X [65,66], in addition to the temporary receptor capacity of
the vanilloid TRPV1 and the ankyrin TRPA1 [11].

3.3. Mas-Related G-Coupled Protein Receptors (Mrgprs)

In the Mrgprs family, we distinguish nine subgroups from MrgprA to MrgprH and
MrgprX [67], which are characterized by low specificity for ligands and potentially high
specificity for itching substances. This extensive group of receptors is characterized by low
ligand specificity, and could have the best affinity for itch-inducing substances. Activation
of the MrgprA3, C11 and X1 receptors is responsible for the peripheral itching sensation
and scratching behavior. The receptors MrgprA3 and MrgprC11 are present on mast cells
and on nerve endings, as well as on non-neuronal cells [68]. Activation of the Mrgpr
receptor on mast cells causes itching and triggers strong scratching behavior, damaging
the skin barrier, and thus, its immune homeostasis. When activated, MrgprX1 triggers the
degranulation of mast cells and causes the engagement of sensory nerves and cutaneous
cells in the development of neurogenic inflammation [69]. MrgprA3 and C11 are involved
in the production of certain neuropeptides by sensitizing the TRPA1 and TRPV1 channels
located on sensory nerve endings [70,71]. Mrgprs and the TRPA1 and PAR-2 receptors play
a major role in itching and skin inflammation [4].
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3.4. Transient Receptor Potential (TRP)

The temperature-sensitive channels, which are part of the transient receptor potential
(TRP) superfamily, play a major part in the biology of the skin. Inflammatory processes
within the skin are triggered by the activation of TRPV1 and TRPA1 receptors and re-
sult in the development of neurogenic inflammation in conditions such as psoriasis and
AD [72–75]. The produced neuropeptides affect skin cells that increase the expression of
similar neuropeptide receptors, including microvascular and MC cells, which results in
vasodilation, degranulation and the release of plasma proteins and white blood cells [4,76].
The increase in the level of Ca2+ in the cytosol causes the exocytosis of neuropeptides
and inhibits or stimulates the potency of several inflammatory genes that encode cy-
tokines, neuropeptides and matrix metalloproteinases (MMPs), playing a leading role in
dermatitis [77,78]. Cation channels containing the TRP receptor are involved in the exo-
cytosis of neuropeptides responsible for the mechanism of neurogenic inflammation. The
temperature-dependent nociceptive cation channel TRPV1 responds to high temperature
(>43 ◦C) and its agonist capsaicin, which is found in chilies peppers [79]. The activation of
TRPV1 and rapid Ca2+ influx release neuropeptides such as SP and CGRP and contribute to
neurogenic inflammation. During cutaneous neuritis, the released neuropeptides and other
mediators sensitize or activate TRPV1, leading to the maintenance of CNI [6,80]. TRPV1 is
present in skin cells, such as keratinocytes, mast cells and dendritic cells, that act as pain
sensors and chemical stimuli [81].

TRPA1 modulates the inflammatory response in keratinocytes by intensifying the po-
tency of pro-inflammatory cytokines and prostaglandin E2 (PGE2) [82], which are involved
in cutaneous inflammation and pruritus. They also activate the growth of HSP, which is
responsible for the increase in pro-inflammatory cytokines in allergic skin diseases [83,84].
In conclusion, the activation of TRPA1 causes the production of several inflammatory
mediators by keratinocytes.

TRP ion channels are involved in cutaneous thermosensation, osmoregulation and
inflammation, as well as cellular growth. When pathological conditions such as inflam-
mation or tissue injury are present, TRP is involved in signaling painful and pruritic
stimuli to the CNS. Therefore, the identification of ion channels that detect heat or cold
provides major insight into the molecular foundations of neurogenic inflammation, pain
and pruritus. Furthermore, some TRPs (TRPV1 and TRPV4) appear to play a direct part
in peripheral neurogenic inflammation [85–87]. TRPV1 and TRPA1 play a leading role in
neurogenic dermatitis by means of the release of neuropeptides (including SP and CGRP)
and pro-inflammatory cytokines [80,88].

3.5. Role of Protease-Activated Receptors (PARs)

TRPV1, TRPA1 and proteases PAR-2 and PAR 4 cause an increase in intracellular
Ca2+ (iCa2+) concentration, the exocytosis of neuropeptides, and the expression of pro-
inflammatory genes, leading to the development of CNI [78,89].

