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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder known to be the leading cause
of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood
of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular,
mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation
during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta
(Aβ) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of
this review was to describe the molecular interactions between miRNAs and MAPKs during AD
pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to
2023 were considered, based on PubMed and Web of Science databases. According to obtained data,
several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely.
Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve
cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its
neuroprotective functions by inhibiting Aβ and Tau depositions, as well as oxidative stress, through
ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and
implement these promising results.
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1. Introduction

Alzheimer’s disease (AD), with more than 50 million people affected worldwide, is the
most common form of dementia and poses a major public health burden for patients and
their families [1]. This pathology manifests itself with memory loss and behavioral changes
up to the loss of daily life activities that force the patient to become completely dependent
on family or caregivers. Therefore, AD is a devastating and deadly disease and represents
a major challenge for researchers [2]. The causes that induce AD are partially clear. How-
ever, genetics, environment, and lifestyle play an important role in AD pathogenesis, and
certainly, aging remains the main risk factor. Extracellular deposition of amyloid-beta (Aβ)
and neurofibrillary tangles (NFT) produced by hyperphosphorylated Tau protein (p-Tau),
together with neuronal loss, are the hallmarks of this pathology [3,4]. The pathogenesis of
AD depends on several factors, including apolipoprotein E (APOE) genetic variants, the
APOE phenotype, and oxidative stress, which can promote damage to both DNA and RNA,
including non-coding RNA (ncRNA) [5]. Among ncRNAs, microRNAs (miRNAs) are
known to contribute to disease processes in AD [6,7]. Indeed, miRNAs are small ncRNAs
of approximately 22 nucleotides that regulate messenger RNA (mRNA) expression, playing
a crucial role in different biological processes [8]. The aberrant expression of specific miR-
NAs, such as miR-34a, miR-125b, and miR-155, has been previously associated with central
nervous system (CNS) diseases [9–13]. In this regard, Prendecki et al. 2019 [5] highlighted
that plasma levels of miR-107 and miR-650 in AD patients, quantified by quantitative PCR
(qPCR), may be related to APOE genetic variants and clinical characteristics, including the
age of onset and severity of dementia. Age of onset in AD patients, symptom severity, and
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APOE genetic variants may influence the regulation of APOE, miR-107, and miR-650 levels.
The strongest relationship between APOE level and miRNA appears in patients with onset
at 60–69 years of age and in patients with the APOE E3/E3 genotype. Thus, altered levels of
plasma APOE, miR-107, and miR-650 may be a marker of the neurodegenerative process in
the course of AD, associated with Aβ metabolism and disordered cell cycle [5]. According
to several studies, many other miRNAs have the potential as biomarkers of disease since
their deregulation has been found in the serum, plasma, and cerebrospinal fluid (CSF) of
AD patients compared to healthy controls [14,15]. However, the effects of miRNA aberrant
expression are still not entirely clear. MiRNAs’ dysregulations have been found in differ-
ent neuropathological processes, including protein aggregation and inflammation [16–18].
Thus, several alterations may affect a number of molecular signaling pathways. In this
context, recent data have reported that aberrant Mitogen-activated protein kinases (MAPKs)
levels might be associated with cognitive dysfunction and could accelerate AD progres-
sion [19,20]. According to the literature, MAPKs may represent potential targets for AD.
Indeed, their inhibition could prevent Aβ deposition, Tau hyperphosphorylation, neuronal
apoptosis, and memory impairment [21]. The modulation of MAPK signaling by miRNA
was previously evidenced, especially in cancer [22–25], but the interplay between miRNAs
and MAPKs in neurodegenerative disease remains to be elucidated. Thus, exploring the
possible effects of miRNA deregulation on MAPK signaling during AD would be an in-
teresting chance in the diagnostic and therapeutic field. MAPKs are serine and threonine
protein kinases expressed in both neuronal and non-neuronal cells of the mature CNS [26].
In response to several external stimuli, such as growth factors, glutamate and hormones,
cellular stress, and pathogens [27], MAPKs mediate cell proliferation, differentiation, and
survival [28]. Among the different MAPK enzymes, the most studied are extracellular
signal-regulated kinases 1 and 2 (ERK1/2), ERK5, c-Jun amino-terminal kinase (JNK) 1 to 3,
and p38 MAPK (α, β, γ, and δ) [29]. JNK and p38 MAPK are also known as stress-related
protein kinases because they are strongly activated in several disease processes, including
AD-associated β-amyloid neurodegeneration [28,30–32].

In this review, we provide an overview of evidence that evaluates the molecular
interactions between miRNAs and MAPK pathways using in vitro and in vivo experimental
AD models. In particular, the pathophysiology of AD will be illustrated, detailing the
potential role of miRNAs and MAPKs in this condition. Furthermore, the biogenesis and
structure of miRNAs and the role of MAPKs in AD will be mentioned. In order to select the
manuscripts, we proceeded to search on PubMed and Web of Science using the following
keywords “miRNAs” and “MAPK” or “map kinase” and “or “p38” or “jnk” or “ERK” and
“Alzheimer’s disease”; publications ranging from 2010 to 2023 were selected.

2. Alzheimer’s Disease

AD is a neurodegenerative disorder characterized by neuron loss and tissue damage,
with progressive cognitive impairment [33]. The presence of amyloid plaque and NFT in
different regions of the brain are considered the hallmarks of AD, as well as glia activation
and endosome enlargement [34].

