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Abstract: The calcium-sensing receptor (CaSR) is an important regulator of epidermal function. We
previously reported that knockdown of the CaSR or treatment with its negative allosteric modulator,
NPS-2143, significantly reduced UV-induced DNA damage, a key factor in skin cancer development.
We subsequently wanted to test whether topical NPS-2143 could also reduce UV-DNA damage,
immune suppression, or skin tumour development in mice. In this study, topical application of NPS-
2143 (228 or 2280 pmol/cm2) to Skh:hr1 female mice reduced UV-induced cyclobutane pyrimidine
dimers (CPD) (p < 0.05) and oxidative DNA damage (8-OHdG) (p < 0.05) to a similar extent as the
known photoprotective agent 1,25(OH)2 vitamin D3 (calcitriol, 1,25D). Topical NPS-2143 failed to
rescue UV-induced immunosuppression in a contact hypersensitivity study. In a chronic UV photo-
carcinogenesis protocol, topical NPS-2143 reduced squamous cell carcinomas for only up to 24 weeks
(p < 0.02) but had no other effect on skin tumour development. In human keratinocytes, 1,25D,
which protected mice from UV-induced skin tumours, significantly reduced UV-upregulated p-CREB
expression (p < 0.01), a potential early anti-tumour marker, while NPS-2143 had no effect. This result,
together with the failure to reduce UV-induced immunosuppression, may explain why the reduction
in UV-DNA damage in mice with NPS-2143 was not sufficient to inhibit skin tumour formation.

Keywords: ultraviolet radiation (UV); photoprotection; 1a,25-dihydroxyvitamin D3 (1,25D); cyclobu-
tane pyrimidine dimer (CPD); 8-hydroxy-2′–deoxyguanosine (8-OHdG); calcium sensing receptor
(CaSR); photocarcinogenesis; cyclic AMP response element binding factor (CREB); squamous cell
carcinoma (SCC)

1. Introduction

Skin cancers can be categorized into three main types: (i) basal cell carcinoma (BCC);
(ii) squamous cell carcinoma (SCC), both of which arise from keratinocytes; and (iii)
melanoma. Pathological changes in skin, including ultraviolet radiation (UV)-induced
DNA damage [1–3], mutagenesis [4], inflammation [5], and immunosuppression [6,7] can
ultimately lead to photocarcinogenesis. UV not only directly induces DNA lesions such
as cyclobutane pyrimidine dimers (CPDs) and (6–4) photoproducts [8], but also induces
indirect biological damage targeting DNA, protein, and lipids via the production of reactive
oxygen species (ROS) and nitric oxide products, forming 8-hydroxy-2′-deoxyguanosine
(8-OHdG) as a marker of oxidative DNA damage [9]. UV has potent immunosuppressive
effects that promote tumour development [7,10–12].
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Repetitive UV-induced epidermal thickening and pigmentation production together
protected mice [13] and humans from subsequent UV challenges, with 75% less erythema
and 60% less DNA damage in skin [14,15]. This thickening of the skin as a result of
keratinocyte differentiation and may be more protective than melanogenesis (pigmentation
production) in response to UV, at least in some populations [16]. Calcium concentration is
believed to act as a switcher between proliferation and differentiation of keratinocytes [17].
This is consistent with a well-defined gradient for total calcium that increases from the
basal to the outermost layers of the epidermis [18]. The responses of keratinocytes to
extracellular calcium ion concentrations (Ca2+

o) and the maintenance of systemic calcium
homeostasis are mainly controlled by the calcium-sensing receptor (CaSR), a member
of family C of the G protein-coupled receptors (GPCR) [19,20]. There are commercially
available small molecule allosteric agents, for example, NPS-2143 works as an antagonist
that reduces CaSR activity to block the increase of Ca2+

i [21–25]. NPS-2143 has been used
in an attempt to promote a brief secretion of parathyroid hormone in plasma for treatment
of osteoporosis [22]. Previously we reported that CaSR knockdown or exposure to the
CaSR negative allosteric modulator NPS-2143 protected human keratinocytes in culture
against UV-induced DNA damage at a similar level to the known photoprotective agent,
1,25-dihydroxyvitamin D3 (1,25D) [26]. This photoprotective activity of NPS-2143 was
attributed at least in part to enhanced DNA repair and to reduction in ROS [26].

Immunosuppression, along with UV-induced DNA lesions, is a key factor leading
to photocarcinogenesis [27]. Topical 1,25D has been shown to protect mice from UV-
induced CPDs, apoptotic sunburn cells, and UV-induced immunosuppression, and to
reduce UV-induced skin tumours [28–31] as well as chemically-induced skin tumours [32].
The use of albino hairless (Skh:hr1) mice exposed to chronic UV is accepted as a reliable
model of photocarcinogenesis [33–35]. While cultured primary keratinocytes provide a
powerful approach for studying epidermal biology, they imperfectly model the multi-cell
types and structural order of living epidermis [36]. Thus we aimed to investigate, for the
first time in a mouse model, whether manipulation of the CaSR by its negative allosteric
modulator NPS-2143 would protect against DNA damage in mouse epidermis after acute
UV exposure. We also wanted to examine if topical treatment of NPS-2143 would reduce
UV-induced skin inflammation and immune suppression, as well as in response to a chronic
UV-exposure, whether it would reduce UV-induced skin tumours in comparison with the
positive control, 1,25D.