PARs are G protein-coupled receptors, of which there are four different subtypes:
PAR1-4. They are so-called “alarm receptors” that do not possess classic ligands, but
are activated by N-terminal proteolytic cleavage and by environmental proteases. The
activation of PAR2 and PAR4 has been attributed to itching or pain in atopic dermatitis.
PAR2 is expressed by keratinocytes, ECs, MCs and sensory nerves. PAR 2 stimulation leads
to the release of itch-inducing factors (e.g., ET-1, IL-33, TSLP and SP) from keratinocytes,
EC, nerves and other neuroinflammatory mediators (TSLP and kallikrein) [81,90–92]. There
are receptors for TSLP and PAR2 on nerve endings. Proteases activate the pathways
of C-fiber excitation by binding to the PAR2 receptor. In AD, as a result of mast cell
degranulation, tryptase is released and nerve endings are stimulated, which leads to
histamine-independent pruritus [27].

Sensory neurons and keratinocytes harness the power of PAR2, which is stimulated
by proteases triggered by degenerated MCs. In AD, the levels of tryptase and PAR2 are
elevated in the patient’s skin, and the excessive secretion of PAR2 in keratinocytes is
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sufficient to cause AD-like changes [12,92]. AR-2 activation results in the stimulation of
TRPV4 channels in dorsal root ganglion (DRG) neurons and of the NF-κB pathway in
keratinocytes [93,94]. After the secretion of proteases by MCs, activated PAR2 stimulates
endogenous inflammation, itching and pain, which are dependent on CGRP and substance
P in AD patients. In an addition, exogenous factors such as allergens can activate PAR-2,
thereby contributing to itching and pain [88,95]. TRPV1, TRPA1, and PAR-2 and PAR-4
proteases are also present in cells that reside in and infiltrate the skin during CNI, which
enhances skin signaling and may exacerbate AD [96].

4. Mast Cells as Major Mediators of Neuroimmune Crosstalk
4.1. The Role of Mast Cells in Neuroinflammation

Mast cells (MCs) are resident immune cells in the skin. They are produced in the bone
marrow from CD34+ cells and are the "first responders" of the immune system in the skin.
They affect every stage of the immune response, especially the initial stage, and are often
referred to as “gatekeepers” [97] because they are in the immediate vicinity of blood vessels
and nerve endings.

Mast cells gather near the afferent innervation of the periphery, visceral organs, and
the meninges [98,99]. Furthermore, mast cells release numerous different mediators, which
initiate nociception in primary afferent neurons by binding to the corresponding recep-
tors [100,101]. Mast cells are usually located within the dermis, and they are also present
near the nerve endings in the epidermis. Mast cells have also been detected in the epidermis
in psoriasis, epidermal hyperplasia and chronic inflammation [101].

Mast cells are also found in the central nervous system; they are located on the inside
of the blood–brain barrier and affect its permeability [102,103]. Stress and comorbidities
are the main factors responsible for their presence and activity [104]. Mast cells can react
with brain cells, leading to an increase in the influx of pro-inflammatory cytokines and
contributing to the exacerbation of neuroinflammation [98].

4.2. Mast Cell-Induced Disease

Mast Cell Activation Diseases (MCADs) are MC-associated inflammatory conditions,
i.e., mastocytosis and MC activation syndrome (MCAS) [105–111]. Mastocytosis is a unique
disease expressed by a D816V mutation in the c-KIT gene, leading to the formation of
abnormal mast cells in the skin or internal organs. Compared to MCAD, MCAS is a more
common non-proliferative disorder with increased MA stimulation. Ailments have a wide
range and intensity. However, pain and pruritus are among the most common symptoms,
varying in severity and localization in MCAS and mastocytosis [101].

Mast cells have receptors on their surface that allow them to communicate with their
environment. The high-affinity IgE receptor FcεRI plays an essential role in the release of
histamine, tryptase, leukotrienes and prostaglandins, which results in local vasodilation,
edema, local neurogenic stimulation and inflammatory cell infiltration [112–114]. The
degranulation of mast cells and the release of tryptase leads to the production of nociception
through the binding of protease-activated receptor 2 (PAR-2) to primary afferents. PAR-2 is
part of a G protein-coupled receptor expressed on primary sensory neurons. Peripheral
nerve endings release P and CGRP after the activation of PAR-2 (Figure 1) [91,115].