The extracellular accumulations of Aβ are responsible for triggering a complex of the
pathological network that causes neuronal damage [35]. Aβ peptide is generated by the
enzymatic proteolysis of the amyloid precursor protein (APP), a protein that physiologically
has a key role in brain homeostasis [36]. In healthy subjects, APP is cleaved by an α-secretase
and generates the soluble peptide APPα (sAPPα), a molecule involved in neuronal plas-
ticity and survival and protection against cytotoxicity [37,38]. α-secretase-mediated APP
processing represents the non-amyloidogenic pathway. However, Aβ peptide is produced
following a β- and γ-secretase-mediated amyloidogenic pathway in AD subjects [39]. APP
undergoes a first cleavage induced by the enzymatic cleavage of β-secretase 1 (BACE1),
which generates the soluble peptide APPβ (sAPP-β) and a fragment consisting of 99 amino
acids. sAPP-β is further cleaved by γ-secretase, generating a peptide of 40 amino acids and
a peptide of 42, called Aβ1–40 and Aβ1–42, respectively [40,41]. The latter is more hydropho-
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bic, amyloidogenic, and toxic [42,43]. After releasing in extracellular space, Aβ1–42 peptides
form the “amyloid plaque” due to their higher propensity to aggregate compared to physi-
ological products [44]. Of note, another key player in AD is Tau, a protein that stabilizes
microtubules and promotes vesicular-mediated transport [45]. In physiological conditions,
the Tau protein is in perfect balance between phosphorylated and dephosphorylated forms.
In patients with AD, hyperphosphorylation leads to the formation of NFT in the cell body of
neurons with consequent destabilization and neuronal death [46]. The presence of Aβ and
Tau depositions have been associated with synaptic and neuron loss and, as a consequence,
with the development of AD symptoms [4]. Therefore, Aβ and Tau interact with each other,
promoting pathogenesis and neurodegeneration through different mechanisms that can
involve MAPK signaling [47]. Moreover, several pieces of evidence proved the main role of
oxidative stress in the early stages of AD by inducing modifications in the cerebral tissue
before the formation of Aβ-plaques and NFT [48,49]. The brain is particularly predisposed
to oxidative damage due to its high oxygen consumption, high lipid content, and low
levels of antioxidant enzymes [48]. Reactive oxygen species (ROS), including peroxide
oxygen (H2O2) and hydroxyl radicals, can induce cell death and senescence. It has been
observed that the alteration in miRNA expression levels, induced as a response to ROS,
can play a potential role in the pathogenesis of AD. Growing evidence has proven the role
of neuroinflammation in the pathogenesis and progression of AD through the activation
of microglia [50]. Indeed, neuroinflammation plays an important role in the onset and
progression of neurodegeneration and neuronal loss in neurodegenerative diseases [51]. If
prolonged over time, the inflammatory response can be deleterious because of the release
of toxic substances by chronically activated microglia [52]. Neuroinflammation seems
to play a critical role also in the dysregulation of mitochondrial and synaptic processes,
which has been strongly correlated with AD pathogenesis [50,53]. However, the specific
mechanisms of AD pathology are still not entirely clear. In terms of clinical manifestations,
memory deficit is the most common symptom, although other important impairments
involve language, visuospatial function, and executive function [44]. The loss of two or
more cognitive domains is referred to as dementia [54]. Importantly, at present, there is
no cure or treatment that can stop the progression of dementia. Despite the efforts to find
potential targets, no medication has ever been approved following a clinical trial. The
current drugs, which are acetylcholinesterase inhibitors and N methyl D aspartate receptor
antagonists, can only slow the onset of the symptoms [55]. Indeed, AD is estimated to
become one of the most devastating diseases of this century, in terms of costs and mortality,
since it is the main cause of dementia worldwide [56]. Although AD usually occurs in a
sporadic form in people > 65 years of age, a small percentage of patients develop earlier
onset associated with mutations in different genes, including APP, PSEN2, and PSEN1
(encoding, respectively, amyloid precursor protein, presenilin-1, and presenilin-2) [57].
PSEN1 and PSEN2 are A proteases that regulate the functions of the γ-secretase enzyme,
responsible for cutting the amyloid protein. Thus, mutations due to these genes cause the
accumulation of Aβ. Instead, late-onset AD is mainly associated with a polymorphism
in the APOE gene encoding APOE, a protein involved in lipid metabolism [58,59]. In
particular, the APOE4 isoform may influence the pathogenesis of AD by promoting the
conversion of Aβ into a fibrillar form and its deposition [60].

However, exploring other risk factors and/or biomarkers of AD could be helpful. In
the last decade, researchers have highlighted the role of the intestinal microbiota in the
pathogenesis of neurological and metabolic disorders [61–63]. The microbiota–gut–brain
axis is a bidirectional communication system between the CNS and the gastrointestinal (GI)
tract [64,65]. Natural bacteria living in the GI are involved in the modulation of immune
responses and digestive processes, such as carbohydrate fermentation and vitamin synthe-
sis [66]. On the other hand, intestinal dysbiosis could contribute to different stages of AD
pathogenesis through the secretion of neuroactive molecules [67–70] and harmful metabo-
lites, such as lipopolysaccharide (LPS). LPS is a bacterial endotoxin that triggers the release
of pro-inflammatory cytokines and superoxide [71,72]. Furthermore, LPS has been shown
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to cause increased levels of APP and phosphorylated Tau in a PC12/THP-1 cell model [73].
In particular, gut-derived compounds can increase intestinal permeability, leading to the
transport of harmful metabolites across the gut–brain axis to the brain. Thus, the gut micro-
biome seems to be involved in neurodegenerative diseases, including Parkinson’s disease
and AD, but also in neuropsychiatric disorders such as depression and autistic spectrum
disorders [69,74,75]. Previous studies demonstrated that the composition and diversity of
the gut microbiota are altered in AD patients compared to cognitively normal controls [76].
However, evidence using AD animal models showed positive effects after treatment with
antibiotics, probiotics, diet modification, or after fecal microbiota transplantation [63,77].
Thus, modulation of the gut microbiota could be a possible therapeutic and preventive
intervention to alleviate symptoms or slow down the progression of AD [78–80].

In most cases, the first stages of pathology remain asymptomatic for many years,
while the development of the disease depends on several risk factors, such as age and sex.
Thus, the diagnosis of AD is complex and requires various analyses, including neurological
and physical tests and above all, brain imaging [81]. The most accurate diagnosis is still
the post-mortem histological examination, through which the characteristic lesions of AD
can be identified [82]. Over recent decades, research has focused on the discovery of
biomarkers that may promote both preclinical diagnosis and novel treatments for AD. Early
identification of patients with AD could facilitate therapeutic intervention even before
cognitive impairment. Indeed, the discovery of new molecular targets during the first stage
of neurodegeneration may help to stop the pathogenesis of AD [83,84].

3. MiRNAs Biogenesis, Structure, and Function

MiRNAs are small ncRNAs (~19–24 nucleotides), which typically lead to gene silenc-
ing by driving Argonaute (AGO) proteins to bind specific sites in the 3′UTR of mRNAs [85].
However, other target sites have been detected in the 5′UTR, in the coding sequence, and
even in promoter regions. The miRNAs either block translation or degrade the target
mRNA by process of “hetero-silencing”. The same miRNA can target different mRNAs;
conversely, a single mRNA can be regulated by multiple miRNAs. The transcription of miR-
NAs takes place, especially by the work of RNA polymerase II, towards which they show a
particular affinity thanks to the presence in the primary transcript of promoters that contain
typical characteristics of RNA polymerase II [86]. The miRNAs originate from a long
double-stranded transcript, the primary miRNA (pri-miRNA), which is recognized in the
nucleus by the protein DGCR8 (Drosha’s partner). This protein is associated with Drosha,
also called Ribonuclease III (RNase III), and directs its Drosha catalytic domain by cutting
pri-miRNA and thus obtaining miRNA precursors (pre-miRNA) [87]. Pre-miRNAs are
then carried to the cytoplasm by exportin-5, an export receptor which requires ras-related
nuclear protein-Guanosine-5′-triphosphate (Ran-GTP) proteins for cargo binding. The nu-
clear export of pre-miRNAs is a crucial step in miRNA biogenesis. In particular, exportin-5
can recognize the double-stranded RNA of pre-miRNAs in a sequence-independent man-
ner [88–90]. In the cytoplasm, pre-miRNA is further processed by RNase III endonuclease
Dicer which removes the terminal loop, resulting in a mature RNA molecule of approxi-
mately 22 nucleotides called miRNA. Following cleavage, one RNA strand is degraded.
The other strand is loaded, from the 5′ or 3′ end, into AGO protein to form ‘miRNA-
induced silencing complex’ (miRISC), where mature miRNAs bind and regulate specific
mRNAs. The name of mature miRNAs, 5p or 3p, depends on the directionality of the
miRNA strand [91,92]. Post-transcriptional gene silencing can occur following different
mechanisms depending on the complementarity between the miRNA and its mRNA target.
One mechanism involves deadenylation by cap removal and exonucleolytic digestion of
mRNA, a process that occurs when miRNAs bind perfectly complementary areas of their
target mRNA. Instead, when miRNAs bind mRNA with imperfect complementarity, a
translation block occurs, which can happen by repression of translation during the initial
phase or during the elongation phase. Repression of translation by miRNAs can also occur,
inducing premature ribosome detachment (Figure 1) [93].
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Figure 1. The miRNA biogenesis process. RNA Pol II/III transcribed miRNA genes to form pri-
miRNA transcript. Pri-miRNAs are processed by microprocessor complex Drosha–DGCR8 in the
nucleus to generate pre-miRNAs. After translocation into the cytoplasm by exportin-5–Ran-GTP,
pre-miRNAs are processed by RNase Dicer to form the mature miRNA duplex. Subsequently,
one strand is degraded, while only one strand of the duplex is stably associated with RISC. The
mature miRNA can interact with target mRNAs, containing partially complementary miRNA binding
sites within the 3′UTR region, inducing translation repression, mRNA target cleavage, or mRNA
deadenylation. The image was created using the image bank of Servier Medical Art (Available online:
http://smart.servier.com/, accessed on 30 December 2022), licensed under a Creative Commons
Attribution 3.0 Unported License (Available online: https://creativecommons.org/licenses/by/3.0/,
accessed on 30 December 2022). RNA polymerase II or III: RNA Pol II/III; microRNA: miRNA;
primary miRNA: pri-miRNA; ras-related nuclear protein: Ran; Guanosine-5′-triphosphate: GTP;
precursor miRNA: pre-miRNA; RNA-induced silencing complex: RISC; messenger RNA: mRNA.

