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Abstract: κ-Selenocarrageenan (KSC) is an organic selenium (Se) polysaccharide. There has been no
report of an enzyme that can degrade κ-selenocarrageenan to κ-selenocarrageenan oligosaccharides
(KSCOs). This study explored an enzyme, κ-selenocarrageenase (SeCar), from deep-sea bacteria
and produced heterologously in Escherichia coli, which degraded KSC to KSCOs. Chemical and
spectroscopic analyses demonstrated that purified KSCOs in hydrolysates were composed mainly of
selenium-galactobiose. Organic selenium foods through dietary supplementation could help regulate
inflammatory bowel diseases (IBD). This study discussed the effects of KSCOs on dextran sulfate
sodium (DSS)-induced ulcerative colitis (UC) in C57BL/6 mice. The results showed that KSCOs
alleviated the symptoms of UC and suppressed colonic inflammation by reducing the activity of
myeloperoxidase (MPO) and regulating the unbalanced secretion of inflammatory cytokines (tumor
necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10). Furthermore, KSCOs treatment regulated the
composition of gut microbiota, enriched the genera Bifidobacterium, Lachnospiraceae_NK4A136_group
and Ruminococcus and inhibited Dubosiella, Turicibacter and Romboutsia. These findings proved that
KSCOs obtained by enzymatic degradation could be utilized to prevent or treat UC.

Keywords: heterologous expression; enzymatic preparation; κ-selenocarrageenan oligosaccharides;
structural characterization; ulcerative colitis; gut microbiota

1. Introduction

Carrageenan is a sulfated linear polysaccharide extracted from the cell wall of red
algae. Based on the difference in the number of sulfate groups and the presence of
3,6-anhydro-α-D-galactopyranosyl (3,6-AG), carrageenans are further classified into κ-,
ι- and λ-carrageenans [1]. κ-Carrageenan is alternately composed of 4-linked-α-D-3,6-
anhydrogalactose (DA) and 3-linked-4-O-sulfated-β-D-galactopyranose (G4S), which has
been recognized as safe by the U.S. Food and Drug Administration [2,3]. However, its appli-
cation is limited due to poor solubility and low bioavailability [4]. κ-Carrageenan oligosac-
charides obtained by κ-carrageenan degradation can greatly improve these properties.
Moreover, κ-carrageenan oligosaccharides exhibited antioxidant [5], anticoagulation [6]
and antitumor effects [7].

It is well known that Se is an indispensable trace element for human health and
can only be obtained from food. KSC is a kind of Se polysaccharide made from natural
κ-carrageenan, in which Se partially replaces sulfur (S) [8]. It is reported that KSC had an
immunomodulatory function and inhibited tumor growth in H22 tumor-bearing mice [9].
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Theoretically, low molecular weight KSCOs hydrolyzed by KSC possess remarkable bioac-
tivity. At present, KSCOs were created chemically using sodium selenite and κ-carrageenan
oligosaccharides, but the unstable structure of products makes this process unsuitable
for large production. In contrast, enzymatic hydrolysis yields products with a controlled
structure and no contamination, which is now the preferred method for oligosaccharides
production. However, the enzyme hydrolyzing KSC to KSCOs has rarely been researched.
In the previous study, we described a potential κ-selenocarrageenase isolated from the
cold seep in the South China Sea [8]. Here, this κ-selenocarrageenase was expressed in
Escherichia coli and its degradation activity was demonstrated. Therefore, a novel and easy
strategy for the utilization of KSC to produce functional KSCOs was provided.

UC is a chronic and recurrent inflammation of the intestine with a high incidence
in Western countries [10,11]. The pathogenesis of UC is thought to be related to genetic
susceptibility, immunity, environment and intestinal mucosal barrier loss [12]. The main
clinical symptoms of UC include abdominal pain, diarrhea, bloody mucus and purulent
stools [13,14]. It is worth noting that UC increases the risk of colorectal cancer, the third
most common malignant tumor in the world [15]. Nevertheless, current drugs used to treat
UC, such as aminosalicylate and mesalazine, tend to decline in response to treatment over
time and lead to disease complications [11]. In addition, such drugs may induce adverse
reactions, such as dilated cardiomyopathy and severe heart failure [16]. Therefore, it is
urgent to develop new therapeutic drugs. In fact, nutrition plays a crucial role in preventing
IBD [17]. Nutritional deficiencies, including micronutrients, are common in patients with
IBD [18,19]. It has been demonstrated that dietary Se supplementation enhanced intestinal
antioxidant function and relieved inflammation [20]. On the other hand, previous studies
have shown that carrageenan oligosaccharides had potent effects on inhibiting the release
of inflammatory cytokines [21–23]. However, the beneficial effects of KSCOs remain unclear
for IBDs, such as UC.