2. Results
2.1. NPS-2143 Protects against DNA Damage and Apoptotic Keratinocytes in Skh:hr1 Mice

Acute UV irradiation generated CPDs, oxidative DNA damage 8-OHdG (Figure 1),
and sunburn cells (Figure 2) in mouse skin. The photoprotective hormonal form of vitamin
D, 1,25D [29,37–41], was used as the positive control in these experiments. All agents in
all experiments were applied topically immediately after exposure to solar-simulated UV
(ssUV). Minimal staining in SHAM skin, particularly of 8-OHdG, indicates basal damage
of the nuclei. In female mice, topical NPS-2143 at 2 concentrations, 228 pmol/cm2 and
2280 pmol/cm2 effectively reduced both CPD (p < 0.05, F(2.062, 19.25) = 15.64) and 8-OHdG
(p < 0.05, F(1.537, 11.78) = 34.58) (Figure 1a–d). Topical NPS-2143 also reduced UV-induced
sunburn cells (p < 0.01, F(2.044, 15.67)= 32.04) which are apoptotic keratinocytes with
characteristic pyknotic nuclei and eosinophilic cytoplasm [42] (Figure 2a,b).

In male Skh:hr1 mice, significant reduction in UV-induced CPD was only seen after
treatment with a high dose of NPS-2143, 2280 pmol/cm2 (p < 0.01, F(2.190, 18.98) = 6.738)
(Figure 1e–h). Both concentrations of this agent, however, as well as 1,25D, significantly
protected against oxidative DNA damage, 8-OHdG (p < 0.01, F(1.284, 14.55) = 8.726), in
males (Figure 1f,h), and against sunburn cells (p < 0.01, F(2.663, 33.74) = 53.07) (Figure 2c,d).
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Figure 1. NPS-2143 inhibits DNA damage in female and male mouse skin following acute UV
irradiation. Immediately after exposure to ssUV, female and male Skh:hr1 mice were treated with
vehicle 1,25D (11.4 pmol/cm2) or NPS-2143 (228 or 2280 pmol/cm2) topically and the skin was
harvested after 3 h. DNA damage is shown in graphs for CPD in female (a) or male (e) mice and
8-OHdG in female (b) or male (f) mice with graphs displaying data as dot plots. These graphs show
representative data from a minimum of two individual experiments with similar results on each
occasion. **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05, and n.s. not significant, when compared
with UV-vehicle treated group by linear mixed model analysis; ## p < 0.01, #### p < 0.0001 significantly
different from sham vehicle by t-test (a): t = 6.088, df = 10 (b): t = 5.385, df = 10 (c): t = 6.084, df = 13,
(d): t = 2.728, df = 10. n = 9 (triplicate biopsies per mice, 3 mice per group). Photomicrographs show
UV-induced CPD in female (c) or male (g) mice and 8-OHdG in female (d) or male (h) mice. Black
arrows point to the dark brown staining in nuclei indicating the presence of DNA damage. Scale
bar = 100 µm.

2.2. NPS-2143 Effects on Inflammatory Response after ssUV and on Contact Hypersensitivity in
Female Mice

After exposure to 3 minimal erythemal doses (MED) of solar-simulated UV, where a
MED is defined as the lowest dose of UV which produces a mild reddening of the skin at
24 h, the mice developed skin edema [31]. In this study, skinfold thickness increased daily,
reaching a maximum at day 4 post-UV, then decreased gradually (Figure 3a). On the 4th
day, UV-induced edema was significantly reduced in the presence of 1,25D (11.4 pmol/cm2)
(p < 0.05) or NPS-2143 (2280 pmol/cm2) (p < 0.05), compared to the vehicle-treated control
mice (F(1.531,9.187) = 8.857).
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Figure 2. NPS-2143 reduces apoptotic keratinocytes in female and male mouse skin following acute
UV irradiation. Immediately after exposure to ssUV, female and male Skh:hr1 mice were treated with
vehicle 1,25D (11.4 pmol/cm2) or NPS-2143 (228 or 2280 pmol/cm2) topically, and skin was harvested
after 3 h. The number of sunburn cells in female (a) and male (c) mice is presented as displaying data
as dot plots. These graphs show representative data from two individual experiments with similar
results on each occasion. **** p < 0.0001, *** p < 0.001, ** p < 0.01, and n.s. not significant compared
with UV-vehicle treated group by linear mixed model analysis; #### p < 0.0001 significantly different
from UV-vehicle by t-test (a): t = 8.417, df = 10 (c): t = t = 12.09, df = 14. n = 9 (triplicate biopsies
per mice, 3 mice per group). (b,d) Photomicrographs of UV-induced sunburn cells in female (b) or
male (d) mice. Arrows show histological appearance of apoptotic sunburn cells in haematoxylin and
eosin stained Skh:hr1 mouse skin section with shrunken, elongated nuclei-stained dark purple. Scale
bars =100 µm.

