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Abstract: The heterogeneity of lung tumor nodules is reflected in their phenotypic characteristics in
radiological images. The radiogenomics field employs quantitative image features combined with
transcriptome expression levels to understand tumor heterogeneity molecularly. Due to the different
data acquisition techniques for imaging traits and genomic data, establishing meaningful connections
poses a challenge. We analyzed 86 image features describing tumor characteristics (such as shape and
texture) with the underlying transcriptome and post-transcriptome profiles of 22 lung cancer patients
(median age 67.5 years, from 42 to 80 years) to unravel the molecular mechanisms behind tumor
phenotypes. As a result, we were able to construct a radiogenomic association map (RAM) linking
tumor morphology, shape, texture, and size with gene and miRNA signatures, as well as biological
correlates of GO terms and pathways. These indicated possible dependencies between gene and
miRNA expression and the evaluated image phenotypes. In particular, the gene ontology processes
“regulation of signaling” and “cellular response to organic substance” were shown to be reflected
in CT image phenotypes, exhibiting a distinct radiomic signature. Moreover, the gene regulatory
networks involving the TFs TAL1, EZH2, and TGFBR2 could reflect how the texture of lung tumors is
potentially formed. The combined visualization of transcriptomic and image features suggests that
radiogenomic approaches could identify potential image biomarkers for underlying genetic variation,
allowing a broader view of the heterogeneity of the tumors. Finally, the proposed methodology could
also be adapted to other cancer types to expand our knowledge of the mechanistic interpretability of
tumor phenotypes.

Keywords: lung cancer; radiogenomics; data integration; imaging genomics

1. Introduction

Lung cancer is one of the most predominant cancer types that are diagnosed with a
high incidence (14.3% of total male and 21.5% of female new cancer cases) and with a high
mortality rate worldwide [1]. Currently, the diagnosis, prognosis, and treatment selection
of lung cancer are mainly accomplished by histologic inspection of tumor tissue [2], lymph
node involvement [3], radiological imaging [4], and mutational status of EGFR, KRAS, ALK,
BRAF, ROS1, HER2, RET, MET, and PD-L1 expression analysis [5]. Major challenges include
the genetic, temporal, and spatial heterogeneity of tumors, the invasive collection of tumor
samples, and the inability to distinguish between clinically relevant subtypes [6].

Genome-wide characterization has recently been utilized in the clinical assessment
of lung cancer with multiple molecular assays, including gene expression alterations [7],
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miRNA expression profiles [8], and epigenetic modifications [9] such as DNA methylation
status. However, these genomic sequencing assays fall short of capturing the spatial and
temporal heterogeneity of tumors [10]. Medical imaging modalities such as MRI and CT
have great potential to provide comprehensive details about tumor shape, intensity, and
texture. Using this information as a prognostic biomarker for overall survival has already
been proposed by generating a risk score from CT image features in lung cancer [11].
Furthermore, radiological imaging is used as an ongoing clinical routine to monitor tumor
progression, angiogenesis, and distant metastasis to other organs [6]. There are several
well-performing machine learning-based radiomic signatures for predicting EGFR and
KRAS mutation status [12,13].

There is an ongoing effort to describe the biological representation of radiomic fea-
tures [14]. The recent technological revolutions in clinical imaging (radiology/radiomics)
and genomic technologies have led to the emergence of a new research area called “molec-
ular imaging”, “imaging genomics”, or radiogenomics. This field refers to the study of
the association between the molecular properties of tumors and their imaging phenotypes.
For instance, many radiogenomics studies have reported significant correlations of molec-
ular markers and clinical variables based on CT or MRI image features of lung [15–17],
prostate [18], and breast neoplasms [19]. These studies hypothesized that alterations in gene
expression patterns could lead to specific tumor architectures captured by non-invasive
imaging. Recently, the field has gradually broadened. For example, machine and deep
learning approaches have predicted mutation status based on the image features of lung
tumors [13,20,21]. To improve these studies, radiomic features need to be robust to changes
in the setting, such as CT or MRI scanner variables and reconstruction algorithms. Recently,
a major step has been taken to define and validate the robustness of the features [22].

