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Abstract: Diabetes nephropathy (DN) is one of the most common causes of end stage renal disease
(ESRD) globally. Medication options to stop or slow the progression of chronic renal disease (CKD)
are limited, and patients with DN remain at a high risk of developing renal failure. Inonotus obliquus
extracts (IOEs) of Chaga mushroom have been shown to have anti-glycemic, anti-hyperlipidemia,
antioxidant, and anti-inflammatory effects against diabetes. In this study, we examined the potential
renal protective role of an ethyl acetate layer after water-ethyl acetate separation from Inonotus
obliquus ethanol crude extract (EtCE-EA) from Chaga mushrooms in diabetic nephropathy mice
after preparation with 1/3 NT + STZ. Our data showed that treatment with EtCE-EA can effectively
regulate blood glucose, albumin-creatinine ratio, serum creatinine, and blood urea nitrogen (BUN)
levels, and it can improve the renal damage in 1/3 NT + STZ-induced CRF mice with an increase in
concentration (100, 300, and 500 mg/kg). In the immunohistochemical staining test, EtCE-EA can
effectively reduce the expression of TGF-β and α-SMA after induction according to the increase in
the concentration (100 mg/kg, 300 mg/kg), thereby slowing down the degree of kidney damage. Our
findings demonstrate that EtCE-EA could provide renal protection in diabetes nephropathy, possibly
due to the decreased expression of transforming growth factor-β1 and α-smooth muscle actin.

Keywords: diabetes nephropathy; Inonotus obliquus; streptozotocin; nephrectomy; TGF-β; α-SMA

1. Introduction

Chronic kidney disease (CKD) is a global public health problem, and its prevalence
and incidence have significantly increased in the past two decades [1]. The global burden
of CKD is rapidly increasing, and it is expected to become the fifth most common cause of
years of life lost globally by 2040 [2]. The prevalence of chronic kidney disease (CKD) has
increased in recent decades alongside an increase in diabetes and hypertension, the main
drivers of CKD [3]. Despite showing a decline in mortality due to the advancements in

Int. J. Mol. Sci. 2023, 24, 4443. https://doi.org/10.3390/ijms24054443 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24054443
https://doi.org/10.3390/ijms24054443
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-0376-9862
https://orcid.org/0000-0001-8879-0462
https://orcid.org/0000-0002-3403-7165
https://orcid.org/0000-0003-1289-8412
https://doi.org/10.3390/ijms24054443
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24054443?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 4443 2 of 15

medical treatment in patients with end-stage kidney disease (ESKD), it has still remained
one of the leading causes of death worldwide [4]. Globally, approximately 850 million
people were reported to be affected by CKD in 2017 [3]. In 2010, 2.6 million people
worldwide received renal replacement therapy, yet an estimated equivalent number died
in the same year owing to a lack of access to dialysis and transplantation, particularly in
low-income countries [5]. This contrasts with that of other major chronic illnesses, such as
cardiovascular and respiratory disorders, whose effects on mortality are decreasing.

CKD can be defined as a persistent presence of kidney damage or decreased kidney
function for more than three months, irrespective of the cause, and classified by cause,
GFR category (G1–G5), and albuminuria category (A1–A3) [6]. Globally, diabetes and/or
hypertension are the most prevalent causes of CKD [7]. The rising prevalence of type 2
diabetes is causing an increase in the number of patients with ESKD caused by diabetic
nephropathy (DM) [8]. The presence of CKD is markedly higher in patients with diabetes.
Diabetic nephropathy (DN) is the most common complication of diabetes mellitus, affecting
approximately 40% of patients with type II diabetes, and is a leading cause of end-stage
renal disease (ESRD) worldwide in the last decade [9]. Therefore, the management of
diabetes is a major component of CKD prevention. In type 2 DM, hyperglycemia leads to the
elevation of key pathogeneses of renal damage, such as oxidative stress, insulin resistance,
and pro-inflammatory cytokines, and glycemic control may delay the development and
progression of CKD [10].