In order to study how UV exposure affects contact hypersensitivity to oxazalone,
female mice were exposed to ssUV or SHAM, then treated topically with the various
agents. One week later, all the mice were sensitized with 2% oxazolone applied to the non-
irradiated abdominal skin. The mice were then challenged one week after this, by topical
application of oxazalone to the ears to trigger swelling. Ear thickness measurements were
taken before the challenge and again 18 h later. The average ear swelling expressed as the
difference between ear thickness measured before and after challenge (at 18 h) in the non-UV
exposed (SHAM) vehicle-treated mice was 293 ± 45 microns, and there were no differences
among all non-irradiated groups (Figure 3b). In the UV-irradiated vehicle-treated mice, the
average ear swelling of vehicle-treated mice was 155 ± 30 microns, indicating significant
suppression of the immune response. With topical treatment with 1,25D, average ear
swelling after UV was 217 ± 52 microns (Figure 3b), consistent with partial restoration
of the contact hypersensitivity response. Though this swelling in response to oxazolone
was smaller than in the SHAM with 1,25D-treated mice, the response was significantly
better than in the vehicle-treated UV-exposed mice (p < 0.05, F (3.172, 28.55) = 21.73). Mice
treated with NPS-2143 and UV had a measured average ear swelling of 177 ± 63 microns,
not significantly different from vehicle-treated, UV exposed mice (Figure 3b). When
calculated as a percent immune suppression after UV [31], the values were 52% immune
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suppression in the vehicle-treated group, 26% in the 1,25D-treated group (p < 0.05 vs
vehicle-treated), and 39% in the mice treated with NPS-2143 (n.s. vs vehicle-treated mice)
(F (1.582, 21.36) = 3.405) (Figure 3c).
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Figure 3. The effect of NPS-2143 on ssUV-induced inflammatory edema and the contact hypersen-
sitivity reaction to oxazolone in female Skh:hr1 mice. (a) Measurement of edema daily (days 1—7)
by mean change in dorsal skinfold thickness ± SEM compared to non-irradiated skinfold thickness.
* p < 0.05 when compared with UV Vehicle treated group. n = 5 mice per group by linear mixed model
analysis. (b) Ear Swelling, **** p < 0.0001 *** p < 0.001, ** p < 0.01 significantly different from SHAM
group, # p < 0.05, n.s. not significant compared with UV-vehicle-treated group, by linear mixed model
analysis, n = 5 mice per group. (c) SSUV-induced immunosuppression, * p < 0.05, n.s. not significant
compared with UV-vehicle-treated group by linear mixed model analysis, n = 5 mice per group.

2.3. Study of NPS-2143 in Photocarcinogenesis in Female SKh:hr1 Mice

Albino hairless Skh:hr1 mice develop papillomas and then SCC after 10 weeks of
chronic ssUV exposure [31,34,43]. During the 40 weeks of study, tumours normally ap-
peared as small papillomas which gradually increased in diameter (Figure 4a). Papillomas
are a benign outgrowth of skin in mice, comparable to the onset of actinic keratoses (AK)
in humans [44]. A proportion of these papillomas showed signs of progression towards
malignancy. These may be identified grossly and verified histologically as squamous cell
carcinomas in later weeks (Figure 4a) [34].
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Figure 4. Effect of NPS-2143 in chronic SSUV-induced photocarcinogenesis in Skh:hr1 mice. (a) Pho-
tographic and photomicrographic examples of (A) normal skin, (B) papilloma, (C) papilloma to SCC
transition, and (D) SCC as seen in this study. Scale bar = 100 µm. (b) Tumour Latency (c) Tumour
Multiplicity **** p < 0.0001, *** p < 0.001, ** p < 0.01, n.s. not significantly different from UV +Vehicle
group. (d) Tumour Incidence (e) SCC incidence * p< 0.05, **** p < 0.0001 significantly different from
UV + Vehicle group at indicated week by Mantel–Cox test. Each of these graphs illustrates data from
a single experiment (n = 18) and is presented as means ± SEM. (f) Western Blot and densitometry
of p-CREB and tubulin (loading control). Human keratinocytes cultured in 96 well plates were
irradiated with 400 mJ/cm2 UVB followed by treatment with vehicle, 10 nM 1,25(OH)2D3 or 500 nM
NPS-2143 in the presence of 1 mM CaCl2 for 90 min. Densitometry of triplicate blots (Figure S1a) for
p-CREB expression (Mean + SD) was normalized to UV + Vehicle and shown as a relative expression.
Statistical significance was calculated with GraphPad prism using a one-way ANOVA followed by
Tukey’s test. **p < 0.01, *** p < 0.001, n.s. not significant when compared with vehicle-treated cells
after UV.
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• Tumour latency