In this work, we heterologously expressed and characterized a κ-selenocarrageenase
from a marine bacterium named Bacillus sp. N1-1. The structure of KSCOs obtained
from κ-selenocarrageenase hydrolysis of KSC was analyzed. KSCOs possess the activity
of both selenium and κ-carrageenan oligosaccharides. Thus, we speculated that KSCOs
may have effects on the treatment of UC. DSS is a polymer of anhydroglucose that induces
UC when introduced through drinking water in rodents, such as guinea pigs, rabbits and
mice [24,25]. This chemical compound is now widely used in basic research related to
colitis. In this study, we aimed to explore the effects of KSCOs on DSS-induced UC in mice
and investigated the underlying mechanism of action.

2. Results
2.1. Enzymology Experiment
2.1.1. Bioinformatics Analysis of SeCar

As our previous study mentioned, a deep-sea bacterium Bacillus sp. N1-1 has been
preliminarily demonstrated to degrade κ-selenocarrageenan [8]. The SeCar gene (Gen-
Bank accession number: MW366920) from N1-1 genome was predicted as a candidate
κ-selenocarrageenase as it was noted to be coding a putative glycoside hydrolase 16
(GH 16) protein. The open reading frame (ORF) of this gene consisted of 2184 bp and
encoded 728 deduced amino acid residues, the first 25 amino acid residues of which were
identified as a signal peptide sequence. The theoretical molecular weight of the mature
protein was 79.51 kDa and the predicted isoelectric point was 4.40. It was predicted to
be a stable hydrophilic protein with mean hydrophilicity (gravy) of −0.735, fat coeffi-
cient of 66.46 and instability index of 33.46. According to the conserved domain analysis
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed on 16 August 2020),
the complete sequence of SeCar is mainly composed of four domains, of which the amino
acid residues Arg153-Lys353 belongs to the GH16 family domain. GH16 family is concluded
as a polyspecific glycoside hydrolase family and contains different enzymes, including
κ-carrageenase, β-agarase, β-porphyranase, licheninase and laminarinase [26,27]. Multiple
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sequence alignment was carried out between SeCar and other reported GH 16 family
κ-carrageenases (Figure S1). On the basis of alignment results, SeCar contained the con-
served region ExDxxE, which is responsible for the double displacement mechanism in
κ-carrageenase catalysis [28,29]. The above bioinformatics analysis elucidated the character-
istics of SeCar as a κ-carrageenase. Additionally, the BLASTP analysis showed that SeCar
shared the highest sequence identity of 28.12% with the κ-carrageenase of Pseudoalteromonas
tetraodonis JAM-K142 among all characterized proteins [30].

2.1.2. Expression and Purification of SeCar

For better characterization, the SeCar gene was cloned and expressed successfully in
Escherichia coli. It was shown that the purified κ-selenocarrageenase was analyzed by
SDS-PAGE in Figure S2. After the gene fused with (His)6-tag was expressed, the molecular
weight of the purified recombinant protein was approximately 80 kDa, which was larger
than the theoretical molecular weight (79.51 kDa). The activity of purified recombinant
SeCar was 133 U/mg, which was much higher than that of the wild enzyme (18.58 U/mg).

2.1.3. Biochemical Properties of SeCar

Figure 1A shows that the optimal temperature of purified SeCar was 40 ◦C. In addition,
its activity remained stable at 20 ◦C, and 80% of its initial activity was maintained at
30 ◦C for up to 2 h (Figure 1B). The thermal stability of SeCar facilitates its storage and
biotransformation in industrial production. The effects of various metal ions and chemical
reagents on SeCar activity are shown in Figure 1C. K+ and Mn2+ slightly stimulated the
enzyme activity. Cu2+, Fe2+ and Fe3+ inhibited the enzyme activity, among which Cu2+

had the greatest inhibitory effect, causing 80% of the enzyme activity impaired. The kinetic
parameters of purified SeCar were determined using κ-selenocarrageenan as the substrate.
The Vmax and Km values were 12.0048 mg/(mL·min) and 0.2389 mg/mL, respectively
(Figure 1D), indicating that the κ-selenocarrageenase SeCar showed high affinity to the
κ-selenocarrageenan.

Figure 1. Characterization of SeCar: (A) determination of optimum temperature; (B) determination
of thermotolerance; (C) effects of metal ions and chemical reagents on SeCar activity; (D) kinetic
parameters of SeCar.
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2.2. Determination and Evaluation of KSCOs Structure

According to the high-performance gel permeation chromatography (HPGPC) spectra
(Figure S3A) and the detailed values (Table S1), the KSCOs were mainly distributed below
1500 Da, among which 37.14% were 1379.49 Da and 31.69% were 816.82 Da.

2.2.1. Electrospray Mass Spectrometry (ESI-MS) Analysis

To clarify the structure of KSCOs, MS analysis at negative ESI mode was conducted. The
MS image of KSCOs (Figure S3B) revealed peaks at m/z 437 and m/z 546, corresponding to
[(DA-G4Se)]− and [(DASe-G4Se)]−, respectively. The over selenated disaccharide units of
DASe-G4Se are attributed to the mixing of ι-carrageenan in commercial κ-carrageenan [31,32].
The disaccharide unit in ι-carrageenan contains two sulfate groups, which might be replaced
by selenate. Combined with the result of thin layer chromatography (TLC) analysis (Figure S4),
we speculated that the peaks at m/z 341.1, m/z 665.2 and m/z 989 were representative of (DA-
G4)−, [(DA-G4)2]− and [(DA-G4)3]−, respectively, without carrying the selenate group. This
deselenylation was possibly caused by the high cone voltage in the mass spectrometer [31,33].