In contrast to unconnected molecular or imaging analyses, radiogenomics specif-
ically outlines links between different datasets across a range of spatial and temporal
scales [23]. Radiogenomic association maps (RAMs) can represent the correlation of ra-
diomic features, genomic features, and clinical data in visually appealing graphs that
reveal complex patterns [24]. Thus, the construction of RAMs could contribute to a better
understanding of the tumor biology underlying imaging phenotypes and provide new
insights into the identification of non-invasive surrogate biomarkers that accurately predict
tumor molecular characteristics and suggest potential therapeutic approaches. This could
provide an extension to the currently available methods, such as machine learning-based
approaches [11,13,18]. When various molecular assays (multi-omics data) are available,
RAM generation could provide more comprehensive insights than just analyzing correla-
tions between, for example, image features and gene expression. For instance, we can learn
more comprehensively how biological processes and signaling pathways are reflected in
image features. Our methods for constructing RAMs consist of unsupervised cluster-based
feature selection, which is well understood and has been applied to other applications such
as early diabetes detection [25].

2. Results
2.1. Overview of the Radiogenomic Approach

We developed and applied a bioinformatics workflow to perform an integrative analy-
sis of gene (mRNA) expression, miRNA expression, and clinical and imaging data (Figure 1).
All patients with primary tumors were included. The common cohort size used for the inte-
grative analysis is 22 patients with a median age of 67.5 years (min–max, 42–80) (Table 1).
Image processing starts with the manual segmentation of the tumor region of interest (ROI)
from patient CT scans (n = 69). Fiji [26] and MATLAB were used to extract and store 86
image features related to four imaging phenotypes: tumor size, texture, morphology, and
shape. The expression data of all available mRNA (n = 515) and miRNA (n = 513) samples
were analyzed by differential expression analysis. The resulting differentially expressed
genes (DEGs) and miRNAs (DEMs) were further used to identify over-represented gene
ontology (GO) functional terms using gProfiler [27]. We performed gene set enrichment
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analysis using GO terms and extracted image features via Piano [28]. This provides a
summary statistic of the correlations of the extracted image features with the enriched
GO terms. We extracted the intersection of enriched GO terms between gene and miRNA
expression datasets. For these intersecting GO terms, patients were clustered into pheno-
typically distinct subgroups according to their gene and miRNA expression signatures
using hierarchical clustering, reflecting the biological correlations of these signatures with
the corresponding image features. Clinical and mutation data were added to these clusters
using the ComplexHeatmap package [29] resulting in a radiogenomic association map.
Finally, TFmiR2 [30] was used to construct the gene regulatory network (GRN) of these GO
terms that potentially explain the phenotypic differences between patient subgroups.
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patients for the integration steps. On the right, the further evaluation of the results by regulatory 
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Figure 1. A schematic diagram of the integrative workflow. The diagram describes the image and
transcriptomic data processing and the integration of the four different datasets into radiogenomic
association maps. Starting from the preprocessing step, 515 mRNA samples, 513 miRNA samples,
and 69 CT image series samples are reduced to the same patients by intersection, resulting in
22 patients for the integration steps. On the right, the further evaluation of the results by regulatory
network construction and correlation analysis is outlined.

2.2. Differential Expression and Gene Set Enrichment Analysis

Differential expression analysis yielded 7214 and 147 differentially expressed genes (DEGs)
and differentially expressed miRNAs (DEMs), respectively. The postulated functional roles of
these dysregulated genes and miRNAs were summarized in 317 significant GO terms (biological
processes) for the DEGs and 538 terms for the DEMs (Supplementary Tables S1 and S2).

Gene set enrichment analysis was performed to investigate the association between
the transcriptional signatures of these significant terms and the tumor radiomic phenotypes.
This revealed 7634 and 1156 significant associations between any image feature and any
revealed enriched GO term for the DEGs (Supplementary Figure S1, Supplementary Table S1)
and the DEMs (Supplementary Figure S2, Supplementary Table S2), respectively. Biological
processes highly associated with radiomic phenotypes included nuclear division, cell cycle,
cytokine-mediated signaling, and interleukin-6 signaling.