Mast cells are responsible for releasing histamine, which acts through its four receptors.
When activated, the H1 receptor leads to hypotension and edema. H3 is expressed in the
CNS, and H4 on granulocytes and mast cells. The G protein-coupled MRGPRX2 receptor
(Mas-related G protein-coupled receptor X2) comprises a human analogue of the murine
Mrgprb2 [116,117].

In a study by Meixiong et al., which used a knockout mouse model, it was proven
that deficiency of the Mrgprb2 receptor reduces skin pruritus in allergic contact dermatitis.
Activation of the Mrgprb2 receptor causes non-histaminergic itching. The results of this
study indicate the possibility of a new therapeutic route using Mrgprb2 [46,118].
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Figure 1. In the neurogenic inflammatory pathway, peripheral nerve endings communicate with 
various skin cells, such as keratinocytes, melanocytes, fibroblasts and MCs, and also with immune 
cells via neurotrophins and neuropeptides. In neurogenic inflammation, an important role is played 
by MCs, on the surface of which there are numerous receptors for neuropeptides secreted by nerve 
endings. After activation of the receptors, mast cells degranulate and release proteases, cytokines 
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Figure 1. In the neurogenic inflammatory pathway, peripheral nerve endings communicate with
various skin cells, such as keratinocytes, melanocytes, fibroblasts and MCs, and also with immune
cells via neurotrophins and neuropeptides. In neurogenic inflammation, an important role is played
by MCs, on the surface of which there are numerous receptors for neuropeptides secreted by nerve
endings. After activation of the receptors, mast cells degranulate and release proteases, cytokines and
histamine. Tryptase binds to the PAR-2 receptor, activating it and releasing neuropeptides such as
CGRP and SP, which are responsible for itching and scratching. PAR-2 activation is associated with
pain perception. Tryptase directly affects CGRP, causing its degradation and negative feedback. On
the other hand, SP, acting on the NK-1R and MRGPRX2 receptors on mast cells, activates them, causes
cell degranulation and intensifies the inflammatory response. This response also involves TH2CD4+
immune cells that release cytokines IL-4, IL-13 and IL-31; these cytokines, as mediators, activate
receptors on nerve endings, which intensifies itching in skin diseases. Ca2+-dependent TRPV1 and
TRPA1 ion channels can communicate with each other and, when activated, increase the release of
neuropeptides, thereby exacerbating neurogenic skin inflammation.

The bipolar connection between the MC and nerves has been proven to codify itching,
pain and inflammatory responses. MRGPRX2 is stimulated by neuropeptides (e.g., SP)
released from sensory neurons [98,112,118]. In mice, innate immune cells recruited via
SP/Mrgprb2 receptor interaction to the site of inflammation trigger neural inflammation
linked to pain and itching responses [116,118]. In mice, it is suggested that tryptase B2
could be a major mediator secreted by MCs, activating sensory neurons by means of
receptors stimulated by protease (PAR1, PAR-2, PAR-4). These receptors on neurons are
highly expressed and are responsible for itching and scratching [46,47].

5. Influence of Stress in Formation of Neurogenic Skin Inflammation

Mental stress is a state in which a person feels strong emotions such as anxiety,
fear, helplessness, anger and aggression and cannot control them. As a result, numerous
biochemical and physiological changes can disturb homeostasis and disrupt mental and
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physical balance, which involves the immune and endocrine systems. Stress can induce
and exacerbate various skin conditions, from cancer to inflammatory diseases such as
psoriasis, acne, AD, CSU, seborrheic eczema, lichen planus and alopecia areata [48,119].
The effects of stress on the skin can be direct (via the peripheral nervous system) or indirect
(via the endocrine and immune systems) [3,120–122]. Neurogenic inflammation is the
result of the participation of nerves and their mediators, neuropeptides. Prior research has
demonstrated the effect of stress on the processes involved in the cutaneous neurogenic
reaction, such as altering the density and activity of nociceptive nerve fibers that are
vulnerable to capsaicin, altering the activity of their neurons, enhancing the level of SP
release from the unmyelinated nerve endings of the skin and degranulating cutaneous mast
cells. Neuroinflammatory processes are responsible for the development of depression [123].
The activation of meningeal cell receptors that results from these processes to a low degree,
and the activation of immune cells, are promoted by the endogenous process of depression
(Figure 2) [124,125].
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Figure 2. The role of stress and mediators produced by cells of the nervous system, immune system
and resident cells of the skin in the induction and exacerbation of symptoms of chronic dermatitis
and the formation of disorders of specific and non-specific immunity of the skin.