The onset of detectable tumour (papilloma) formation in mice varied between treat-
ment groups. As shown in Figure 4b, the latency in the vehicle-treated group was
24.0 ± 1.0 weeks. A significantly increased latency of 33.6 ± 2.5 weeks (p < 0.0001,
F(2, 35) = 2.560) was seen in 1,25D-treated mice (11.4 pmol/cm2). The average latency
for NPS-2143-treated mice (2280 pmol/cm2) was 22.4 ± 1.0 weeks, which was not signifi-
cantly different from the vehicle control (Figure 4b).

• Tumour multiplicity

Tumour multiplicity including both papillomas and SCCs was calculated at each
weekly time point, as the average number of tumours per tumour-bearing mouse. Figure 4c
shows tumour multiplicity throughout the 40-week study. Vehicle- and NPS-2143
(2280 pmol/cm2)-treated mice showed a steady increase in tumour multiplicity from
week 16 to week 40, while 1,25D-treated mice (11.4 pmol/cm2) had remarkably lower
tumour multiplicity. Compared to vehicle-treated mice, tumour multiplicity was signifi-
cantly reduced in the 1,25D-treated group at all week-points assessed (p < 0.05 at week 20,
p < 0.01 at week 25, 30 and 35, p < 0.005 at week 40, F(2, 45) = 2.255). However, there was
no significant difference between NPS-2143 treated and vehicle-treated mice.

• Tumour incidence

Progressive total tumour incidence including both papillomas and SCCs was calcu-
lated each week as the percentage of mice in each group bearing at least one tumour, as
shown in Figure 4d. The incidence data were analysed statistically using a Mantel–Haenszel
log-rank test (Mantel–Cox test) [45], in which all treatments were compared to vehicle-
treated mice at 27 weeks and after (Table 1a). This analysis reveals whether there was a
difference in the risk of developing a tumour. Mice treated with 1,25D (11.4 pmol/cm2)
had significantly reduced tumour incidence compared with the vehicle-treated group
throughout the entire experiment (Figure 4d green dotted line, Table 1a, Mantel–Cox test
Chi-square Value = 27.09, df = 1). NPS-2143-treated (2280 pmol/cm2) mice demonstrated a
time point-dependent increase in total tumour incidence compared to the vehicle-treated
group at 27 weeks after the first irradiation, but by 28 weeks and over the subsequent period
until 40 weeks, there was no significant difference (Figure 4d blue dotted line, Table 1a,
Mantel–Cox test Chi-square Value = 4.061, df = 1).

Table 1. (a) Tumour Incidence and (b) SCC incidence analysed using a Mantel–Cox test.

(a) Total Incidence by Mantel-Haenszel Log
Rank Analysis Significance by Week 27 Significance by Week 28

Vehicle vs. 1,25D 11.4 pmol/cm2 **** (p < 0.0001) **** (p < 0.0001)

Vehicle vs. NPS-2143 2280 pmol/cm2 * (p = 0.044) n.s (p = 0.21)

(b) SCC incidence by Mantel-Haenszel Log
Rank Analysis Significance by week 24 Significance by week 25

Vehicle vs. 1,25D 11.4 pmol/cm2 **** (p < 0.0001) **** (p < 0.0001)

Vehicle vs. NPS-2143 2280 pmol/cm2 * (p = 0.02) n.s. (p = 0.15)

Mice developed squamous cell carcinomas (SCCs) throughout the study from 18 weeks.
The SCC-only incidence is shown in Figure 4e. Mice treated with 1,25D (11.4 pmol/cm2)
had significantly reduced SCC incidence compared with the vehicle control group through-
out the experiment (Figure 4e green dotted line, Table 1b, Mantel–Cox test Chi-square
Value = 5.355, df = 1). Only one mouse in the group of 18 (5.5%) treated with 1,25D devel-
oped an SCC at week 32 and this was still present at the end of the study. NPS-2143-treated
mice had a significantly lower risk of developing SCC (5 out of 18, 27.8%) compared to the
vehicle-treated group (8 out of 18, 44.4%) at the 24th week post-irradiation (Figure 4e Blue



Int. J. Mol. Sci. 2023, 24, 4921 8 of 18

dotted line, Table 1b, Mantel-Cox test Chi-square Value = 22.09,df = 1). However, from the
25th week until the end of the experiment, there was no significant difference between the
risk of SCC in NPS-2143- and vehicle-treated mice (Table 1b).

• Phosphorylation of cyclic AMP response element binding protein (CREB) as a predictor
of anti-tumour activity

After UV exposure, CREB phosphorylation in epidermal cells increases and this
has been proposed as a marker of tumour promoting activity [46]. In this study, 1,25D
significantly reduced the risk of developing papillomas and SCC compared with the vehicle-
treated group, while NPS-2143 had no overall effect on tumour or SCC incidence (Figure 4e,
Table 1b).