Only 11 GO terms overlapped between the association results of both DEGs and DEMs
with the radiomic features (Figure 2A). Most of these 11 GO terms were biological processes
specific to cell differentiation, such as cell population proliferation or positive regulation of
developmental processes.
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Table 1. Demographic and clinical characteristics of the tumor patients. The available data are not always complete, as noted in the “No data” row. The “common”
column refers to the integration step within the pipeline, where the preprocessed data are reduced by the intersection of patients between all datasets. The t-test
statistic shows no significant difference between the groups based on clinical characteristics.

mRNA Seq
LUAD (n = 515)

mRNA Seq Normal
(n = 59)

mRNA LUAD-
vs. Normal

miRNA Seq
LUAD

(n = 513)

miRNA Seq
Normal (n = 46)

miRNA LUAD
vs. Normal

Common
(n = 22)

Common vs.
mRNA
LUAD

Common vs.
miRNA
LUAD

t-test statistic t-test statistic t-test statistic t-test statistics

Cohort size
Clinical data 515 59 513 46 22

No data 0 0 0 0 0

Age (years)
Median 66 66 −0.558

p = 0.578

66 67 −0.171
p = 0.865

67.5 0.294
p = 0.722

0.229
p = 0.821Min–Max 33–88 42–86 38–88 47–85 42–80

No data 19 0 19 0 0

Gender
Female 276 34

/
274 26

/
14

/ /Male 239 25 239 20 8

Pack-years
smoked

Median 40 48 0.181
p = 0.857

40 40 0.290
p = 0.773

25 −0.574
p = 0.581

−0.591
p = 0.57Min–Max 0.15–154 5–94 0.15–154 2–124 10–120

No data 163 26 163 10 13

Vital status at
last follow-up

Alive 389 37
/

388 41
/

14
/ /Dead 126 22 125 5 8

Last
Follow-up

Median days 157 306 −1.73 157.5 182 −0.345 242 −1.18 −1.24
No data 134 19 p = 0.091 133 4 p = 0.732 8 p = 0.251 p = 0.229

KRAS
mutation

Tested and
mutation found 23 3 23 2 3

Tested and no
mutation found 36 3 36 2 8

EGFR
mutation

Tested and
mutation found 23 1 23 - 2

Tested and no
mutation found 57 4 57 3 10
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Figure 2. Visualization of the significant associations between the GO BP terms. (A) The Piano
results of common “biological process” terms (n = 11) from the ORA of DEGs (pink-colored column)
and DEMs (blue-colored column) are visualized (considering only image features with at least two
negative or positive associations in the dataset). Image features in rows are clustered to reveal a
different association pattern in the two transcriptomic profiles (DEGs and DEMs). The annotation
column “Imaging phenotypes” reflects the assignment of image features to their group. The “Genetic
dataset” legend characterizes an image feature if it was exclusively associated with the terms of
gene expression (RNAseq, DEGs), miRNA expression (miRNAseq, DEMs), or within both datasets
(shared). (B) The impact of the selected 11 GO terms is illustrated as a bar plot, where the number of
significant associations between any image feature and the GO terms is split into DEGs and DEMs.
The GO term with the most associations based on the GSEA with Piano is a cellular response to
organic substances.

Interestingly, the four studied tumor phenotypes (morphology, shape, texture, and
size) show different association patterns with the dysregulated genes (DEGs) and miRNAs
(DEMs). For instance, most image features related to tumor size and morphology are
mainly associated with DEGs but not with DEMs. Additionally, several texture features
calculated based on the neighborhood gray-tone difference matrix negatively correlate with
DEGs. By contrast, the texture features calculated from the gray-level run-length matrix
positively correlate with DEMs.



Int. J. Mol. Sci. 2023, 24, 4947 6 of 16

The gene/miRNA expression values of these 11 GO terms were hierarchically clustered
to form two patient clusters. We measured the similarity of the clusters between the DEG
and DEM datasets by the intersection of common patients (Table 2). We also integrated
patient clinical information such as age range, smoking status, tumor stage (T and N), and
the incidence of the most common mutations in lung cancer: ALK, EGFR, KRAS, and TP53.

Table 2. Overview of the GO terms, retrieved from both the GSEA of the enriched GO terms from
genes and miRNAs. Two patient clusters are constructed to compare the groups based on each GO
term’s involved genes/miRNAs. We counted how many patients intersected in each group for the
different transcriptomic source data. For the complete overlap of patients, the number of matching
patients was summed and divided by the total number of patients (n = 22). For each GO term, there
were also associated image features, which we called DRF (differentially represented feature), and we
checked if these matched between the miRNA and gene-based GSEA outputs.