However, in certain circumstances, miRNAs have also been reported to promote gene
upregulation [94]. In addition, it has been revealed that miRNA abundance in the organism
depends, at least in part, on their stability [95]. Indeed, the miRNAs secreted in extracellular
fluids, such as blood, CSF, or saliva, may have potential as biomarkers for many diseases.
MiRNA function is essential to promote development and biological processes, and their
deregulation has been related to several pathological conditions [94]. In particular, these
molecules are highly expressed in the CNS, which is involved in the development and
homeostasis of the brain. Overall, miRNAs are essential for many biological functions
within the neurons, including proliferation, apoptosis, and synaptic plasticity [96–98]. The
aberrant expression of many miRNAs has been linked to impaired cognitive functions and
memory loss in experimental models. The role of miRNAs in the neuropathogenesis of AD
has been proved in several studies. However, further research is needed to also confirm
in vitro and in vivo results in the human brain [99–101]. The dysfunction of miRNAs could
affect AD progression by modulating neurodegeneration, neurotoxicity, and synaptic loss.
Indeed, miRNA deregulation has been observed in the brain of AD patients compared to
healthy controls, but their exact implication in AD pathogenesis is still unclear [102,103].

Of note, miRNA dysregulation could influence MAPK signaling during AD. There-
fore, the use of miRNAs to regulate different genes involved in pathologies could be an
interesting strategy to regulate neuronal homeostasis and allow neuronal circuits to re-
spond adequately to environmental insults [104]. The miRNA’s ability to bind multiple
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mRNAs aroused interest as a potential therapeutic treatment. AD as a complex disorder
could require a multi-targeted approach in order to inhibit different aspects of pathology.
Growing data also suggest that miRNAs are critical regulators of pathophysiological pro-
cesses [105,106]. However, the use of miRNAs could create potential problems due to their
ability to modulate molecular pathways that could improve some pathological conditions
but also have an influence on non-deregulated pathways [107]. Because they differ from
conventional drugs, such as small molecule and protein drugs, which are also known
to act primarily on protein targets, RNA-based therapies are considered to be the next
generation of therapeutics [106,108]. First, RNA aptamers can produce pharmacological
effects by blocking the activity of a particular protein target [109]. Second, to control a
specific disease, antisense (asRNA), small interfering RNAs (siRNA), and miRNA can be
created to specifically target functional mRNAs or ncRNAs [110]. Third, to treat a mono-
genic condition, guide RNAs (gRNAs) can be used to precisely alter the target sequences
of a particular gene [111]. Currently, the mutual regulation between miRNAs and their
target genes represents a challenge. Thus, in vivo studies on gene regulations mediated by
miRNAs may have important implications for their clinical use [112]. Thus, RNA thera-
pies have the potential to increase the number of therapeutic targets. At present, several
pharmaceutical and biotech companies are working on possible therapeutics based on
suppressing or re-establishing the concentration of specific miRNAs using, respectively,
antagomiR (anti-miR) or miRNA mimics [113]. However, the use of miRNAs could increase
significantly in subsequent years, which will contribute to the development of successful
precision medicine and more personalized therapies.

4. The MAPK Pathway

MAPKs are serine-threonine kinases that mediate cellular response to external stimuli
through different transduction signals. MAPKs are ubiquitously expressed and evolu-
tionarily conserved in eukaryotes [114,115]. The MAPK signaling pathway transduces
signals through downstream phosphorylation of proteins from the membrane receptor
to the cytoplasm and nucleus [116]. Activation of a MAPK cascade occurs in the form
of consecutive phosphorylations, i.e., a Mitogen-Activated Protein Kinase Kinase Kinase
(MAP3K) activates a Mitogen-Activated Protein Kinase (MEK), which then, in turn, acti-
vates a MAPK [114,115,117,118]. Phosphorylation events of MAPKs can be inactivated by
MAPK phosphatases (MKPs) which dephosphorylate both phosphothreonine and phos-
photyrosine residues present in MAPKs [117,119]. In mammals, three main groups of
kinases have been characterized: ERK, JNK, and p38 MAPK. In general, ERK is activated
by growth factors, while JNK and p38 are induced by cellular stress. Canonical activation
of the ERK1 and ERK2 isoforms begins following the binding of a ligand to a receptor
tyrosine kinase (RTK) present on the plasma membrane, followed by the activation of the
small G protein, Ras. Next, Ras recruits and activates serine/threonine protein kinase
Raf, a MAP3K, which activates MEK, which, in turn, phosphorylates both threonine and
tyrosine residues within the TEY (Thr-Glu-Tyr) motif of MAPK and ERK1/2 [120,121].
Instead, p38 MAPK isoforms are activated by both stress and cytokines and play a key
role in inflammatory responses [122,123]. In response to stress or cytokines, tumor necrosis
factor receptor-associated factor (TRAF) 2/3/6 or Rho proteins activate a MAP3K, such
as MEK kinase 1 (MEKK1), apoptosis signal-regulating kinase 1 (ASK1), or transforming
growth factor-β-activated kinase 1 (TAK1). MAP3K, in turn, phosphorylates a MEK, MAP
kinase kinase 3, or 6 (MKK3 or MKK6), which subsequently phosphorylates the TGY (Thr-
Glu-Tyr) motif of the p38 MAPK isoforms (Figure 2) [124,125]. Thus, MAPKs are involved
in many biological activities, including cell proliferation, differentiation, apoptosis, and
survival [126–130]. The ERK/MAPK pathway sends developmental signals from upstream
activators to downstream effectors, cytoplasmic and nuclear substrates, which also reg-
ulate several stages of neurodevelopment, such as neural induction, neural patterning,
neurogenesis, and neurite outgrowth [131–133].
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Figure 2. The MAPK signaling pathways. In mammalian cells, there are three well-known MAPK
pathways: the ERK1/2, the c-JUN N-terminal kinase 1, 2, and 3 (JNK1/2/3), and the p38 α, β,
δ, and γ MAPK pathways. ERK1/2 is activated in response to growth factors, hormones, and
proinflammatory stimuli, while JNK1/2/3 and p38 α, β, δ, and γ are activated by cellular and
environmental stresses, in addition to pro-inflammatory stimuli. The image was created using
the image bank of Servier Medical Art (Available online: http://smart.servier.com/, accessed on
30 December 2022), licensed under a Creative Commons Attribution 3.0 Unported License (Available
online: https://creativecommons.org/licenses/by/3.0/, accessed on 30 December 2022). Mitogen-
activated protein kinases: MAPKs; c-Jun N-terminal kinase 1, 2, and 3: JNK1/2/3; extracellular
signal-regulated kinases 1 and 2: ERK1/2; MAPK phosphatases 1, 3, 5, 7: MPK1/3/5/7; tumor
necrosis factor receptor-associated factor: TRAF; SH2 containing protein tyrosine phosphatase-2:
SHP2; Guanosine-5′-triphosphate: GTP; Rac Family Small GTPase 1: RAC1; MEK kinase 1: MEKK1;
Apoptosis signal-regulating kinase 1: ASK1; transforming growth factor-β-activated kinase 1: TAK1;
MAPK upstream kinase: MUK; MAP kinase kinase 3, 4, 6 and 7: MKK3/4/6/7; Thr-Gly-Tyr motif:
TGY; Thr-Glu-Tyr motif: TEY; Thr–Pro–Tyr motif: TPY; receptor tyrosine kinase (RTK).