Phosphorylation of CREB after UV, 1,25D, or NPS-2143 was studied in normal hu-
man keratinocytes. Negligible basal phospho-CREB (p-CREB) was seen in non-irradiated
keratinocytes (SHAM) (Figure 4f). In cultured human keratinocytes, exposure to ssUV
increased p-CREB measured 90 min after exposure (Figure 4f). Treatment of the cells imme-
diately after UV with 1,25D significantly reduced p-CREB while treatment with NPS-2143
had no effect whether expressed as a function of tubulin as loading control (Figure 4f,
F (3, 8) = 0.8378, and Figure S1a,) or as a function of total CREB (Figure S1b).

A summary of the main differences between responses to the positive control 1,25D
and NPS-2143 is shown below (Table 2).

Table 2. A schematic representation of the differences between the effects of 1,25D and NPS-2143.
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In this study, the CaSR negative allosteric modifier NPS-2143, like the positive control 

1,25D, when applied topically immediately after ssUV, effectively reduced UV-induced 

DNA lesions of CPD and 8-OHdG in female Skh:hr1 mice. Both NPS-2143 and 1,25D re-
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tively modulates the affinity of the CaSR for extracellular Ca2+, thereby reducing its activ-

ity [21–25]. In order to better discriminate the role of the CaSR in this study, it would have 
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3. Discussion

In this study, the CaSR negative allosteric modifier NPS-2143, like the positive control
1,25D, when applied topically immediately after ssUV, effectively reduced UV-induced
DNA lesions of CPD and 8-OHdG in female Skh:hr1 mice. Both NPS-2143 and 1,25D
reduced oxidative DNA damage in male mice and at the higher concentration, NPS-2143
also reduced CPD in male mice. These results are consistent with the findings from
our study using keratinocytes in primary culture from male human donors [26]. This
is a discovery of a photo-protective role for NPS-2143, entirely different from its better
recognised role as a therapeutic agent for raising parathyroid hormone levels. NPS-2143
negatively modulates the affinity of the CaSR for extracellular Ca2+, thereby reducing its
activity [21–25]. In order to better discriminate the role of the CaSR in this study, it would
have been useful to examine a CaSR antagonist (NPS2390 or Calcium-Sensing Receptor
Antagonists I), but these studies were beyond the resources available for this work.

Sunburn cells and apoptotic keratinocytes were observed as soon as 3 h after acute
exposure to UVB [47], despite being cells that undergo programmed cell death as a result
of extensive and irreparable DNA damage [42]. It is reasonable to propose that reduced
DNA damage, along with increased DNA repair [21] in the presence of NPS-2143, led to
fewer apoptotic keratinocytes in mouse skin. In the meantime, we also observed improved
survival of human keratinocytes in culture after UV exposure in the presence of NPS-2143
(Figure S2). It is likely that reduced generation of ROS, as previously reported with NPS-
2143 after UV [21], contributed to reduced apoptosis. While sunburn cells are an index of
apoptosis, analysis of more specific markers of apoptosis such as caspase3/7 or cleaved
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PARP in the mouse tissue would indicate early stages of apoptotic events and could help to
elucidate the mechanism.

The reductions in 8-OHdG in male mice with 1,25D or NPS-2143 were similar to those
seen in female mice. However, only the higher dose of NPS-2143 reduced CPD in male mice.
Resistance in male mice to protection against UV-induced CPD in the presence of 1,25D
has been previously reported in a separate study [47]. In that study, we demonstrated that
the estrogen receptor-β (ER-β), the only estrogen receptor present in female mouse skin,
seemed likely to be involved in reductions in CPD with 1,25D, since treatment with an ER-β
antagonist or the use of female ER-β knockout mice reduced the response to 1,25D [47].
The current results indicate less effective protection against UV-induced CPD by a negative
allosteric modulator of the CaSR. Whether this is also related to the presence of ER-β in
female mouse skin or some other sex-related difference is an interesting question but was
beyond the scope of the current study. A simple explanation for the reduced effectiveness
of the lower dose of NPS-2143 could be that male mice have approximately 20% thicker
skin than female mice, regardless of UV [48]. DNA damage is a major contributor to
UV-induced immune suppression [49] and susceptibility of male mice or humans to UV-
induced immune suppression is greater than in their female counterparts [50,51]. Male
mice are more susceptible than females to photocarcinogenesis [52], whereas incidence and
mortality of skin cancers is greater in men [53,54].

Given resource limitations, the increased potential for male mice to fight and scratch,
producing skin damage which would interfere with observations [55], meant that longer
studies of skin edema, immune suppression, and tumour development after UV were only
undertaken in female mice.