GO Terms Patient Cluster 1 Patient Cluster 2 Overlap Percent Overlap DRFs Associated
with DEGs

DRFs Associated
with

DEMs

cell population
proliferation 11 1 12/22 55% Variance Variance

regulation of cell
population

proliferation
11 1 12/22 55% Variance

RLN,
GLN_GLSZM,

ZSN

positive
regulation of

developmental
process

7 1 8/22 36%
RLN,

GLN_GLSZM,
ZSN

RLV, volume, size,
solidity,

eccentricity

potassium ion
transmembrane

transport
9 5 14/22 64%

Ell_Flatness,
Moment5,

cprom
Moment4

cellular response
to chemical

stimulus
4 3 7/22 32% Variance

LRLGE,
SZLGE,

Complexity

response to
organic

substance
5 2 7/22 32% Variance No DRF

muscle structure
development 11 1 12/22 55%

RLN,
GLN_GLSZM,

ZSN
Moment4

negative
regulation of

developmental
process

10 7 17/22 77% Variance Variance

regulation of cell
differentiation 10 7 17/22 77% Variance Variance

cellular response
to organic
substance

4 2 6/22 27% Variance

contr,dissi,homom,
homop,

dvarh,indnc,idmnc,
SRE, LRE, RP,

SZLGE,
Coarseness,
Complexity,

Strength

regulation of
signaling 10 7 17/22 77% Variance Variance

As we were interested in basic cellular and biological processes, we narrowed our
analysis to the following two GO processes: (1) regulation of signaling, which shows the
highest overlap of patients (17/22 = 77%) between the two patient clusters of DEGs and
DEMs, and (2) cellular response to organic substances, which has the highest number of
associations between the transcriptomic and image features (see Figure 2B and Table 2).
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We then analyze these GO terms in more detail to unravel how they were reflected in the
radiomic phenotypes. The RAMs of the remaining 11 detected GO terms are depicted in
more detail in Supplementary Figures S7–S24.

2.3. Regulation of Signaling

The regulation of the signaling process incorporates basic signaling genes and miRNAs.
Previous studies have shown heterogeneous tumors exhibit different signaling mechanisms
and dysregulation patterns of related genes and miRNAs [31]. Our results not only showed
that regulation of signaling was significantly associated with varying tumor phenotypes
but also allowed for patient clustering based on the expression signatures of the signaling
genes/miRNAs (Figure 3) with significant differences in tumor morphology (tumor variance).
Moreover, signaling genes and miRNAs positively correlated with tumor variance appear
to have an inflammatory function, such as hsa-mir-9 (Supplementary Figures S3 and S4).
Consistent with our findings, this miRNA has already been experimentally proposed as a
prognostic biomarker based on its correlation with poor overall outcomes [32]. It is also
noteworthy that most clinical data, such as tumor stage and mutation status, did not show
significant differences between the two patient groups.
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of miRNAs in tumor texture heterogeneity in CT images of lung cancer patients exposed 
to organic substances. Unexpectedly, the clustering of patients based on gene expression 
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Figure 3. (A) Radiogenomic association map of the GO term “regulation of signaling”. The clustered
rows are ordered by their p-value calculated using a t-test between the two groups. The first 50
genes/miRNAs are visualized. The gene expression-based RAM results from clustering 1001 genes,
of which 322 have a p < 0.05 (32.2%). The miRNA-based RAM showcases four miRNAs with a
p < 0.05 from 53 miRNAs used for clustering (7.5%). In addition, clinical information, tumor stage,
and mutation frequency of common lung cancer driver genes are displayed. Smoking status was
defined as follows: 1-lifelong non-smoker, 2-current smoker, 3-current reformed smoker for more than
15 years, and 4-current reformed smoker for less than 15 years. (B) Two exemplary contrast-enhanced
CT images (level-600, window 1500) are presented on the right. (C) Table showing the identified
DRFs and their significant association with the miRNA-Seq results of the GO term.