Therefore, due to the pleiotropic functions of the MAPK signaling cascade, its aberrant
activations are known to be involved in numerous pathologies, including neurodegenera-
tive diseases. Literature data suggest that ERK, JNK, and p38 MAPK are all implicated in
AD, playing a role in various aspects of the disease, such as apoptosis, neuronal plasticity,
neurotoxicity, and autophagy [134,135]. However, excessive ROS production occurs during
early stage AD due to mitochondrial dysfunctions in neurons. It has been seen that MAPKs
can be activated by oxidative stress in a number of different cell types [48,136]. Moreover,
Aβ accumulation and Tau hyperphosphorylation, which affect neurons in AD, as well as
neuroinflammation, have been associated with the MAPK cascade in several studies. ERK
overactivation is known to increase Aβ production, while inhibition of the JNK pathway
blocks c-Jun, caspase-2 (CASP-2), and caspase-3 (CASP-3) activation. In addition, p38
MAPK inhibition has shown neuroprotective effects against neuronal damage, suggesting
its potential as a strategic treatment for AD [21,135,137,138].

http://smart.servier.com/
https://creativecommons.org/licenses/by/3.0/


Int. J. Mol. Sci. 2023, 24, 4736 8 of 24

5. Molecular Interactions of miRNAs and MAPKs in the Underlying Mechanisms
of AD
5.1. Cross-Talk of miRNAs with MAPK Signaling Pathway in the Regulation of Tau and Aβ
Protein Pathological Formation in AD

Several pieces of evidence have proven that miRNA deregulation in AD may pro-
mote Aβ and Tau pathology by modulating the MAPK pathway [139,140]. On the other
hand, some studies have reported that the aberrant activation of MAPKs led to miRNA
dysregulation with consequent neuronal damage [141,142]. Thus, the mechanisms through
which miRNAs and MAPKs modulate each other, contributing to AD development, are
still not entirely clear. In this regard, miR-148-3p reduced expression levels have been
associated with the elevation of p38 MAPK by targeting Phosphatase and tensin homolog
(PTEN) in the AD mice model [143]. Among MAPKs, p38 MAPK is known to be involved
in Tau phosphorylation [144]. Thus, Zeng et al. [143] suggested that miR-148a-3p down-
regulation may increase Tau phosphorylation via the PTEN/p38 MAPK pathway in vivo.
The authors showed that miR-148-3p levels were decreased in the serum of AD patients,
but also in amyloid precursor protein/presenilin-1 (APP/PS1) and SAMP8 (senescence-
accelerated mouse prone 8) transgenic mice brain tissue. The APP/PS1 and the SAMP8
mice were characterized by pathological AD typical features, β-amyloid production and
cognitive decline, respectively [145]. However, the therapeutic potential of miR-148a-3p
was also assessed by injection of miR-148a-3p mimics or PTEN siRNA in the cortex and
hippocampus of APP/PS1 mice. Interestingly, Zeng et al. also found that miR-148a-3p
overexpression improved AD cognitive deficit and decreased p-Tau. This neuroprotective
effect was also confirmed in vitro using the APPswe cell (SH-SY5Y cells transfected with the
Swedish mutant form of human APP) model: the upregulation of miR-148a-3p reduced Aβ-
induced injury by increasing cell viability and inhibiting Tau abnormal phosphorylation.
Therefore, the data suggest the important role of miR-148a-3p in the progression of AD
by indirect modulation of p38 MAPK signaling and Tau phosphorylation. The molecular
mechanism induced by miR-148-3p could be used to ameliorate cognitive defects and
neuronal degeneration [143].

Another significant deregulation is the overexpression of miR-342-3p, which has
been identified in both post-mortem hippocampal samples from human AD patients and
the murine AD model [146,147]. Fu et al. [148] proved that miR-342-3p upregulation
exacerbated AD symptoms, as well as amyloid production and deposition in hippocampal
tissues of triple transgenic AD (3xTg-AD) mice. This model is widely used to study AD since
3xTg-AD mice displayed both plaque and tangle pathology, as well as synaptic dysfunction,
by expressing three dementia-related transgenes [149]. However, miR-342-3p inhibition
with anti-miR improved cognitive deficit and decreased the Aβ-plaque burden in vivo, as
revealed by immunohistochemical analysis. In accordance with the literature [140,150], Aβ

stimulation increased JNK and ERK activation. It has been suggested that the miR-342-3p
was acting as both target and modulator of Aβ-induced neuronal damage through JNK.
However, miR-342-3p expression has been evaluated using different MAPK inhibitors after
Aβ stimulation in HT22 cells. Only SP600125, a JNK inhibitor, could reverse miR-342-3p
upregulation induced by Aβ exposure. Thus, Aβ might modulate miR-342-3p via the
JNK pathway in vitro, but the increase in miR-342-3p levels could enhance JNK activation
with a strong reduction of cellular vitality. In general, JNK is known to be involved in the
regulation of apoptosis and survival signals in neurodegenerative diseases [151]. Therefore,
data from this study confirm that hippocampal signal transduction derangement and
neuronal apoptosis in AD result from the increased Aβ burden and chronic activation of
the JNK cascade in a miR-342-3p-dependent manner. Consequently, intrahippocampal miR-
342-3p inhibition could be a useful strategy to reduce Aβ plaques and improve learning
and memory in AD patients [148].