2.2.2. Fourier Transform Infrared (FTIR) Spectroscopy Analysis

The FTIR spectra analysis of KSCOs was shown in Figure 2. The intense peak at
3283 cm−1 was ascribed to the stretching vibration of O-H. The weak stretching band near
2925 cm−1 was ascribed to the stretching vibration of C-H. The peak at approximately
1598 cm−1 was associated with the stretching vibration of C=O. In addition to character-
istic absorption peaks of polysaccharides, the peak near 1250 cm−1 was ascribed to the
stretching vibration of S=O, indicating that the sulfate groups in κ-selenocarrageenan were
not completely replaced. However, due to the selenylation modification, the absorption
peaks near 1375 cm−1 and 762 cm−1 were attributed to the Se=O asymmetric stretching
and C–O–Se symmetric vibrations, respectively [34]. Additionally, a strong absorption
near 1024 cm−1 was assigned to the stretching vibration of the C–O–C glycosidic bond,
indicating a pyranose unit in the carrageenan basic structure [35].
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2.2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy

In the 1H NMR spectrum of the KSCOs (Figure 3A), there were signals of α and β

configurations at the reducing end of G4S. The signal at δ 5.39 ppm was attributed to
G4S-H-1α, while the chemical shift signal of G4S-H-1β appeared at δ 4.67 ppm [36]. Since
selenylation occurred at C-4, the chemical shift of H-4 after selenite moved to the low field
near δ 4.86 ppm. However, due to the overlap with the hydrogen signal in the solvent
HOD, the chemical shift was not obvious. It has been reported that the signal δ 5.25 ppm
was attributed to the H-1 of DA [37]. In this study, DA-H-3 and DA-H-5 were located in
the region of δ 4.67 ppm and δ 4.17 ppm, respectively, due to the dehydration reaction
at C-3 and C-6 of DA. As shown in Figure 3B, there were four anomeric carbon signals,
which were 101.6, 101.3, 97.4 and 93.5 ppm, respectively. κ-Carrageenan is an alternating
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galactan of 1,3-linked β-D-galactopyranose 4-O-sulfate and 1,4-linked 3,6 anhydro-α-D-
galactopyranose [2]. The anomeric carbon of β-D galactose was more than 100.0 ppm,
while the terminal carbon of α-D galactose was less than 100.0 ppm. Therefore, the signals
at 101.6 and 101.3 ppm were attributed to→3)-β-G4s-(1→ and→3)-β-G4Se-(1→ anomeric
carbon. At 97.4 ppm, it was→4)-α-DA (1→ anomeric carbon signal; 93.5 ppm was→3)-
G4Srα reducing anomeric carbon signal. The high field 62.1 ppm was→3)-β -G4s -(1→ C-6
signal. All chemical shifts were summarized in Tables 1 and 2.
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Table 1. 1H-NMR chemical shifts of κ-selenocarrageenan oligosaccharides.

Residue
Chemical Shift (ppm)

H1 H2 H3 H4 H5 H6

→3)-β-G4S-(1→ 4.67 3.45 3.90 4.86 3.73 3.69
→4)-α-DA 1-(1→ 5.25 4.11 4.55 4.64 4.67 4.17
→3)-G4S 2 rα 5.40/5.37

1 3, 6-anhydrogro-α-1, 4 linked-D-galactose. 2 β-1, 3-D-galactose-4-sulfate.



Int. J. Mol. Sci. 2023, 24, 4672 6 of 20

Table 2. 13C-NMR chemical shifts of κ-selenocarrageenan oligosaccharides.

Residue
Chemical Shift (ppm)

C1 C2 C3 C4 C5 C6

→3)-β-G4S-(1→ 101.6 71.5 79.3 73.2 75.5 62.1
→3)-β-G4Se-(1→ 101.3 71.2 79.0 73.1 74.9 62.1
→4)-A-DA-(1→ 97.4 70.9 79.0 78.9 75.7 70.0
→3)-G4Srα 93.5 70.0 76.1 73.4 74.3 62.1

The 1H and 13C spectra of KSCOs were analyzed, and it was found that selenylation
had no significant influence on the basic structure of κ-carrageenan, which was consistent
with the previous report [38]. Since no substitution of the C-6 position was found in
the DEPT 135◦ spectrum, we speculated that selenylation did not occur in position C-6
of →4)-α-DA-(1→. Therefore, combining ESI-MS, FTIR and NMR data, the selenium
oligosaccharides in KSCOs were mainly composed of selenium-galactobioses and the
predicted structure was shown in Figure S3C.