Furthermore, the DRFs calculated as a differentiator for the two groups with their fold
change and p-values are displayed. The assigned image phenotype refers to the group of
the image feature (Supplementary Table S3).
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2.4. Cellular Response to Organic Substance

Biological processes related to response to organic substances had the highest number
of significant associations between the transcriptomic and image features in lung carci-
noma. This is consistent with the fact that one of the main causes of lung cancer is tobacco
smoking, which contains carcinogenic substances, such as organic cyclic compounds [33],
that damage lung tissue. Most of the texture features were significantly associated with
the expression patterns of miRNAs and genes, with a positive correlation observed for the
miRNA signature and a negative correlation for the gene signature (Figure 3). Moreover,
when clustering patients based on the miRNA expression signature of the biological process
“cellular response to organic substances”, patient groups tend to have significant differ-
ences in tumor texture features such as homogeneity, contrast, and coarseness (Figure 4C,
Supplementary Figures S5 and S6). This highlights the critical role of miRNAs in tumor
texture heterogeneity in CT images of lung cancer patients exposed to organic substances.
Unexpectedly, the clustering of patients based on gene expression signatures of the BP
“cellular response to organic substances” revealed only morphology (i.e., variance) as a
difference between the patient subgroups. Figure 4B depicts exemplary CT images for the
two patient groups.
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diated regulatory network that combines transcriptional and post-transcriptional interac-
tions between the associated DEGs and DEMs, potentially driving the phenotypic differ-
ences between the patient subgroups (Figure 5). The constructed networks encompass 
three types of molecular interactions: (1) TF → target gene, (2) miRNA → target gene, and 
(3) TF → miRNA, describing how miRNAs are significantly involved in controlling tumor 
phenotypes. For the “regulation of signaling”, we identified two main hub genes: TAL1 
and TGFBR2, which contribute largely to the regulation of the network (Figure 5A). 

By contrast, TGFBR2 was identified as the main hub gene for the “cellular response 
to organic substances” term (Figure 5B). Our results show that TAL1 is a lung-specific 
gene associated with lung carcinoma and directly regulates TGFBR2, which was previ-
ously annotated as a tumor suppressor gene [34]. TAL1 is also known to control normal 

Figure 4. (A) Radiogenomic association map of the GO term “cellular response to organic substance”.
The clustered rows are ordered by their p-value calculated using a t-test between the two patient
clusters. The first 50 genes/miRNAs are visualized. The gene expression-based RAM results from
clustering 794 genes, of which 246 have a p < 0.05 (31%). The miRNA-based RAM showcases 7
miRNAs with a p < 0.05 out of 39 miRNAs used for clustering (18%). In addition, clinical information,
tumor stage, and mutation frequency of common lung cancer driver genes are displayed. Smoking
status was defined as follows: 1-lifelong non-smoker, 2-current smoker, 3-current reformed smoker
for more than 15 years, and 4-current reformed smoker for less than 15 years. (B) Two exemplary
contrast-enhanced CT images (level-600, window 1500) are presented on the right. (C) Table showing
the identified DRFs and their significant association with the miRNA-Seq results of the GO term.

Notably and in concordance with tumor heterogeneity, inflammatory activity and
previous exposure to organic cyclic compounds are positively correlated overall. Similar
to the “regulation of signaling” BP, there were no clear, coherent patterns in tumor stage,
mutation status, or smoking status (Figure 4A) between the patient subgroups.
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Furthermore, the DRFs calculated as a differentiator for the two groups are shown
with their fold changes and corresponding p-values. The assigned image phenotype refers
to the group of the image feature (Supplementary Table S3). In contrast to one DRF
(variance) of the mRNA expression-based RAM, the two groups in the miRNA RAM can
be differentiated by a set of 14 image features, all belonging to the texture phenotype.