Topical NPS-2143, like 1,25D, produced a significant decrease in skin edema of mice,
reflecting reduced inflammation after ssUV. UVR induces immediate and sustained pro-
duction in NO in the skin [56–59] promoting the secretion of inflammatory mediators
such as IL-6 [60]. A major limitation of the study is that it was not possible under the
circumstances to examine a cytokine profile of mouse skin tissue before and after UV with
or without NPS-2143 or 1,25D. Nevertheless, from the literature, there is evidence that
NPS-2143 reduces NLRP3 inflammasome activation [61–63], overproduction of NO [64,65],
the pro-inflammatory cytokine IL-6, and more [66–69]. These observations could explain
the ability of NPS-2143 to reduce inflammation in mouse skin on day four after UV.

Somewhat surprisingly, despite a reduction in skin inflammation after UV, treatment
with NPS-2143 had no effect on UV-induced immune suppression. Both DNA damage
and increased IL-6 are important promoters of UV-dependent immune suppression [70].
Yet NPS-2143, like 1,25D, reduced DNA damage and, from the literature, also reduces
IL-6 [66–69]. UV can directly damage antigen-presenting cells and promote the produc-
tion of immunosuppressive cytokines such as IL-10 and IL-4 [71–73]. IL-10 is an anti-
inflammatory cytokine and a potent immunosuppressant [74]. Secreted by UV-irradiated
keratinocytes [75,76] and regulatory T cells [77], IL-10 not only prevents T cell expansion
and activation but can also suppress other antigen-presenting cells [74]. It has been shown
that reductions in CPD using liposomes containing T4N5 endonuclease led to reduced
UV-immune suppression due to decreases in UV-upregulated IL-10 and TNF-α at both the
mRNA and protein levels [78]. Furthermore, IL-10−/− mice were protected against photo-
carcinogenesis [79]. Though not tested in this study, IL-10 was increased with NPS-2143
treatment in rats [66,69]. This may explain why NPS-2143 failed to prevent UV-induced
immunosuppression, though it protected against CPD and inflammation.

Skin tumour development depends on a combination of DNA damage, inflammation,
and immunosuppression [49,80]. CPD are a major contributor to UV-induced mutations,
so reduced CPDs might lead to fewer UV-induced mutations [80] and thus fewer tumours.
Furthermore, enhanced repair of CPDs has been shown to reduce skin cancer incidence in
mice [81] and humans [82] and we previously found that NPS-2143 increased DNA repair
in keratinocytes [26]. Based on these findings, it seemed possible that NPS-2143 would
have some protective capacity at an early stage of photocarcinogenesis due to its ability
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to reduce DNA damage and inflammatory reactions in vivo. In the photocarcinogenesis
study, however, a single concentration of NPS-2143 (2280 pmol/cm2) was not superior
to vehicle, either in time to develop the first tumour (including benign papilloma) or in
the total number of tumours per mouse. Although NPS-2143 significantly reduced SCC
incidence at 24 weeks, the effect did not persist.

Although the failure of NPS-2143 to prevent UV-induced immune suppression may ex-
plain its failure to prevent tumours in the chronic UV study, other factors may be involved.
Cyclic AMP Response Element Binding protein (CREB) is a transcription factor essential
for basic cellular function and homeostasis [83]. CREB is activated by phosphorylation at
Ser133 by various kinases [83,84]. CREB overexpression supports growth and progression
in various cancers [85–89]. CREB activation promotes enhanced cell proliferation, dysregu-
lation of differentiation and reduced sensitivity to apoptosis and metastasis, particularly
in melanoma [87,90] and SCC [88,91]. Using human keratinocytes, we observed that UV
exposure increased phosphorylation of CREB at Ser 133 (phospho-CREB Ser133). While
it would have been useful to verify the CREB and p-CREB changes in mouse skin, this
was beyond the scope of the study and is a limitation. Our results in human keratinocytes
are consistent with a recent study using reverse phase protein microarray analysis, which
reported that p-CREB Ser133 was significantly activated at 1 h, 5 h, and 24 h after a single
acute dose of 2MED UV in human skin [92] and with the report of increased p-CREB in
mouse skin [46].

It has been argued that p-CREB is important in the initiation of papilloma formation,
while other transcription factors such as CCAAT/enhancer binding protein (C/EBP)–
B [93,94] control later stages of tumour growth and Activator Protein 1 (AP1) [95–97]
maintains tumour identity. In a study of SCC, shRNA-mediated knockdown of CREB
resulted in a significant increase in G2 phase arrest and a reduction in tumorigenic ac-
tivity [91]. These authors identified that a key transcription factor complex, CREB and
RFX1, which binds in the nucleus and is stabilized by CCAR2, is required to maintain
proliferation in SCC [91]. Overexpression of CREB in a human squamous carcinoma cell
line SCC13 remarkably increased its colony forming ability via a β-catenin-dependent
pathway [88]. These studies suggest critical functions of CREB not only in the initial stage
of papilloma formation but also in the development of neoplastic characteristics of SCC.
Treatment of keratinocytes with 1,25D reduced UV-induced expression of p-CREB, fitting
with its ability to protect mouse skin from developing both papillomas and SCC in the
photocarcinogenesis study. NPS-2143, on the other hand, did not reduce UV-upregulated
p-CREB. This may be part of the explanation for its inability to reduce tumour incidence,
apart from its failure to decrease UV-induced immunosuppression.