Moreover, DN is not the only cause of CKD in diabetes patients. The prevalence of non-
diabetic kidney disease (NDKD) caused by factors irrelevant to DM, such as immunoglobu-
lin A nephropathy (IgA N) and membranous nephropathy (MN), varies from 12 to 79%
in adults with DM [11]. In contrast to diabetic nephropathy, many kinds of non-diabetic
kidney disease can be effectively treated (e.g., glomerulonephritis with immunosuppressive
medication) [12]. New anti-diabetes agents (glucagon-like peptide-1 receptor (GLP-1R),
agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2
(SGLT-2) inhibitors) were found to have renal protective effects via anti-hypertensive,
hemodynamic stabilization, anti-inflammatory, and anti-oxidative actions [13–16]. Modifi-
able risk factors for the development and progression of CKD in diabetes patients include
systemic hypertension, proteinuria, and metabolic factors, such as insulin resistance, dys-
lipidemia, and hyperuricemia, etc. [17]. Thus, regardless of etiology, either DN or NDKD,
control of glucose, hypertension, diet, and body weight is essential in the prevention of
kidney disease in diabetes patients. In addition to glucose-lowering therapies, lifestyle
interventions, including diet are associated with clinically significant improvements in
diabetes control [18]. Studies have suggested that functional foods may improve hyper-
glycemia by modulating carbohydrate and lipid metabolism in adipose tissues and also
by reducing oxidative stress and inflammatory processes, and subsequently, they could
prevent the development of diabetes nephropathy [19].

Nowadays no definitive drug is available to stop or slow down the progression
of chronic renal disease, and the medication options are influenced by the presence of
comorbid diseases the patients have and their individual risk of complications. The Inonotus
obliquus mushroom, also known as Chaga, mainly grows in cold areas (for example in
northeast China, northern Europe, and Russia) and is used traditionally in the treatment of
diabetes, cardiovascular disease, and gastrointestinal diseases [20]. To date, a few studies
have suggested the significant therapeutic potential of Inonotus obliquus extracts (IOEs),
which have been shown to have therapeutic effects against diabetes via multiple pathways
including anti-glycemic, anti-hyperlipidemia, antioxidant, and anti-inflammatory effects
in various studies [21]. The low molecular weight of IOEs has been shown to restore
the integrity of the glomerular capsules, increase the number of glomerular mesangial
cells, and protect renal tubular cells against STZ + AGEs-induced glucotoxicity in diabetic
mice [22]. However, there has been no work so far presenting scientific findings on the
renal protective effect of IOE in CKD patients. Our study aims to explore the potential
possibility of using IOE as renal protective medication in CKD patients.
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2. Results

Before evaluating the effect of Inonotus obliquus extracts (IOEs) on STZ-induced porcine
proximal tubular (LLC-PK1) cells, a cell viability assay was performed to determine the
appropriate concentration of IOEs for further STZ-induced improvement assays. The
results showed better viability in the ACEI (1 mg/mL), EtCE (1 mg/mL), and HWCE
(1 mg/mL) compared to the vehicle control (p > 0.05, p > 0.05 and p > 0.05, respectively)
while more cytotoxicity and decreased viability were observed in EtCE-EA (1 mg/mL),
EtCE-nB (1 mg/mL), and EtCE-W (1 mg/mL) compared to the vehicle control (p < 0.05,
p < 0.001, and p < 0.01, respectively) at 72 h (Figure 1).
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experiments, and the results are expressed as population growth. *: p < 0.05, **: p < 0.01 and ***: p < 
0.001 as compared with the vehicle control. 