2.5. Regulatory Interactions Underlying Phenotypic Differences

For each of the two examined biological processes, we constructed a TF–miRNA-
mediated regulatory network that combines transcriptional and post-transcriptional in-
teractions between the associated DEGs and DEMs, potentially driving the phenotypic
differences between the patient subgroups (Figure 5). The constructed networks encompass
three types of molecular interactions: (1) TF→ target gene, (2) miRNA→ target gene, and
(3) TF→miRNA, describing how miRNAs are significantly involved in controlling tumor
phenotypes. For the “regulation of signaling”, we identified two main hub genes: TAL1
and TGFBR2, which contribute largely to the regulation of the network (Figure 5A).
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Figure 5. Gene regulatory network (Tfmir) of the GO term (A) “regulation of signaling” and GO term
(B) “cellular response to organic substance”. TAL1 and TGFBR2 are regulatory hotspots based on
the degree of centrality of the edges. Green arrows indicate tissue specificity for non-small cell lung
carcinoma. Directly influenced target genes are grey, while orange represents miRNAs that act as
inhibitors. TGF-beta receptor types 2 and 3 are both inhibited by hsa-mir-21.

By contrast, TGFBR2 was identified as the main hub gene for the “cellular response to
organic substances” term (Figure 5B). Our results show that TAL1 is a lung-specific gene associ-
ated with lung carcinoma and directly regulates TGFBR2, which was previously annotated as a
tumor suppressor gene [34]. TAL1 is also known to control normal myeloid differentiation and
is an experimental drug target for the treatment of T-cell acute lymphoblastic leukemia [35].
Our analysis suggests a regulatory role for TAL1 in controlling tumor morphology, particularly
tumor variance (Figure 3C). Many studies have reported the suppressive function of TGFBR2
in tumorigenesis [35,36], but no previous report has been able to highlight its regulatory role
in governing the tumor texture and morphology (Figure 4C).
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3. Discussion

Radiogenomic approaches combine radiological images with underlying molecular
information to reveal possible links between these tumor phenotypes and the underlying bi-
ology [31]. Biologically plausible associations between gene expression, miRNA expression,
and image features could have a clinical context, such as early prediction of appropriate
treatments, and a positive impact on overall survival.

The decision to utilize the whole transcriptome, in addition to high-evidence genotypes
like EGFR mutations, was made to include as yet unknown dysregulated genes. In addition,
we did not want to reduce the already small sample size by including only a subset of the
patients. For example, EGFR mutations have an estimated prevalence of only 10–16% in
Caucasians and ALK adds up to 1–10% [37].

We proposed a data-driven approach to construct radiogenomic association maps
(RAMs) that link imaging phenotypes to associated molecular features. These RAMs
have the potential to identify image features that reflect the transcriptomic and post-
transcriptomic regulations behind tumor pathogenesis. Such candidate image features
could be used as surrogate biomarkers in the absence of genomic information and as an
indicator of the underlying biological processes and pathways. Yeh et al. [31] applied a
similar approach in breast cancer patients and found positive and negative associations
between image phenotypes, such as size and KEGG pathways. In addition to the RAM-
based approach, several other methods detect relationships between the image features
and genetics, for example, by using PET rather than CT images and associating image
features with oncogenic signaling pathways [38]. Other approaches use different methods
to associate the imaging phenotypes with genetic signatures, so-called metagenes, using a
correlation-based approach [17].

In addition, our approach helped to decipher the complex regulatory interactions
between associated genes and miRNAs, explaining the differences between patients in
tumor imaging phenotypes.

Our approach highlighted biologically plausible associations between imaging pheno-
types, dysregulated genes, and miRNAs in lung tumor patients. For instance, the tumor
size and morphology phenotypes were exclusively associated with gene expression pro-
files, whereas the texture phenotypes were associated with gene and miRNA profiles. This
relationship sheds light on quantifying the regulatory role of genes and miRNAs in shaping
the observed tumor phenotypes in radiological images.

Missing interpretability of image features for clinical associations beyond the subcate-
gories defined by image features such as shape or density complicates their evaluation. As
gene ontology databases provide curated molecular knowledge, this direct connection to
previous findings enables the detection of surrogate image features for biological processes
involved in tumor phenotypes. Additionally, our approach visually represents the patient’s
clinical and mutation data to the constructed RAM in a complex heatmap. Although no
differences in clinical and mutational data of EGFR, ALK, TP53, and KRAS were observed,
an equivalent analysis with a larger patient cohort could determine yet unknown patterns.