2.3. Effects of KSCOs on the UC Mice
2.3.1. KSCOs Relieved Symptoms of UC

The degree of UC in mice was assessed through body weight, disease activity index
(DAI) and colon length. There was a significant decrease in the body weight of the DSS
mice in this study (p < 0.001) (Figure 4A). KSCOs exhibited significant improvement in
body weight loss (p < 0.001). Additionally, as shown in Figure 4B, mice treated with
KSCOs exhibited an improved health status compared to mice with only DSS according
to DAI. Furthermore, compared with DSS only, KSCOs treatment reduced the shortening
of the colon significantly in mice (p < 0.01) (Figure 4C,D). According to the morphological
examination (Figure 5A), colon tissues of the DSS group showed obvious erosion, goblet
cell disappearance and inflammatory cell infiltration compared with the intact inner wall of
the normal group, while KSCOs treatment alleviated these pathological changes of colonic
tissue in colitis. The above phenomenon revealed that KSCOs relieved the systemic (weight
loss and DAI) and local (CL shortened and HDS) symptoms of UC.
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of inflammatory cytokines in serum with colitis: (A) H&E staining (scale bar = 100 µm); (B) MPO
activity; (C) the contents of TNF-α; (D) the contents of IL-6; (E) the contents of IL-10. Data are shown
as means ± SD, * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.3.2. KSCOs Regulated the Inflammatory Responses

As shown in Figure 5B, MPO activity was significantly activated in the colon tissue of
the DSS group (p < 0.001), indicating an excessive inflammatory response. However, KSCOs
reduced MPO activity dramatically (p < 0.001) compared with the DSS group. In addition,
we measured the contents of proinflammatory cytokines including TNF-α and IL-6 and
the anti-inflammatory cytokine IL-10 in serum. As shown in Figure 5C,D, compared to the
normal group, DSS exposure increased the contents of TNF-α (p < 0.01) and IL-6 (p < 0.001)
significantly, while it reduced the content of IL-10 (p < 0.001).

2.3.3. KSCOs Reshaped the Composition of Gut Microbiota

A total of 713,927 sequences were obtained from 18 samples among the normal group,
DSS group, and KSCOs group. Richness (Ace index) and diversity (Shannon and Simpson
indices) of microbial communities were shown by alpha-diversity analysis (Figure S5A–C).
The Ace, Shannon, and Simpson indices in the DSS group all displayed a decline when
compared to the normal group. Although the Ace, Shannon, and Simpson indices did not
significantly increase following the administration of KSCOs in comparison to the DSS
group, the increase in gut microbial richness and diversity was partially explained. The
rarefaction curves tended to be saturated platforms (Figure S5D), which indicated that
the majority of the microbial diversity had been collected and the sequencing coverage
was adequate.

As shown in Figure 6A, gut microbiota of mice in the three groups were mainly com-
posed of Firmicutes and Bacteroidota at the phylum level. However, administration of
KSCOs decreased the relative abundance of Firmicutes while increasing the relative abun-
dance of Bacteroidota in DSS-induced colitis mice. In general, compared with the normal
group, DSS significantly increased the ratio of Firmicutes to Bacteroidota (F/B) (p < 0.05),
while this phenomenon was significantly reversed by KSCOs (p < 0.05) (Figure 6C). To fur-
ther assess the predominant bacterial communities in the intestine across the three groups,
linear discriminant analysis (LDA) and effect size (LefSe) was carried out. The generated
cladogram reflected different gut microbiota compositions among mice from all groups
(Figure 7A). The LDA discriminant histogram counted the microbial taxa with significant
effects in multiple groups. Greater relative species abundance is represented by higher LDA
scores. Via LDA scores, the findings revealed that Bifidobacterium, Lachnospirace-ae NK4A136
group, and Ruminococcus were prevalent in the KSCOs group while Dubosiella, Turicibacter
and Romboutsia were prominent in the DSS group (Figure 7B). Specific differences between
groups were evaluated at the genus level to further illustrate how KSCOs treatment affected
the composition of gut microbiota (Figure 6B). At the genus level, compared to DSS group,
KSCOs administration significantly enhanced the relative abundance of Bifidobacterium,
Lachnospiraceae_NK4A136_group and Ruminococcus (Figure 7D–F). Additionally, compared
to the normal group, the relative abundance of Dubosiella (p < 0.001), Turicibacter (p < 0.01)
and Romboutsia (p < 0.01) increased significantly in the DSS group, while this increase was
inhibited by KSCOs administration (Figure 7G–I). Acetate, propionate, butyrate and total
SCFA concentrations were all considerably lower after receiving DSS without treatment,
as shown in Figure 8 (p < 0.001, p < 0.05, p < 0.01 and p < 0.001, respectively). However,
compared with the DSS group, KSCOs increased the concentration of butyrate significantly
(p < 0.05) and tended to promote the biosynthesis of acetate and propionate.
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3. Discussion

KSC is a marine selenium polysaccharide synthesized by selenization modification of
κ-carrageenan, which has been included in the national safety standard for the use of the
food nutrition fortification standard [39]. However, KSC has a high molecular weight and
low bioavailability. The chemical or physical degradation process of KSC is uncontrollable,
and the structure of degradation products is unstable. To date, there have been few studies
on the hydrolysis of KSC by κ-selenocarrageenanase. In this study, we prepared KSCOs
from a κ-selenocarrageenanase named SeCar. The novelty of the SeCar sequence suggests
that it may exhibit properties distinct from other κ-carrageenases. It is worth noting that
this is the first demonstration of KSC degradation by a κ-carrageenase.