According to another study, miR-125b, which is one of the most upregulated miRNAs
in the brain of AD patients [152–155], interacted with MAPK signaling by inhibiting Dual
Specificity Phosphatase 6 (DUSP6), also called MAPK phosphatase in vivo [156]. Thus, miR-
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125b overexpression led to enhanced phopho-p44/42-MAPK (p-ERK1/2) levels. Elevated
p-ERK1/2 protein levels have been reported in the brain of both mice and humans with AD.
Since ERK1/2 is known to phosphorylate Tau proteins on multiple sites through the Cyclin-
dependent kinase 5 and its regulatory subunit p35 (cdk5/p35), the overactivation of these
kinases may promote Tau pathology in AD. Based on the results, miR-125b overexpression
exerted neurotoxic and pro-apoptotic effects, increasing memory and learning impairment,
as shown in two behavioral assays of C57BL/6 wild-type (WT) mice. This suggests that
the miR-125b/ERK axis may also lead to cognitive deterioration of cognitive functions in
human patients with AD. The inhibition of miR-125b could be a new promising approach
for AD management, but potential adverse side effects due to the reduction of miR-125b
levels under baseline conditions should be investigated in future experiments [156].

The aberrant activation of ERK/MAPK was associated with Aβ pathology, as well as
Tau phosphorylation, in other studies [150,157]. Growing evidence agrees that the miR-
132/212 cluster is implicated in the neurophysiological process, including synaptic plasticity
and memory formation [158–160]. Moreover, miR-132/212 was found to be downregulated
in AD [161–163]. Hernandez-Rapp et al. [164] observed that the genetic deletion of the miR-
132/212 cluster promoted amyloid aggregation and deposition in cortical and hippocampal
tissues 3xTg-AD mice compared to the WT control, as well as the upregulation of ERK2
(MAPK1), Sirtuin 1 (Sirt1), and Tau proteins. In particular, MAPK1 was identified as a target
of miR-132. These results were confirmed in vitro: the miR-132 overexpression caused
the decrease of these genes’ expression in mouse Neuro2a cells expressing the Swedish
mutant of APP and ∆9 mutant of PSEN1 (Neuro2a APPswe/∆9) and human HEK293 cells
expressing the Swedish mutant of APP (HEK293-APPswe), with the consequent reduction
of Aβ. Thus, the loss of miR-132/212 enhanced Tau phosphorylation, Aβ pathology, and
cognitive impairment. Interestingly, miR-132 was found to be downregulated in human
post-mortem tissues of AD cases compared to non-dement controls. Therefore, the miR-
132/212 network could control various mechanisms of AD pathogenesis by also regulating
Tau and Aβ pathology through ERK signaling. Indeed, ERK has been suggested to act
upstream of Aβ generation by regulating BACE1 [164].

Another study [165] confirmed the neuroprotective effects of miR-132 by negatively
regulating BACE1 and ERK activity in APP/PS1 mice. The use of a miR-132 mimic was
proposed as a potential strategy to ameliorate AD progression. The strong link between
miR-132, ERK1/2, Aβ, and Tau pathology has been assessed in the hippocampus of AD
mice but also in the human AD cortex. Consistently, miR-132 downregulation has been
verified. However, the authors did not find a direct correlation between miR-132 and Tau
with respect to the article mentioned above. MiR-132 has been suggested to affect Tau
phosphorylation in an indirect manner by inhibiting 1,4,5-triphosphate 3-kinase B (ITPKB)
and ERK1/2 activity. It has been suggested that miR-132 downregulation was both a cause
and a consequence of AD pathology. Therefore, the use of miR-132 mimics could be an
interesting strategy to mitigate the ongoing neurodegenerative process in AD patients.
Indeed, Aβ and Tau levels were found to decrease after intracerebral ventricular (ICV)
injection with miR-132 mimic in AD mice [165].

On the other hand, Nagaraj et al. [166] identified miR-483-5p as a possible blood-
based biomarker because it was found to be upregulated in the plasma of AD patients
and also from the first symptoms, so-called prodromal AD patients. Using an in silico
approach, miR-132-3p and miR-483-5p were compared. MiRNA molecular targets involved
in the neuroprotective mechanisms were identified and subsequently confirmed in vitro
using HEK293 and SK-N-MC cellular-based models. miR-483-5p upregulation may protect
against AD pathology since it decreases Tau phosphorylation by reducing ERK1 and
MAPK1 mRNA levels. CRISPR/Cas9-mediated genomic deletion in neonatal fibroblasts
supported miR-483-5p binding to ERK1. This could represent a novel target for AD, but
further experimental research is needed to better understand the miR-483-5p/ERK1/Tau
interaction [166].



Int. J. Mol. Sci. 2023, 24, 4736 10 of 24

Moreover, ERK signaling modulation was also associated with another miRNA called
miR-126 [167]. The overexpression of miR-126 increased Aβ1-42 toxicity in Tg6799 mice, a
familial model of AD, through the downregulation of ERK and growth factor/Phosphatidyl
Inositol 3-Kinase/Protein kinase B (PI3K/AKT) signaling. According to Kim et al. [168],
even a small increase in miR-126 expression might affect growth factor activities in both
normal neurons and neurons with disease-associated mutations. It must be considered that
ERK signaling is involved not only in Tau phosphorylation but also in neuronal functional-
ity and aging [169–171]. The inhibition of miR-126 has been associated with neuroprotective
effects without compromising normal cell functions. Thus, miR-126 dysregulation has been
suggested as a potential promoter of metabolic dysfunctions and toxicity during aging or
neurodegenerative diseases by modulating PI3K and ERK signaling [168].

5.2. Molecular Interactions of miRNAs with the MAPK Signaling Pathway in the Oxidative Stress
Modulation Underlying AD

It has been suggested that miRNAs deregulated by oxidative stress may contribute to
AD development by regulating protein ubiquitination and phosphorylation through the
MAPK signaling pathway [172–175].

According to Shunjiang Xu et al. [172], several miRNAs were upregulated in primary
cultured hippocampal neurons after stimulation with H2O2, including miR-708, miR-296,
miR-200c, miR-377, and miR-1190. The significantly increased expression of miR-708 was
related to the process of cell apoptosis in gene ontology enrichment. Bioinformatics analysis
revealed five target genes of miR-708 (Map3k13, Kras, Rap1b, Nras, and Csf1) that were
predicted to affect MAPK signaling. Given its role in cell differentiation, synaptic plastic-
ity, and learning, it was suggested that the deregulation of MAPK induced by miR-708
might contribute, at least in part, to synaptic loss during AD progression [172]. Using
the same in vitro model, Zhang (2014) [173] showed other neuronal miRNAs that were
modulated by oxidative stress in primary hippocampal neurons as well as the hippocam-
pus of senescence-accelerated mice (SAM), SAMP8 and SAMP10 mice, respectively. These
mice strains are widely used as models of AD, differing for some age-related pathological
features such as memory and learning impairment or neurodegeneration. In this case,
microarray results have proved that miR-329, miR-193b, miR-20a, miR-296, and miR-130b
were upregulated after H2O2 stimulation. The authors suggested a correlation between
miRNAs altered levels and the downregulation of neuronal genes in the AD brain. Indeed,
enrichment analysis showed that miRNA upregulation could interfere with several bio-
logical processes, including cell growth or apoptosis. However, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis of pathway enrichment revealed that miRNA
alteration induced by oxidative stress could mainly impair the MAPK pathway, leading to
synaptic loss and neuron death during AD. In this context, miR-20a is of particular interest:
it could be involved in brain development by targeting markers such as Mitogen-activated
protein kinase kinase kinase 12 (MAP3K12), influencing aging. In both studies, KEGG
enrichment analysis provided that MAPK signaling was one of the main pathways to be
impaired by oxidative stress-induced miRNAs. However, these results suggested that ROS
production led to the dysregulation of both miRNAs and MAPK pathways, contributing to
the pathology of AD [173].