In response to stress, the hypothalamus, through the corticotropin-releasing hormone
(CRH), stimulates the release of ACTH, activating the production of cortisol by the adrenal
cortex [120,126]. The body’s primary line of defense in the face of environmental factors
is the skin, and the second is molecular mechanisms, through which the body responds
to threats and restores local homeostasis. The fundamental bodily system involved in the
response to stress is the hypothalamic–pituitary–adrenal (HPA) axis. The presence of an
analog of the HPA axis has been demonstrated in the skin, which is activated by various
environmental factors [2,127,128]. Several hormonal changes occur due to stress factors in
the HPA axis, which initiates CRF secretion in the hypothalamus; this hormone binds to
a type 1 receptor in the anterior pituitary gland and stimulates the secretion of ACTH by
the anterior pituitary gland through corticotropin-releasing hormone (CRH) production
and secretion of the adrenocorticotropic hormone (ACTH) from POMC. ACTH travels
through the bloodstream to the cells of the adrenal cortex and affects the production of
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glucocorticoids, to which cortisol—the so-called stress hormone—belongs. GC, through
negative feedback, affects hormones secreted by the hypothalamus (CRF) and pituitary
gland (POMC) (Figure 3) [129].
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Figure 3. The central and peripheral axes of the HPA are in charge of proper skin barrier function
and inflammatory reactions. The release of neuromediators (CRF) from the hypothalamus and
other areas of the CNS that can stimulate the release of norepinephrine and cortisol from adrenal
HPA, and the release of leukocytes in the circulatory system via CRF and MC receptors, which
modulate immune responses during inflammation and immunity, are activated by various stressors.
Inflammatory responses in the skin are modulated by cytokines and neuropeptides of immune cells.
Protease-activated receptor 2 (PAR2) on the plasma membrane of sensory nerve endings is activated
by tryptase from degranulated MCs, which, in turn, stimulates the release of calcitonin gene-related
peptide and tachykinins from sensory nerve endings. Vasoactive sensory nerve peptides are released
under the influence of mediators from mast cells and other inflammatory cells. The mobilization
of intracellular Ca2+ by PAR -2 at the level of the spinal cord induces the secretion of CGRP and SP
from the central nerve endings. Neuromediators that are released when stimulated by sensory nerves
modulate cutaneous inflammation, pain and itching.

Glucocorticoids impact the organs via two types of receptor: mineralocorticoid (MR)
and glucocorticoid (GR), which have different affinities and localization [130]. These
receptors are mainly present in the hippocampus, the paraventricular nuclei of the hy-
pothalamus and the pituitary gland. The binding of cortisol to MR and GR in the brain
primarily suppresses the secretion of corticotropin-releasing hormone in the hypotha-
lamus and adrenocorticotropic hormone in the pituitary gland. The regulation of the
hypothalamic–pituitary–adrenal system works based on feedback, whereby glucocorti-
coids use glucocorticoid receptors to block the activity of the HPA axis at the level of
the pituitary gland or hypothalamus, or indirectly by means of receptors within the hip-
pocampus. Extended chronic stress disturbs the HPA axis and leads to the production
of steroid hormones, which can impair a number of physiological processes, including
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neurogenesis and hormonal regulation. We observe enhanced adrenal responsiveness to
ACTH in depressed patients [131].

As a response to cutaneous stress, KCs releases hormonal products, which are similar
to those produced in systemic stressful events such as CRF, POMC, β-END, ACTH and
α-MSH [1,2,121,132]. The enzymes CYP11A1, CYP21A2, 3β-HSD and CYP11B1, which are
involved in the production of corticosteroids, are expressed in KCs [34,121,127,133–136].
Glucocorticoids are also produced by melanocytes [137], fibroblasts [138] and immune
cells [139,140].