In order to further simulate the safe dose of induced animals, renal tubular epithelial 
cells (LLC-PK1) in vitro were treated with STZ (10 mM) at 24 h and 72 h to cause cellular 
injury. The proximal renal tubular cells of pigs were treated with IOEs for 24 h after STZ 
10 mM injury. At either 24 h or 72 h, only the EtCE-EA (100 μg/mL) group, similar to the 
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Figure 1. Viability of Inonotus obliquus fruit bodies extracts (IOEs) in LLC-PKI cells. The LLC-PK1
cells were cultured in Nine groups; vehicle control, STZ (10 mM), ACEI (1 mg/mL), ARB (1 mg/mL),
EtCE: Ethanol crude extract of Inonotus obliquus fruit bodies (1 mg/mL), EtCE-EA: Ethyl acetate
layer after water-ethyl acetate separation from ethanol crude extract (1 mg/mL), EtCE-nB: n-butanol
layer after water-n-butanol separation from ethanol crude extract (1 mg/mL), EtCE-W: water layer
after water-n-butanol separation from ethanol crude extract (1 mg/mL) and HWCE: hot water crude
extract of Inonotus obliquus fruit bodies (1 mg/mL), for 72 h alone and cell viability was observed. The
cell cytotoxicity was determined by MTT. Each value represents the mean ± SD of three replicated
experiments, and the results are expressed as population growth. *: p < 0.05, **: p < 0.01 and
***: p < 0.001 as compared with the vehicle control.

In order to further simulate the safe dose of induced animals, renal tubular epithelial
cells (LLC-PK1) in vitro were treated with STZ (10 mM) at 24 h and 72 h to cause cellular
injury. The proximal renal tubular cells of pigs were treated with IOEs for 24 h after STZ
10 mM injury. At either 24 h or 72 h, only the EtCE-EA (100 µg/mL) group, similar to the
ACEI (100 µg/mL) and ARB (100 µg/mL), had a better survival rate when compared to the
vehicle control (p > 0.05, p > 0.05 and p > 0.05, respectively). However, the remaining IOEs,
including the EtCE (100 µg/mL), EtCE-nB (100 µg/mL), EtCE-W (100 µg/mL), and HWCE
(100 µg/mL) groups, revealed low cell viability after being co-treated with STZ (10 mM)
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(p < 0.001, p < 0.001, and p < 0.001, respectively) at 72 h. Each value represents the mean
± SE of three replicated experiments, and the results are expressed as population growth
(control as 100%) (Figure 2).
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Figure 2. Efficacy of Inonotus obliquus fruit bodies extracts (IOEs) protection from STZ-induced
cell toxicity in LLC-PK1 cells. Vehicle control (ddH2O alone), ddH2O, ACEI (100 µg/mL), ARB
(100 µg/mL), EtCE: Ethanol crude extract of Inonotus obliquus fruit bodies (100 µg/mL), EtCE-EA:
Ethyl acetate layer after water-ethyl acetate separation from ethanol crude extract (100 µg/mL),
EtCE-nB: n-butanol layer after water-n-butanol separation from ethanol crude extract (100 µg/mL),
EtCE-W: water layer after water-n-butanol separation from ethanol crude extract (100 µg/mL) and
HWCE: hot water crude extract of Inonotus obliquus fruit bodies (100 µg/mL) after 24 h STZ (10 mM)
treatment and the protective effects from cytotoxicity were determined by MTT in LLC-PK1 cells at
24 and 72 h. Each value represents the mean ± SD of three replicated experiments, and the results
are expressed as population growth. *: p < 0.05, **: p < 0.01 and ***: p < 0.001 as compared with the
vehicle control.