Interestingly, miR-34c has been identified to be dysregulated in the hippocampus,
plasma, and cerebrospinal fluid of patients with AD [176]. In this context, Shi et al. [175]
investigated the expression patterns of miR-34c in oxidative–stressed hippocampal neurons
and SAMP8 mice. The results showed that miR-34c was overexpressed in neurons treated
with H2O2 or Aβ1–42, as well as in cortical and hippocampal regions of SAMP8 mice with
aging. ROS production promoted JNK phosphorylation, which stimulated p53 protein
accumulation and activation in vitro. It is well known that p53 activation leads to neuron
loss during AD and that miR-34c is upregulated after p53 activation [177–179]. Consistently,
miR-34c inhibition promoted cognitive decline and memory function by reducing Aβ-
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induced synaptic damage in SAMP8 mice. Thus, miR-34c was upregulated through the
ROS-JNK-p53 pathway in the development of AD [175].

Other studies, suggested that several miRNAs can modulate oxidative stress by tar-
geting different genes [180,181]. A study revealed that miR-132 could decrease oxidative
stress and improve cognitive functions by targeting MAPK1 in AD rat models obtained
after ICV injection with Aβ25–35 [174]. The overexpression of miR-132 was reported to
reduce Nitric oxide synthase (iNOS) levels. Indeed, miR-132 expression was decreased in
the hippocampus of rats with AD, while MAPK1 was upregulated as well as iNOS. It has
been demonstrated that miR-132 overexpression or MAPK1 silencing decreased ROS and
iNOS expression but upregulated superoxide dismutase (SOD) and glutathione peroxidase
(GSH-Px) levels in the serum of AD rats. Thus, miR-132 could stimulate the antioxidant
system and reduce the apoptosis rate by inactivating the MAPK pathway. The inhibition
of MAPK1 interfered with p38 MAPK signaling, which has been associated with neuron
apoptosis as a response to excessive ROS production. Indeed, p38 MAPK is known to play
a role in cell death through the activation of several proteins, including p53, c-Jun and
c-Fos, Bax, and CASP-3. The authors suggested that miR-132 may ameliorate cognitive
functions, exerting neuroprotective effects by decreased p38 MAPK activity, oxidative
stress, and, consequently, cognitive decline. These results may be used to better understand
the molecular mechanisms of miR-132 in the pathogenesis of AD in order to develop novel
clinical strategies [174].

5.3. MiRNAs via the MAPK Signaling Pathway Regulate Microglia-Mediated Neuroinflammation
and Neuron Death

Different studies showed that miRNAs modulate the inflammatory response of acti-
vated microglia and neuronal apoptosis via targeting the MAPK signaling pathway [182,183].

Using both BV-2 and HT22 cells stimulated with Aβ as an in vitro AD model, Shang
et al. [184] found that miR-590-5p mimic injection restored cell viability by improving
proliferation. In addition, miR-590-5p levels were found to be reduced in the serum of both
AD patients and APP/PS1 transgenic mice. miR-590-5p downregulation was suggested to
contribute to the pathogenesis and progression of AD through the activation of the TNF
Receptor Associated Factor 3 (TRAF3)/p38 MAPK pathway. According to the findings, the
anti-apoptotic effect of miRNA might partly be due to the inhibition of Pellino-1 (PELI1),
which increased TRAF3 but decreased the expression as well as the phosphorylation of
p38 MAPK and ERK1/2. Consistently, activation of the p38 MAPK pathway has been
previously found in the brain tissue of AD cases [184].

Several findings proved the importance of cell cycle suppression for neuronal sur-
vival [185–187]. Although mature neurons inhibit the cell cycle in physiological conditions,
it could be induced again by neurotoxic agents such as Aβ42 [188]. Aβ42 can promote cell
cycle re-entry by promoting aberrant MEK-ERK signaling in neurons [189]. This excessive
activation leads not to cell mitosis but to DNA replication and apoptosis. Modi et al. [190]
evidenced that the MEK-ERK hyperactivated pathway led to overexpression of CyclinD1
by reducing miR-34a levels in a Tap73-dependent manner. In silico analysis revealed that
miR-34a targeted the 3′UTR region of the CyclinD1 gene, showing neuroprotective effects
by suppressing cell cycle re-entry and apoptosis in vitro. Interestingly, miR-34a expression
was altered in Aβ42-induced cortical neurons from rats or APP/PS1 mice. Furthermore, its
expression was previously found to be higher during neuronal differentiation, supported
by p53 family member Tap73. However, cell cycle re-entry has been mainly studied in
Alzheimer’s since it may contribute to neuron loss in patients [191]. Based on the finding
data, cell cycle-related neuronal apoptosis (CRNA) may be regulated by miR-34a and ERK
signaling in neurons [190].

In another study, miR-326 was found to reduce apoptosis by inactivating the JNK sig-
naling pathway via Vav Guanine Nucleotide Exchange Factor 1 (VAV1) in the APPswe/PS1
double transgenic mice model of AD. The authors provided that miR-326 ameliorated
AD progression and enhanced cell viability since miR-326 overexpression or/and JNK
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inhibition decreased Aβ1–40 and Aβ1–42 contents in brain tissues of AD mice. These results
suggested that miR-326 could reduce Aβ deposition and Tau phosphorylation by inhibiting
the JNK signaling pathway. Indeed, miR-326 mimic lentiviral vector or/and SP600126
injections improved cognitive deficit in AD mice compared to WT control, as revealed by
the Morris water maze test. All findings have been predicted by bioinformatics analysis
and subsequently confirmed experimentally [192].

According to different studies, miR-155 exerts pro-inflammatory activity by modulat-
ing certain components of the innate immune system [193,194]. MiR-155 has been associated
with neuroinflammation, which occurs in the early stages of AD. Indeed, Guedes et al.
showed that the c-Jun transcription factor (c-Jun) could regulate neuroinflammation by
increasing miR-155 expression before extracellular Aβ deposition in vivo. Aβ production,
has been associated with JNK activation and, as a consequence, with the downstream
effector c-Jun. However, miR-155 upregulation induced by intracellular Aβ peptides was
associated with glial cell activation and higher levels of cytokines in the hippocampal and
cortical regions of 12-month-old 3xTg AD mice. The results were also confirmed in vitro by
measuring miR-155 levels in Aβ-treated N9 microglia and astrocyte primary cultures. Thus,
the authors proposed c-Jun silencing as a potential strategy to control AD pathogenesis
and progression. Furthermore, modulation of miRNA expression in the brain by targeting
glial cells with the aim of decreasing miR-155 levels could be an interesting strategy being
explored in the context of AD [195].

Microglia have a central role in the maintenance of the CNS, but Aβ deposition
can stimulate apoptosis in these cells [196]. Wan et al. demonstrated that miR-191-5p
transfection in microglial cells reduced ERK1/2 and p38 MAPK activity by targeting the
upstream MAP3K12 effector, which has been related to neuron stress response apoptosis
and AD neurodegeneration. In particular, miR-191-5p overexpression was associated with
BACE1 and Tau-5 (AD’s markers) downregulation, with a consequent decrease in the
apoptosis rate in microglial cells. Indeed, miR-191-5p was found to be downregulated in
hippocampal sections from APP/PS1 mice, suggesting that the deregulation of this miRNA
may play a role in AD progression. However, miR-191-5p seems to alleviate microglial
cell injury by targeting the MAP3K12/MAPK signaling pathway, but further experiments
should be performed in vivo in order to validate the results seen in vitro [197].