There are multiple factors contributing to the pathogenesis of IBD, including the
influence of micronutrients [40]. Summarizing recent reviews, Se exhibited an important
role in the pathogenesis of IBD and Se deficiency was common in IBD patients [20,41].
Hence, the essential trace element Se has been drawn more attention for IBD prevention
and treatment. Compared with inorganic Se, organic Se possesses lower toxicity and
higher bioavailability. Here, we investigated the effects of KSCOs on DSS-induced colitis.
According to the acceptable upper limit of adult Se intake (400 µg/d) recommended by
WHO (2004) and Chinese Nutrition Society (2013), the doses of KSCOs were designed as
1.6, 3.2 and 6.4 mg/kg, which were equivalent to 25.5, 51 and 102 µg/kg of oral Se in mice,
respectively [42]. The results showed that KSCOs relieved the systemic (weight loss and
DAI) and local (CL shortened and HDS) symptoms of UC. MPO is a proinflammatory
oxidase secreted by neutrophils and macrophages, which can destroy intestinal mucosal
cells and cause inflammatory responses; therefore, it usually shows high activity in UC
patients [43]. Additionally, after the occurrence of colitis, proinflammatory cytokines, such
as TNF-α, IL-6 and IL-1β, are secreted and accumulated in large quantities due to the
excessive activation of immune cells. These cytokines directly caused mucosal and tissue
damage, triggering disease-specific inflammatory responses in colitis [44]. Regulating
the secretion of these cytokines is extremely important for alleviating the inflammatory
responses in colitis. Therefore, KSCOs could reduce inflammatory responses in UC mice
via ameliorating neutrophil infiltration and regulating the level of inflammatory cytokines
(TNF-α, IL-6 and IL-10).

The gut microbiota is considered as an important factor influencing the occurrence
and severity of DSS induced colitis [45]. The positive effects of dietary Se supplementation
on intestinal inflammation have been well demonstrated [40,46]. Moreover, as previously
reported, at least part of the mechanism was due to Se altering the gut microbiota rather
than directly affecting the gut [47]. To identify whether KSCOs regulates gut microbiota,
16S rRNA sequencing in fecal bacteria DNA was conducted and the high dose (6.4 mg/kg)
group of KSCOs was selected to be sequenced. In this research, it can be found that
dietary selenium KSCOs regulated the diversity and composition of gut microbiota in the
DSS-induced mice, consistent with previous reports [48,49]. Specifically, KSCOs showed a
function of reducing the ratio of Firmicutes to Bacteroidota (F/B). F/B is commonly denoted
as the degree of dysbiosis in IBD [50,51], and a high proportion of Bacteroidota is associated
with the resistance to inflammation [52]. Thus, it can be indicated that KSCOs could restore
intestinal homeostasis by regulating the abundance of Firmicutes and Bacteroidota.

At the genus level, KSCOs enhanced the abundance of Bifidobacterium, Lach-
nospiraceae_NK4A136_group and Ruminococcus. Bifidobacterium is recognized as a probiotic,
promoting intestinal health in the following aspects. In the intestine, Bifidobacterium can syn-
thesize exopolysaccharides as the fermentation substrate of microbiota, which is beneficial
to intestinal health [53,54]. Additionally, Bifidobacterium can enhance intestinal epithelial
barrier function through metabolites and inhibit the inflammatory responses [55,56]. Fur-
thermore, Bifidobacterium, Lachnospiraceae_NK4A136_group and Ruminococcus were reported
to promote the production of SCFAs, which were capable of maintaining epithelial health
and immune balance of the intestine [57–59]. KSCOs administration inhibited the growth
of harmful bacteria, such as Dubosiella, Turicibacter and Romboutsia. The trends in the rela-
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tive abundance of Dubosiella between groups were consistent with previous reports about
UC [60–62]. However, more research is needed to determine the effect of Dubosiella on
colitis. Increases in both Turicibacter and Romboutsia are associated with the development
of colitis. It has been reported that Turicibacter with high abundance aggravated intestinal
damage and led to serious complications [63]. Moreover, Romboutsia is considered as a
pathogen, and its abundance is increased in many diseases, such as neurodevelopmen-
tal disorders [64], irritable bowel syndrome [65] and gastric cancer [66]. It can be found
that the abundance of Romboutsia was increased in the intestine of DSS-induced colitis
mice compared with that of healthy mice in this study, consistent with views in relevant
studies [67–69]. SCFA has also been reported to ameliorate colitis through suppressing
proinflammatory cytokines, such as TNF-α and IL-6 [70,71]. The reason for the higher
SCFA content in the KSCOs group compared with the DSS group might be due to enriched
Bifidobacterium, Lachnospiraceae_NK4A136_group and Ruminococcus. Moreover, a previous
report found that organic sources of Se promoted the biosynthesis of propionate and bu-
tyrate [72]. There have been many studies on the remodeling of gut microbiota by different
Se sources, such as selenium-enriched yeast [72], selenium-enriched probiotics [49] and
selenium-containing tea polysaccharides [73]. The mechanism, however, is complex and
few studies have clarified it. In this study, we described the effects of KSCOs on the gut
microbiota in mice for the first time, but the role of Se in gut microbiota needs to be further
explored in subsequent research. Taken together, KSCOs might alter the composition and
metabolites of gut microbiota to relieve DSS-induced colitis.