Interestingly, the genes involved in the regulation of cell signaling were found to be
positively associated with shape and size image features. This connection seems biologically
plausible as upregulated signaling pathways in tumors would induce proliferation and,
thus, growth. Both genes and miRNAs involved in this biological process were negatively
associated with tumor variance. This might lead to the conclusion that rapidly growing
tumors lose their grayscale variance. Moreover, our RAM analysis shows that this image
feature can be used to distinguish the signaling activity of a patient’s tumor. For instance,
the miRNAs hsa-mir-9-1, hsa-mir-9-2, and hsa-mir-9-3 are known to cause inflammation and
positively correlate with tumor variance in patient group 1 (Figure 3, blue samples). Recent
unpublished work analyzed the expression differences of several miRNAs (including mir-9)
and showed that these miRNAs show different expression patterns in early, middle, and late
tumor stages [39]. In patient group 2, the gene DEPTOR, which is known to inhibit lung
tumorigenesis [40], is negatively correlated with tumor variance (Supplementary Figure S4, red



Int. J. Mol. Sci. 2023, 24, 4947 11 of 16

samples), suggesting its potential role as a diagnostic biomarker for differentiating patients at
high risk of progression.

The dysregulated genes and miRNAs related to organic substances were able to
distinguish patients with significant differences in tumor texture phenotype.

Of particular interest is the state of the inflammatory microenvironment of the tumor.
Our results demonstrated evidence that inflammatory activity due to organic cyclic com-
pounds (smoking) correlates with tumor texture and suggests the miRNAs hsa-mir-196a,
hsa-mir-187, hsa-mir-133a, and hsa-mir-1 as a potential factor for tumor heterogeneity
between patient groups.

When constructing the gene–miRNA regulatory networks associated with the two GO
terms examined, TAL1 and TGFBR2 were identified as hotspot genes potentially regulating
these two GO terms. The stimulation of TGFBR2 by TAL1, specifically in lung tissue, has
not been experimentally confirmed. Lo Sardo et al. [34] described EZH2 as a suppressor of
TGFBR2, resulting in tumor growth mediated by a cluster of miRNAs (miR-25, 93, and 106b).
Although this mechanism was not reflected in our GRN, we discovered another cluster of
miRNAs (hsa-mir-19a, 20a, and 21) that may be involved in tumor growth and progression,
in addition to the findings described by Lo Sardo et al. [34]. It is also noteworthy that the
transcription of ADRB2, a target gene in the constructed regulatory network, is enhanced
by the visualized TAL1-EZH2 axis. It is the encoding gene for beta-adrenoreceptors. In the
literature, ADRB2 has been controversially reported to be associated with proliferation,
angiogenesis, tumor progression, distant metastasis, and TKI resistance [41].

3.1. Study Limitations

Missing freely available repositories for patients’ multi-omics data was the main
challenge for this study. We thus used all matched samples to create the RAM. Therefore,
the results presented in this study require larger patient cohorts with various radiogenomics
profiles to validate the detected RAMs. Furthermore, many radiogenomic studies can be
improved by marking the specific biopsy site in the radiomic images to correlate the
tissue-specific expression with the corresponding ROI in the image.

Another important limitation is the technical challenges in data acquisition and pro-
cessing, such as image standardization problems when using different CT scanners with
varying parameters such as slice thickness, reconstruction algorithms, and radiation detec-
tor resolution. Finally, an automated ROI segmentation would compensate for the human
bias introduced by manual segmentation.

3.2. A Word of Caution

We must stress the obvious but often missed fact that association never implies causa-
tion when using RAM models. Nevertheless, we spotted literature-confirmed RAM exam-
ples generated from different OMICs datasets. Future research is warranted to test/assess
the robustness and consistency of the proposed RAM map via receiver operator charac-
teristic curves and cross-validation (CV) techniques—for instance, by building machine
learning models to predict the radiographic features from the molecular data and vice
versa. A second standard method to validate the detected RAMs is to apply our approach
to independent/external patient cohorts and compare the identified association patterns.