The results are summarized in Table 1, which includes in vitro and in vivo evidence of
miRNAs and MAPKs interaction in AD, as shown in Figure 3. Experimental studies have
proven that miRNAs or MAPK signaling deregulation can contribute to AD progression
by modulating Aβ and Tau pathology, oxidative stress, neuroinflammation, and neuron
death. Moreover, the modulation of the MAPK pathway using miRNAs mimic injection or
silencing may improve cognitive decline and neurodegeneration, as revealed in AD animal
models. Thus, miRNAs are involved in MAPK signaling modulation, and the molecular
interactions between miRNAs and the MAPKs pathway seem to have a potential for both
diagnostics and therapeutics of AD.
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Table 1. Summary of included AD experimental models that highlight the role of miRNAs and MAPKs in the pathological mechanisms of disease.

Micro-RNA Models MAPK
Interaction Results Ref.

Cross-talk of miRNAs with MAPKs signaling pathway in the regulation of Tau and Aβ Protein pathological formation in AD

miR-148-3p
APP/PS1 and SAMP8 mice

p38 MAPK
MiR-148-3p downregulation led to PTEN inhibition, and p38 MAPK increased levels; miR-148-3p

overexpression improved AD cognitive deficit and decreased Tau phosphorylation in vivo;
neuroprotective effects against Aβ-induced injury were also observed in vitro.

[143]
APPswe cells

miR-342-3p
3xTg-AD mice

JNK
MiR-342-3p upregulation exacerbated AD symptoms in vivo, while miR-342-3p inhibition
improved cognitive deficit and decreased Aβ-plaque burden in vivo. SP600125 reversed

miR-342-3p upregulation in vitro; instead, miR-342-3p increased JNK activation.
[148]

HT22 cells

miR-125b

Human brain samples;
C57BL/6 mice ERK signaling

MiR-125b was upregulated in AD brain samples, while the miR-125b mimic injection impaired
learning and memory in vivo. The miR-125b upregulation increased Tau phosphorylation,

CASP-3/7, ERK1/2, and cdk5/p35 levels in vitro. Conversely, miR-125b knockdown increased
cell viability and reduced Tau levels in vitro.

[156]

Rat primary hippocampal neurons

miR-132

Human brain samples;
MiR-132 knockout 3xTg-AD mice

ERK signaling
Genetic deletion of miR-132 increased Sirt1, ERK2, and Tau levels and promoted Aβ pathology;
indeed, miR-132 was observed to be downregulated in human AD brains. Conversely, miR-132

upregulation decreased Sirt1 and Aβ40/42 levels in vitro.
[164]

Neuro2a-APPswe;
HEK293-APPswe cells

miR-132
Human brain samples;

Tg (Thy1-APPswe, Thy1-PSEN1*L166P)
mice

ERK signaling

AntagomiR-132 increased while miR-132 mimic injection de-creased Aβ levels and Tau
phosphorylation in mouse hippocampus. The miR-132 downregulation increased ITPKB, BACE1,

and ERK1/2 levels in mice. Interestingly, miR-132 was reduced in the AD human brain, but
ERK1/2, p-Tau, and ITPKB were elevated.

[165]

miR-483-5p

HEK293 and SK-N-MC cells;
neonatal human dermal fibroblasts for

CRISPR/Cas9 genomic deletion of
miR-483-5p

ERK signaling miR-483-5p targeted ERK1 mRNA, decreasing p-ERK1/2 and, consequently, p-TAU levels; ERK1
expression increased after miR-483-5p deletion. [166]

miR-126

Cortical and hippocampal primary
cultures from rat embryos ERK signaling

miR-126 increased Aβ1–42 toxicity, promoted neurite sprouting, and modulated the
neuroprotective effect of IGF-1, NGF, BDNF, and sAPPα; ERK and PI3K/AKT signaling were

downregulated in miR-126 overexpressing neurons; the inhibition of miR-126 had
neuroprotective effects.

[168]

Tg6799 mice or littermate control
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Table 1. Cont.

Micro-RNA Models MAPK
Interaction Results Ref.

Molecular interactions of miRNAs with the MAPKs signaling pathway in the oxidative stress modulation underlying AD

miR-708 Primary hippocampal neuron cultures
from SAMR1 mice embryos

Map3k13,
Kras, Rap1b, Nras and

Csf1

miR-708 and miR-135b were significant upregulated in the oxidative stress in vitro model;
miR-708 targeted five genes of the MAPK signaling pathway according to the KEGG pathway. [172]

miR-20a

Primary hippocampal neuron cultures
from SAMR1 mice embryos;

hippocampus tissues of SAMR1, SAMP8
and SAMP10 mice

MAPK signaling

miR-329, miR-193b, miR-20a miR-296, and miR-130b were all upregulated in H2O2-induced cells;
all co-regulated miRNAs affected MAPK signaling pathway according to the KEGG pathway;

miR-20a may be involved in aging according to literature, by targeting APP and reducing
MAP3K12.

[173]

MiR-34c

SAMP8 and SAMR1 mice;
primary hippocampal neurons

JNK
miR-34c levels were increased in the blood of aMCI patients, in AD mice, and cells stimulated

with H2O2 or Aβ42; miR-34c upregulation was age-related and depended on the ROS-JNK-p53
upstream pathway; miR-34c targeted SYT1; antagomiR-34c administration improved memory

function in SAMP8 mice.

[175]
HT22 cells;

human embryonic kidney 293A cells

miR-132

ICV injection of Aβ25/35 in rats

MAPK1

MAPK1, p-MAPK1 and iNOS levels increased in AD brain but decreased after miR-132
overexpression or siMAPK1; cognitive defects and pathological changes were lower with

miR-132 mimic or siMAPK1; SOD and GSH-Px increased while AChE, ROS, and MDA decreased
with miR-132 mimic or siMAPK1; miR-132 decreased apoptosis rate.

[174]SHSY5Y cells treated with H2O2;
HEK-293 transfected with lentivirus

vector

MiRNAs via the MAPK signaling pathway regulate microglia-mediated neuroinflammation and neuron death

miR-590-5p
B6C3-Tg (APPswe, PSEN1dE9)/Nju mice

ERK signaling,
p38 MAPK

miR-590-5p is downregulated in the serum of AD patients and brain tissues or serum from mice;
miR-590-5p overexpression partly reduced ERK1/2 and p38 MAPK expression and increased

Traf3 in Aβ-induced cells.
[184]BV2 microglial cells;

HT22 cells

miR-34a

B6C3-Tg (APPswe, PSEN1dE9) 85Dbo/J;
cortical neuronal culture from Sprague
Dawley rats or APP/PS1 mice embryos ERK signaling

MiR-34a expression increased during differentiation in vitro by targeting cyclin D1; Aβ
decreased miR-34a levels in cortical neurons and enhanced Cyclin D1; miR-34a was

neuroprotective by prevented CRNA; miR-34a downregulation in AD models was dependent on
the MEK-ERK pathway.