4. Materials and Methods
4.1. Enzymology Experiment

The κ-selenocarrageenase (SeCar) gene (Locus_tag: N1.1_GM000361) was obtained
from the whole genome of Bacillus sp. N1-1 (GenBank accession number: CP046564).
κ-Selenocarrageenan was purchased from Qingdao Pengyang Biological Engineering Co.,
Ltd., Qingdao, China.

4.1.1. Bioinformatics Analysis

Bioinformatics prediction and analysis of the amino acid sequence were carried out
online. Physicochemical properties of amino acids were predicted using ExPASyProtparam
(https://web.expasy.org/protparam/, accessed on 16 August 2020). The hydrophobicity
of protein was predicted by ExPASyScale (https://web.expasy.org/protscale/, accessed on
16 August 2020). The prediction of signal peptide sequence was used by SignalP 5.0 Server
(http://www.cbs.dtu.dk/services/SignalP/, accessed on 16 August 2020). Alignments of
the amino acid sequences and other κ-carrageenases in NCBI database were performed
using ClustalX (Version 1.8).

4.1.2. Expression and Purification

Genomic DNA of Bacillus sp. N1-1 was extracted using the FastPure Bacteria
DNA Isolation Mini Kit (Vazyme Biotech, Nanjing, China). The gene SeCar with-
out the predicted signal sequence was amplified by PCR using the forward and
reverse primers 5′-CACGAAAAAGAAAAAGATAATAATAAAAGTGAAC-3′ and 5′-
CGTTACGCCTTCAATCGTAAC-3′. SeCar was cloned and ligated into pEASY-blunt E2
vector (TransGen Biotech, Beijing, China) to conduct recombinant plasmid. The constructed
plasmid was transformed into BL21(DE3) competent cells (TransGen Biotech, Beijing, China)
and then screened on Luria-Bertani (LB) medium supplemented with ampicillin. After
incubation for 10 h, the positive colony was selected and cultured in LB medium with ampi-
cillin in a shaker at 180 rpm at 37 ◦C until the absorbance value of bacterial solution reached
OD600 = 0.8. The enzyme was prepared by adding isopropyl-beta-D-thiogalactopyranoside
into recombinant Escherichia coli culture and then shaken at 150 rpm for 12 h at 16 ◦C. Cells
were pelleted (7500× g; 15 min), resuspended in 50 mL of phosphate buffered saline (PBS),
and lysed on ice by sonicating (300 w, 20 min). The supernatant after centrifugation was

https://web.expasy.org/protparam/
https://web.expasy.org/protscale/
http://www.cbs.dtu.dk/services/SignalP/
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the crude enzyme of SeCar and was purified by Ni-affinity chromatography. The methods
of gene expression and protein purification refer to the previous description [74,75].

4.1.3. Biochemical Properties

Coomassie brilliant blue binding method was used to determine the total protein
concentration. The enzyme activity was determined by 3,5-dinitrosalicylic acid (DNS)
method with galactose as standard [76]. The amount of enzyme releasing 1 µmol galactose
per minute under standard conditions is defined as one unit (U) of enzyme activity.

The optimum reaction temperature was determined by measuring the activity of
SeCar in the range of 20 ◦C to 80 ◦C with 0.1% κ-selenocarrageenan as substrate. SeCar was
incubated in PBS buffer at 20–60 ◦C for 0–24 h, and the residual activity was detected to
assess thermostability. The optimal pH for SeCar activity was determined using different
buffers, such as sodium citrate buffer (pH 3.0–6.0), phosphate buffer (pH 6.0–8.0), Tris-
HCl buffer (pH 8.0–9.0) and glycine buffer (pH 9.0–11.0), at 40 ◦C with 0.1% (w/v) κ-
selenocarrageenan as the substrate. SeCar was preincubated with the above buffers at 20 ◦C
for 2 h, and the residual enzyme activity was detected to assess pH stability.

In order to evaluate the effects of metal ions and chemical reagents on SeCar, the
enzyme assay was performed in the presence of 5 mM Na+, K+, Cu2+, Mg2+, Mn2+, Ca2+,
Fe2+, Fe3+ and EDTA. Enzyme activity was measured at 40 ◦C and pH 7.0. The reaction
without adding metal ions and chemical reagents was used as the control.