Bikle et.al reported that double knockout of the vitamin D receptor and CaSR in
the epidermis leads to spontaneous SCC formation in mice without any induction by
UV, which was not observed in mice with deletion of either gene alone [98,99]. Those
studies did not involve UV exposure. This is the first study to investigate whether negative
modulation of the CaSR in skin alters responses to UV. NPS-2143 reduced two types of
DNA damage in epidermal cells as well as skin inflammation to a similar extent as 1,25D,
a known photo-protective agent (Figures 1–3). However, NPS-2143 did not ameliorate
UV-induced immune suppression (Figure 3). This latter observation, together with the
failure of NPS-2143 to reduce post-UV CREB phosphorylation, probably explain the limited
effect of this compound on skin tumour formation after ssUV (Figure 4). It is possible
that the reduction in UV-induced DNA damage including oxidative damage by NPS-2143
may indicate an anti-aging effect [100]. These novel findings may lead to new research
directions on the relationship between UV and the CaSR.

4. Materials and Methods
4.1. Studies in Mice

The in vivo studies were approved by the Animal Ethics Committee of the University
of Sydney (Approval number: 2015/794) and conformed to ARRIVE criteria. Skh:hr1
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hairless albino mice, originally from Charles River (Wilmington, MA, USA), were from an
in-house colony maintained at the University of Sydney. All Skh:hr1 hairless mice were
housed in groups in wire-topped plastic boxes at an ambient temperature of 23–25◦C under
gold lighting (F40GO tubes, General Electric Co., Hobart, TAS, Australia) that does not
emit UV radiation, and fed with Gordon Rat and Mouse Pellets (Yanderra, NSW, Australia)
and tap water ad libitum. Male and female Skh:hr1 mice that were aged-matched in groups
were used for experiments [31]. Mice were not allowed to be housed singly for this study
but were housed in groups. Female mice are less prone to fighting than male mice and the
fighting produces skin damage and artefacts [55]. For this reason, it is possible to study
both female and male mice for DNA damage within hours after a UV exposure; however,
the use of female mice for studies of skin edema or contact hypersensitivity conducted
over 7 days and 16 days, respectively, or photocarcinogenesis (over 40 weeks) is preferred
(Figure 5).
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As previously established, the minimum erythemal dose (MED) of UV with this source
for Skh:hr1 mice was 1.33 kJ/m2 UVB and 23.7 kJ/m2 UVA [31,101]. UV-irradiated mice
were subjected to a single dose of 3 MED of UV (UVB value at 3.99 kJ/m2) for acute and
immunosuppression studies. In the chronic photocarcinogenesis study, mice were subjected
to 5 days of 0.75 MED followed by 5 days/week of 1 MED, for a total of 10 weeks (Figure 5).

4.2. Topical Treatments, DNA Damage and Sunburn Cells

Mice were treated topically over approximately 7 cm2 on the irradiated dorsal skin
with 100 µL of vehicle only, or vehicle containing 1,25D (Sapphire Bioscience Pty Ltd.,
Redfern, NSW, Australia), or NPS-2143 2143 (HY-1007 MCE®, Medchem Express, Mon-
mouth Junction, NJ, USA) immediately after irradiation, as previously described [31]. The
compounds (1,25D and NPS-2143) were freshly diluted in spectroscopic grade ethanol
(Merck, Darmstadt, Germany), combined with propylene glycol (Sigma-Aldrich, St. Louis,
MO, USA) and MilliQ water at a ratio of 2:1:1 (v/v/v). Vehicle (base lotion) was combined,
ethanol:propylene glycol:water 2:1:1 v/v [31]. The dose of NPS-2143, equivalent to 20×
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(228 pmol/cm2) and 200× (2280 pmol/cm2) of an effective dose of 1,25D 11.4 pmol/cm2

was determined according to the same ratio of 1,25D doses as determined from in vitro
experiments [26,31]. Biopsies of dorsal skin were taken in triplicate from each mouse, 3 h
post-UV and paraffin-embedded for immunohistochemistry of DNA damage as previously
described [31]. Quantification of positive nuclei as % total nuclei (the percentage of CPD or
8-OHd positive nuclei staining in the selected nuclei in an area of epidermis) was obtained
using MetaMorph (Molecular Devices, San Jose, CA, USA) and normalized to SHAM.

Routine haematoxylin and eosin staining was carried out by Veterinary Pathology
Diagnostic Service (University of Sydney) to visualize sunburn cells. The stained sec-
tions were examined under a Zeiss Axioscan light microscope (Oberkochen, Germany) at
20×magnification, and the number of sunburn cells per linear millimetre of skin section
recorded, as previously described [31,47]. Non-irradiated samples as SHAM control were
obtained from the abdomen. Three areas of each section were analysed.