[190]

SHSY5Y cells
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Table 1. Cont.

Micro-RNA Models MAPK
Interaction Results Ref.

mir-326 APPswe/PS1d E9 double Tg mice JNK

miR-326 overexpression improved cognitive functions in mice; mir-326 downregulation led to
AD progression by activating JNK signaling through VAV1; miR-326 overexpression reduced Aβ
accumulation and neuron apoptosis by targeting VAV1 and inhibiting JNK signaling in AD mice;

miR-326 induced cell cycle and increased cell viability in AD mice.

[192]

miR-155

3xTg AD mice

JNK, c-Jun

Astrocytes and microglia populations were increased in AD mice; glial pro-inflammatory
phenotype but no Aβ extracellular deposition were observed in the brain of 12-month-old AD

mice; IL-6, IFN-β, and miR-155 levels were upregulated in AD mice compared to WT; LPS led to
increasing miR-155 levels in vitro; IL-6 and IFN-β upregulation depended on Aβ in vitro; c-Jun

contributed to miR-155 upregulation following glial exposure to Aβ.

[195]
N9 microglia cells; Astrocyte primary

cultures

miR-191-5p
APP/PS1 mice MAP3K12,

ERK signaling,
p38 MAPK

MiR-191-5p was downregulated in the hippocampus of AD mice; miR-191-5p overexpression
relieved Aβ1–42-induced microglia injury by targeting MAP3K12 and inactivating MAPK

signaling.
[197]

Primary microglia

Mitogen-activated protein kinase: MAPK; MicroRNAs: miRNAs; Phosphatase and tensin homolog: PTEN; Alzheimer’s disease: AD; Amyloid precursor protein/presenilin-1:
APP/PS1; Senescence accelerated mouse prone: SAMP; SH-SY5Y cells transfected with the Swedish mutant form of human APP: APPswe cell; Amyloid-β: Aβ; c-Jun amino-terminal
kinase: JNK; Triple transgenic AD: 3xTg-AD; Transgenic: Tg; Sirtuin 1: Sirt1; Neuro2a cells expressing the Swedish mutant of APP and ∆9 mutant of PSEN1: Neuro2a APPswe/∆9;
HEK293 cells expressing the Swedish mutant of APP: HEK293-APPswe; 1,4,5-trisphosphate 3-kinase B: ITPKB; β-secretase 1: BACE1; Intracerebroventricular: ICV; Caspase: CASP;
PhosphatidylInositol 3-Kinase: PI3K; Protein kinase B: AKT; insulin-like growth factor-1: IGF-1; nerve growth factor: NGF; brain-derived neurotrophic factor: BDNF; Senescence
accelerated mouse-resistant/1: SAMR1; Mitogen-activated protein kinase kinase kinase 13: MAP3K13; Kirsten rat sarcoma virus: Kras; Ras-related protein Rap-1b: Rap1b; Neuroblastoma
RAS viral oncogene homolog: NRAS; Colony Stimulating Factor 1: Csf1; Kyoto Encyclopedia of Genes and Genomes: KEGG; Hydrogen peroxide: H2O2; co-injections of APPswe and
PS1∆E9 plasmids on a C57BL/6 J genetic background: APPswe/PS1∆E9 transgenic mice; Mitogen-activated protein kinase 1: MAPK1; Amnestic mild cognitive impairment: aMCI;
Reactive oxygen species: ROS; Synaptotagmin 1: SYT1; double transgenic mice expressing a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant
human presenilin 1 (PS1-dE9): B6C3-Tg (APPswe, PSEN1dE9); Extracellular signal-regulated kinase: ERK; TNF Receptor Associated Factor 3: TRAF3; Cell cycle-related neuronal
apoptosis: CRNA; Mitogen-activated protein kinase kinase: MEK; Vav Guanine Nucleotide Exchange Factor 1: VAV1; Interleukin 6: IL-6; Interferon-β: IFN-β.
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Figure 3. miRNAs and MAPKs interaction in Alzheimer’s disease. (a) The overexpression or the 

downregulation of miRNAs can act on p38 MAPK, JNK, and ERK in a direct or indirect way, exac-

erbating NFT and amyloid extracellular plaques in AD neurons. (b) Oxidative stress enhances miR-
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Figure 3. miRNAs and MAPKs interaction in Alzheimer’s disease. (a) The overexpression or
the downregulation of miRNAs can act on p38 MAPK, JNK, and ERK in a direct or indirect way,
exacerbating NFT and amyloid extracellular plaques in AD neurons. (b) Oxidative stress enhances
miRNAs expression during AD, causing deregulation in the MAPK pathway and, consequently,
synaptic and neuron loss. The overexpression of miR-132 decreases oxidative stress, p38 MAPK,
and cognitive decline by targeting MAPK1. (c) The Aβ depositions induce ERK activation, which
leads to a decrease in miR-34a expression levels and, thus, to neuronal death due to the CRNA. The
overexpression of miR-590-5p and miR-326 plays an anti-apoptotic effect through indirect inhibition
of p38 MAPK, ERK, and JNK activation. JNK mediates downstream miR-155 upregulation and
promotes neuroinflammation during AD. The overexpression of miR-191-5p reduces microglia injury
through the decrease in p38 MAPK and ERK activity by targeting the upstream MAP3K13 effector.
Neuroinflammation plays an important role in the onset and progression of neurodegeneration
and neuronal loss in neurodegenerative diseases. The image was created using the image bank of
Servier Medical Art (Available online: http://smart.servier.com/, accessed on 30 December 2022),
licensed under a Creative Commons Attribution 3.0 Unported License (Available online: https:
//creativecommons.org/licenses/by/3.0/, accessed on 30 December 2022). microRNAs: miRNAs;
Mitogen-activated protein kinases: MAPKs; c-JUN N-terminal kinase: JNK; extracellular signal-
regulated kinases: ERK; Neurofibrillary tangles: NFT; Alzheimer’s disease: AD; Mitogen-Activated
Protein Kinase 1: MAPK1; reactive oxygen species: ROS; amyloid-β: Aβ; Transcription factor Jun:
c-Jun; Mitogen-Activated Protein Kinase Kinase Kinase 12: MAP3K12; cell cycle-related neuronal
apoptosis (CRNA).

6. Conclusions

The molecular interactions between miRNAs and MAPKs during AD may provide new
research insights for understanding AD pathology. This review summarizes a number of
recent findings which provide promising results on the therapeutic side. Based on obtained
data, it was found that miR-125b upregulation led to memory and learning impairment
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by increasing p-ERK levels. At the same time, miR-132 showed neuroprotective effects
by influencing ERK/MAPK1 activity, with the consequent reduction of both Aβ and Tau
pathology hallmarks, as well as oxidative stress in AD animal models. Additionally, several
pieces of evidence suggest that interaction between miRNAs and the JNK pathway may
contribute to neuron death in AD. Whereas miRNAs have a multi-targeting ability, the
modulation of MAPK signaling by acting on miRNA expression seems to improve cognitive
decline in AD animal models. Using bioinformatics technologies and in vivo strategies
could facilitate the development of novel approaches in both diagnostics and therapeutic
fields for AD. However, further investigations should be conducted to better investigate
these molecular interactions in order to replicate and, possibly, translate them into clinical
applications.
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