For the values of Km and Vmax, the purified enzyme reacted with 0.025–0.2% κ-
selenocarrageenan as substrate at 40 ◦C for 30 min, which were calculated by double
reciprocal plotting. All of the above activity assays were performed in 3 replicates.

4.2. Isolation of the KSCOs

The KSCOs were prepared and isolated according to the previously described method
with modifications [77,78]. The reaction system, containing 6 U of purified SeCar and
25 mM KSC, was conducted at 40 ◦C for 12 h. The lysate was boiled for 10 min to inactivate
κ-selenocarrageenase and centrifuged for 15 min at 6000 r/min to remove impurities.
Finally, four volumes of 95% ethanol (v/v) were added to precipitate the undegraded KSC.
After centrifugation at 10,000 r/min, the supernatant was concentrated using a rotary
evaporator at 60 ◦C and then lyophilized under vacuum at −60 ◦C to obtain crude KSCOs.

4.3. Molecular Weight of KSCOs

The molecular weight (MW) of KSCOs was evaluated by HPGPC [79]. The analysis was
performed on a high-performance liquid chromatography (HPLC) instrument equipped
with a TSK G2500PW column and eluted with deionized water, which filtered through a
filter membrane (pore size 0.22 µm) at a flow rate of 0.3 mL/min. A total of 20 µL of 1%
sample solutions in deionized water was injected. The molecular weight was evaluated
with maltose (MW: 342, 668, 990 Da) and dextran (MW: 2000, 5900, 9600 Da) as standards.

4.4. Purification of KSCOs

KSCOs were purified by chromatography using a modified method previously de-
scribed [80]. The freeze-dried samples were dissolved in 0.02 mol/L NH4HCO3, and the
supernatant after centrifugation (4000 rpm, 10 min) was purified by Bio-Gel P4 chromatog-
raphy eluting with 0.02 mol/L NH4HCO3 at a flow rate of 3.0 mL/h. The components
collected by the automatic collector were desalted with Bio-GEL P4 column, eluted with
3.0 mL/h distilled water, and freeze-dried after concentration.

4.5. Structure Analysis of KSCOs
4.5.1. ESI-MS and TLC Analysis

In order to further analyze the structure, KSCOs were analyzed by ESI-MS in negative
ion mode [33]. KSCOs (2.0 mg) were dissolved in acetonitrile: water (1:1, v/v) to make
the concentration within the range of 5–10 pmol/L, and the sample volume was 5 µL.



Int. J. Mol. Sci. 2023, 24, 4672 14 of 20

In the process of mass spectrometry, N2 was used as the solvent of blow-drying gas and
spray gas, and the flow rates were 250 and 15 L/h, respectively. The mobile phase was
acetonitrile: water (1:1, v/v). Driven by the pump, the sample was injected at a flow rate
of 10 µL/min. The parameters involved a capillary voltage of 3 kV, a cone-hole voltage
of 50 eV, an ionic element volatilization temperature of 80 ◦C and a solvent volatilization
temperature of 150 ◦C.

The hydrolysate of KSC was analyzed by TLC plate developed with n-butane: ethanol:
water (3:2:2, v/v/v) according to the previous description [75]. After drying, the plate was
stained with a mixture of vitriol: ethanol (3:17, v/v; with 0.2% resorcinol, w/v) and heated
until the appearance of clear bands.

4.5.2. Spectroscopy Analysis

FTIR and NMR assays were carried out according to previous methods [80,81]. For
FTIR spectra, KSC and its oligosaccharides (2.0 mg) were mixed with KBr (200 mg) powder,
ground and pressed, and then measured on a Nicolet Nexus 470 spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA). For NMR spectra, KSC (50 mg) was dissolved in
500 µL 99% of the D2O, freeze-dried and repeated 3 times. The sample was then redissolved
in 500 µL D2O and transferred to an NMR tube. Finally, 1H-NMR/13C-NMR with Agilent
DD2 500 MHz NMR spectrometer was performed with acetone as the internal standard.

4.6. Induction of UC in Mice and Treatment with KSCOs
4.6.1. Experimental Animals

A total of 40 male C57BL/6 mice (20–22 g) were purchased from Pengyue experimental
animal breeding Co., Ltd. (Jinan, China). All animals were raised under the conditions of
20–25 ◦C, 60–70% relative humidity and 12/12 h light/dark cycle. They were randomly
divided into six groups after a one-week acclimatization period (n = 8 per group). All
animal experiments were in line with the National Laboratory Animal Ethics Committee
of China and were approved by the Animal Care Review Committee (approval number
SYXK2020-0422), Qingdao University of Science and Technology, China.