4. Materials and Methods
4.1. Datasets Origin

Clinical data, and gene and miRNA expression profiles for lung adenocarcinoma
patients were downloaded from The Cancer Genome Atlas (TCGA) portal, namely the
TCGA-LUAD project [42]. Genomic datasets were collected at level three. The matching
CT studies (imaging traits) were obtained from The Cancer Imaging Archive (TCIA) [43]
(Supplementary Table S4).
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4.2. Image Data Analysis

The DICOM images were loaded as image sequences into the ImageJ2 software [44]
and segmented using the segmentation manager plugin of Fiji V.8 [26] to create the regions
of interest (3D ROIs) delineating the tumor in each CT slide. The resulting ROIs were
saved in TIFF format. The statistical and geometric features (n = 32) of the 3D tumor were
extracted using the Fiji 3D-ROI Manager plugin [45]. The texture features (n = 54 features)
were computed by loading the TIFF ROIs (TIFF-stack library) into MATLAB R2018b using
the texture toolbox [46,47]. Finally, the two feature sets were combined, resulting in 86
imaging traits for each LUAD patient.

4.3. Genomic Data Analysis

Gene and miRNA expression profiles were processed by normalization of raw read
counts followed by differential expression analysis. We used the DESeq2 v. 1.12.4 R pack-
age [48] to identify differentially expressed genes (DEGs) and miRNAs (DEMs) between
normal and tumor samples. Genes and miRNAs that exhibited at least a 2-fold change and a
p-value cutoff of 0.05 were classified as DEGs and DEMs, respectively. p-values were adjusted
using the Benjamini–Hochberg [49] procedure to limit the false discovery rate to 5%.

4.4. Enrichment Analysis of Differentially Expressed Genes and miRNAs

To compare the functional enrichment of the DEGs versus the DEMs, we used the
GOSt tool of the gProfiler2 R package [27] with the correction method gSCS to identify
significantly enriched (p-value < 0.05) GO biological processes.

To study the association between the transcriptomic functional level and the radiomic
phenotypes, we used the gene set enrichment analysis (GSEA) implemented in the R
package Piano [28]. For each combination of image features and a GO term, we performed
GSEA to evaluate the Spearman rank correlation between the gene or miRNAs of the GO
term and the image feature values. The p-values (<0.05) obtained from the GSEA were
evaluated through 10,000 gene or miRNA set random permutations, and FDR-adjusted.

The summary statistic indicates the directionality of the association between the GO
term and the image feature in the up or down direction, revealing positive and negative
associations between the transcriptomic expression profiles and the image feature.

In our further analysis, we restricted our evaluation by considering only GO terms
with more than two image features significantly associated with GSEA for both gene and
miRNA-based analysis.

4.5. Visualization of the Radiogenomic Association Maps

Hierarchical clustering with Euclidean distance and the complete method (hclust
R function) was used to derive a dendrogram of columns for visualization. T and N
classification [4], smoking status, patient age, and mutation status of EGFR, KRAS, ALK,
and TP53 were added. The heatmaps were visualized using the ComplexHeatmap R
package [29].

4.6. Identification of Differentially Representative Features (DRF)

The fold change (FC) for each image feature between two patient groups was calculated
and tested for significance using the unpaired statistical t-test. p-values were adjusted using
the Benjamini–Hochberg [49] procedure to limit the false discovery rate to 5%.

4.7. Gene Regulatory Network Construction

The TFmiR2 web server [30] was utilized to construct the gene regulatory network
(GRN) from the genes and miRNAs significantly associated with the examined GO terms
with a p-value of less than 0.01. We contextualized the output network to lung cancer
by selecting non-small cell lung carcinoma as the disease attribute. We also considered
molecular interactions that were only supported by experimental evidence. The output
networks were visualized by Cytoscape V.3.7.1 [50] highlighting edges/interactions that
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are lung-cancer and tissue-specific. All used methods and software packages are listed in
Supplementary Table S5.

5. Conclusions

We demonstrated a radiogenomics-based approach that deciphers the underlying
regulatory machinery behind tumor imaging phenotypes by systematically correlating
transcriptomic and image features in lung cancer patients. We have highlighted several
biological processes significantly associated with tumor phenotypes (radiomic features)
and unraveled the corresponding regulatory interactions with potential driver genes and
miRNAs, providing better interpretability of radiologic phenotypes. This data-driven
approach can be generalized to other cancer types and complex diseases, given the avail-
ability of related multi-omics datasets. Such an approach could be helpful in individualized
medicine for detailed non-invasive diagnosis, treatment suggestions, drug susceptibility
testing, and patient follow-up.
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