4.3. Skin Edema and Induction of Contact Hypersensitivity in Mice

Changes in dorsal skin thickness, a measure of edema, were recorded daily from
24 h onward until the until levels returned close to pre-UV condition on the 7th day
after irradiation.

The contact hypersensitivity response was tested to investigate the effects of NPS-
2143 on UV-induced systemic immunosuppression, as previously described [31]. Briefly,
female mice were sensitized 1 week after irradiation and treatments, with 100 µL of 2% ox-
azolone (Sigma-Aldrich, USA) (w/v) in absolute alcohol applied to the non-irradiated
abdominal skin. Sensitization was repeated on the subsequent day. The sensitized mice
were challenged 2 weeks after irradiation by application of 5 µL 2% oxazolone to both
surfaces of each ear, so that each mouse received 20 µL in total. Ear thickness measure-
ments, taken using a spring micrometre (Interapid, Zurich, Switzerland), were recorded
before the challenge and at 18 h after challenge, as previously reported [31]. The difference
between pre- and post-oxazolone challenge ear thickness measurements of each mouse
was recorded as ear swelling and the means for each group of 5 mice was calculated. Ear
Swelling = pre-challenge ear thickness–post-challenge ear thickness.

The immune response was then calculated for each mouse, as shown in the formula below:

Immune Response =
Ear swelling of UV IRRADIATED mice

Ear swelling of UV NON− IRRADIATED (SHAM) mice
(1)

Immunosuppression was calculated as 100% minus this value, ± SEM [31] as in the
formula below:

Immunosuppression % = (1 − Immune Response) × 100 (2)

4.4. Photocarcinogenesis

For this study, groups of 18 mice were used. Immediately after ssUV irradiation, mice
were treated topically with either base lotion [31], 1,25D (11.4 pmol/cm2), or NPS-2143
(2280 pmol/cm2). During the next 30 weeks, the time of appearance, location, and visual
identification of tumours with a diameter of at least 1 mm were monitored and mapped
for each mouse. As previously described [31], the term “tumour” includes papilloma and
SCC. The photocarcinogenic outcomes were reported as tumour latency, tumour incidence,
tumour multiplicity, and SCC incidence. At the end of the experiment, all tumours were
harvested for histological examination to confirm the classification.

4.5. Culture of Primary Human Keratinocytes

Keratinocytes were harvested from skin samples under University of Sydney Hu-
man Research Ethics Committee protocol no. 2015/063 and cultured, as previously de-
scribed [26]. The concentration of NPS-2143 used in these in vitro studies was based on
previous experiments where we performed serial dilutions of NPS-2143 to determine the
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concentration-dependent response in human keratinocytes [26].A total of 500 nM was in
the effective concentration range (5 nM~500 nM) and was also 10× IC 50; thus, it was
chosen for all the in vitro experiments.

4.6. Western Blot

Keratinocytes were irradiated with an Oriel 1000 W xenon arc lamp (Newport Corpo-
ration, USA) and subsequently treated with vehicle, 1,25D, or NPS-2143, as in our previous
study [26]. Western blot was performed, as previously described [102], with α-tubulin
as the loading control. Primary antibodies used in this study were anti-phospho-CREB
(Ser133) at 1 in 1000 dilution (mouse monoclonal, #9196, Cell Signaling Technology, Trask
Lane Danvers, MA, USA), anti-CREB(Total) at 1 in 1000 dilution (mouse monoclonal, #9197,
Cell Signaling Technology, Trask Lane Danvers, MA, USA), or anti-tubulin at 1µg/mL
(mouse monoclonal, SC-5286, Santa Cruz Biotechnology). The band was imaged with
the ChemiDocTM imaging system (Bio-Rad Laboratories, Inc, Hercules, CA, USA) and
densitometry was carried out using Image J. SHAM, showing negligible expression of
p-CREB which served as a negative control, and the data was normalized to UV+ vehicle
to pool experiments.

4.7. Statistical Analysis

Animals in this study were divided into treatment groups of three for acute study,
groups of five for immunosuppression study, and groups of eighteen for chronic photocar-
cinogenesis [31,47,101,103]. These numbers were determined by power analysis manually
calculated from data from previous studies to have an 80% chance showing a 20% difference
between treatment group at a significance level of 5% [104,105]. Results are expressed as
either as mean + SEM or as indicated. All the data sets passed goodness of fit tests, which
determine whether sample data exhibit skewness and kurtosis that matches a normal dis-
tribution. All statistical analyses were performed with GraphPad Prism statistical program
9.0 (GraphPad Software Inc.). Unless otherwise stated, analysis of comparisons between
treatment groups were made by linear mixed-model analysis, appropriate for dealing with
repeated measurement data. The Mantel–Haenszel log-rank test (also called Mantel–Cox
test) was used to analyse incidence data in the photocarcinogenesis study [31,45].
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