MCs can be activated by stress with the help of chemokines, neuropeptide cytokines
and hormones. The presence of MCs around blood vessels close to neurons and microglia
(meninges, thalamus and hypothalamus) allows them to be stimulated by CRF secreted
from the hypothalamus in response to stress; this, together with neurotensin (NT), can
stimulate MCs to release inflammatory and neurotoxic mediators that impair the blood–
brain barrier (BBB), causing focal inflammation. The stimulation of MCs by CRF and NT
increases vascular permeability and, through the induction of surface receptors on MCs,
leads to paracrine and autocrine reactions. These reactions take place in the brain, especially
in the cerebellum and diencephalon [141].

MCs that are present near microglial cells in the brain also produce CRH, which
regulates other immune cells. The production of IL-1 family inflammatory factors is
regulated by CRH, and they are released by MC, leading to an autocrine effect [142].
Nuclear factor κB (NF-κB) and activating protein-1 (AP-1) stimulate inflammatory MCs,
which leads to the release of IL-33, TNF, IL-6, IL-5, IL-4, IL-1, IL-13 and GM-CSF, and various
chemokines, including MIP-1α, MIP-1β and MCP-1 [143]. Neurotoxicity causes NO release
by astrocytes under the influence of TNF from mast cells and other cytokines [144,145].
Brain inflammation is a major factor in the pathogenesis of neuropsychiatric disorders.

6. Conclusions

Neurogenic skin inflammation involves the activation and modulation of signaling
pathways, which leads to the development of acute and chronic dermatological diseases
such as psoriasis, atopic dermatitis or eczema. Investigating the mechanisms of CNI is of
therapeutic importance, as individual receptors may be molecular targets for new drugs;
the MRGPRX2 receptor, which plays a role in pruritus, seems to be particularly important.
The clinical significance of the TRPV1 and TRPA1 channels in pruritus and pain is only
partially understood. Targeting one or more TRP channel sensitization signaling path-
ways could open up new avenues for treating skin diseases. Protein signaling inhibitors
may represent a new direction in the treatment of neurogenic dermatitis. Immune cells
(dendritic cells, eosinophils and T lymphocytes) that are involved in the transmission of
itching and the inflammatory response regulate communication by neurons. Peripheral
nerves can communicate with other cells in the skin through alternative signaling path-
ways (cytokines, neurotrophins and neuropeptides). The proper functioning of the skin’s
neurogenic system ensures the maintenance of systemic homeostasis, while dysregulation
of the skin’s neuroendocrine system is associated with numerous diseases. Understanding
all the components of this system may contribute improving the current understanding of
the mechanisms and targeted treatment of skin diseases.
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α-MSH α-melanocyte stimulating hormone
AD atopic dermatitis
AP-1 activating protein-1
BDNF brain-derived neurotrophic factor
CGRP Calcitonin gene-related peptide
CGRP-KCM CGRP-stimulated keratinocytes
CNI cutaneous neurogenic inflammation
CRF/-H corticotropin-releasing factor/- hormone
CSU chronic spontaneous urticaria
DRG dorsal root ganglion
DAMPs damage-associated molecular patterns
ICAM intracellular adhesion molecule
iCa2+ intracellular Ca2+

HMGB1 high mobility group box 1
HPA hypothalamic-pituitary-adrenal
HSP heat shock protein
MCAS mast cell activation syndrome
MCs mast cells
Mrgprs Mas-related G-coupled protein receptors
MRGPRX2 Mas-related G protein-coupled receptor X2
MMPs matrix metalloproteinases
NF-κB nuclear factor κB
NGF nerve growth factor
NGF-TrkA nerve growth factor (NGF)-Tropomyosin-related kinase A receptor (TrkA)
NIC neuro-immuno-cutaneous
NICE neuro-immuno-cutaneous-endocrine
NK1- 3R neurokinin-1−3 receptors
NPY neuropeptide Y
NT-3/4 Neurotrophin-3/-4
PAF platelet-activating factor
PAMP pathogen-associated molecular pattern
PAR protease-activated receptor
PG prostaglandin
POMC proopiomelanocortin
PRR pattern-recognition receptor
SM systemic mastocytosis
SP substance P
SST Somatostatin
TLR Toll-like receptors
TrkA tropomyosin receptor kinase A
TRP transient receptor potential
TRPA transient receptor potential Ankyrin
TRPV transient receptor potential vanilloid
TSLP thymic stromal lymphopoietin
VCAM vascular cell adhesion molecule
VEGF vascular endothelial growth factor
VIP vasoactive intestinal peptide
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