4.6.2. Experimental Procedures

In the normal group, the mice drank water freely from day 0 to day 14. In the DSS
group, the mice drank water freely from day 0 to day 7, followed by administration of 3.0%
(w/v) DSS (36 kDa-50 kDa, MP biomedicals) for 7 days. In the KSCOs intervention groups,
low-dose (LS, 1.6 mg/kg), medium-dose (MS, 3.2 mg/kg) and high-dose (HS, 6.4 mg/kg)
KSCOs were given by gavage every day throughout the experimental cycle and DSS was
added to the drinking water from day 7 to day 14. The grouping and respective treatments
are detailed in Figure 9. The weight of mice was recorded daily.
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4.6.3. Assessment of Colitis

DAI was determined by assessing clinical symptoms including weight loss, fecal traits
and hematochezia in mice, then the average of these scores was calculated, as previously
described [82]. The specific scoring rules are shown in Table 3. The proximal colon of each
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group was fixed with 4% paraformaldehyde and embedded in paraffin, which were stained
with hematoxylin−eosin (H&E) for histopathological observation.

Table 3. The specific scoring rules of the disease activity index (DAI).

Parameters Score

Weight loss

0% 0
1–5% 1

6–10% 2
11–15% 3
>15% 4

Fecal traits
Normal 0

Soft stools 2
Diarrhea 4

Hematochezia
Normal 0

Presence of blood 2
Abundant bleeding 4

4.6.4. MPO Activity Analysis

Colon tissues (~0.1 g) were ground in cold normal saline to prepare 10% homogenate.
The activity of MPO was measured using homogenate according to the kit (Nanjing
Jiancheng, Nanjing, China) instruction.

4.6.5. Level of Cytokines in Serum

The concentrations of interleukin (IL)-6, TNF-α and IL-10 in serum were measured us-
ing enzyme-linked immunosorbent assay (ELISA) kits (MultiSciences, Hangzhou, Zhejiang,
China) following the manufacturer’s protocol.

4.6.6. SCFAs Analysis

Fecal samples (25 mg) were dissolved in 500 µL of water containing 0.5% phosphoric
acid and then were frozen and ground for 3 min (50 HZ), followed by ultrasound for 10 min
and centrifugation at 13,000× g for 15 min. After that, all of supernatant was removed and
n-butanol (0.2 mL) was added to extract SCFAs. Finally, the extract was analyzed by gas
chromatograph–mass spectrometer (GC-MS) [59].

4.6.7. Gut Microbiota Analysis

The methods of DNA extraction, PCR amplification and 16S rRNA sequencing were
performed as previously described [83]. Genomic DNA was extracted from fecal sample
using OMEGA kit and detected by 1% agarose gel electrophoresis. Primers (338F-5′-
ACTCCTACGGGAGGCAGCAG-3′ and 806R-5′-GGACTACHVGGGTWTCTAAT-3′) with
barcode were synthesized for V3-V4 region amplification of 16S rRNA. Miseq library
was constructed and sequenced. PE reads were firstly spliced according to overlap, then
the sequence quality was controlled and filtered (Majorbio Bio-Pharm Technology Co.
Ltd., Shanghai, China). Operational taxonomic unit (OTU) clustering was performed for
nonrepeating sequences according to 97% similarity. Ribosomal database project (RDP)
classifier (version 2.13) was used to classify OTU representative sequences. Alpha diversity
and Beta diversity were assigned using QIIME software 1.9.1 (Rob Knight, CA, USA). The
principal coordinate analysis (PCoA), principal component analysis (PCA) and community
structure differences among groups were analyzed with QIIME software and R software
3.5.3 (UoA, AKL, NZ).

4.7. Statistical Analysis

The results were expressed as mean ± standard deviation (SD). Data were analyzed
via one-way ANOVA with Tukey’s test to determine the statistical significance (p < 0.05)
using SPSS version 22.0 and GraphPad Prism version 7.0 software (Inc., La Jolla, CA, USA).
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5. Conclusions

In this study, a κ-selenocarrageenase from the deep-sea bacterium Bacillus sp. N1-1
was characterized and expressed in Escherichia coli. The reaction temperature was opti-
mized to facilitate the preparation of KSCOs. KSC could be efficiently hydrolyzed by
SeCar and yielded a large proportion of small molecular KSCOs (<1500 Da). Spectral
analysis showed that selenium oligosaccharides in the hydrolysate of κ-selenocarrageenan
were mainly composed of selenium-galactobiose. At present, the application of KSCOs
in the treatment of UC is still limited. In this study, the effects of KSCOs administration
(1.6 mg/kg, 3.2 mg/kg, 6.4 mg/kg) on UC mice were evaluated. It was suggested that
the administration of KSCOs significantly mitigated symptoms of UC, ameliorated neu-
trophil infiltration and improved inflammatory cytokines dysregulation. We speculated
that KSCOs alleviated UC by suppressing inflammatory responses and modulating the
composition of gut microbiota. Above all, the κ-selenocarrageenase SeCar could be a poten-
tial tool for hydrolyzing κ-selenocarrageenan, and the products of KSCOs were expected to
be promising candidates for UC. This study expands the application of organic Se in the
treatment of inflammatory diseases.
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