In order to achieve the ideal renal injury index value in this animal model, the com-
bined induction of the chemical drug STZ at a medium dose (75 mg/kg) and high dose
(100 mg/kg) was done at one week after the operation. Urinary albumin to creatinine ratio
(ACR) has been used as the preferred indicator for quantifying albuminuria in terms of
biochemical values and included in the indicators for assessing the risk of renal failure. The
experimental results of 1/3 NT + STZ 75 mg/kg compared with STZ 75 mg/kg reached
the expected index Albumin-Creatinine Ratio of 200 mg/g or more while the result of
1/3 NT + STZ 100 mg/kg compared with STZ 100 mg/kg has increased ACR to more
than 300 mg/g (p < 0.05 and p < 0.01, respectively) (Figure 3A) with severe proteinuria,
which destroyed glomerular and renal tubular cells in the kidney, making it from chronic
renal failure to early renal failure. From blood Creatinine and Blood Urea Nitrogen val-
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ues, the 1/3 NT + STZ 100 mg/kg group showed the most severe damage, followed by
1/3 NT + STZ 75 mg/kg (p < 0.001 and p < 0.001, respectively) (Figure 3B,C). In Figure 3D,
the survival rate of the 1/3 NT + STZ 100 mg/kg group was about 20% in the third week,
and that of the 5/6 NT operation group in the first week was about 10%. Chronic renal
failure models all lead to weight loss. Thus, the 1/3 NT + STZ 75 mg/kg group with a
survival rate of 80% was selected as the animal model for the follow-up experiment.
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creatinine ratio (ACR), (B) Creatinine blood test, (C) Blood Urea Nitrogen (BUN), and (D) Survival
rates were detected in the animal model of chronic renal failure. Normal: native control; Sham:
vehicle control; 1/3 NT: residual 2/3 kidney animal model; 5/6 NT: residual 1/6 kidney animal
model. The data are expressed as mean ± SE of five mice. *: p < 0.05, **: p < 0.01 and ***: p < 0.001 as
compared with the normal control at two weeks. #: p < 0.05, ##: p < 0.01 as compared with STZ alone
at the two-week trial.

Two weeks after dosing, we first measured fasting blood glucose (Figure 4A), mainly
to observe the changes in chronic kidney disease. After induction of renal failure in
experimental mice, due to the physical damage of the surgical side of the kidney, the other
side will have compensatory hypertrophy, glomerular sclerosis, and functional decline.
After administration of IOEs, we tested whether it can improve the oxidative damage of
STZ to pancreatic β cells and cause hyperglycemia in vivo. We found that the treatment
group with the IOE, EtCE-EA (300 and 500 mg/kg) can effectively utilize the glucose in
the body. On the contrary, HWCE (500 mg/kg) group failed to effectively regulate blood
sugar compared to the 1/3 NT + STZ alone (p < 0.01, p < 0.01, and p > 0.05, respectively)
(Figure 4A). The ratio of albumin to creatinine in urine was observed with Albumin-
Creatinine Ratio (Figure 4B) in urine biochemical values. We also found that EtCE-EA
(300 and 500 mg/kg) can effectively improve the discharge of proteinuria caused by renal
damage compared to the 1/3 NT + STZ alone (p < 0.05 and p < 0.01, respectively); however,
the HWCE (500 mg/kg) group, still failed to effectively improve the renal damage caused
by chronic renal failure and the damage degree is more serious than ACEI group (p > 0.05
and p < 0.05, respectively) (Figure 4B). At the same time, the blood creatinine (Figure 4C)
and blood urea nitrogen (Figure 4D) were observed, and the results showed the EtCE-EA,
according to the increase of its concentration (100 mg/kg, 300 mg/kg, 500 mg/kg), can
effectively improve the abnormal metabolism caused by chronic renal failure in blood
creatinine (p > 0.05, p > 0.05, and p < 0.01, respectively) and blood urea nitrogen (p > 0.05, p
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< 0.01, and p < 0.01, respectively) compared to the 1/3 NT + STZ alone. On the other hand,
the HWCE (500 mg/kg) group is not effective in improving the damage to the kidney after
1/3 NT + STZ induction in blood creatinine (p > 0.05) and blood urea nitrogen (p > 0.05)
(Figure 4C,D).
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Figure 4. Blood samples were collected from the retro-orbital sinus of CRF mice in each group.
(A) The fasting blood glucose test, (B) Urine albumin-creatinine ratio (ACR), (C) Creatinine blood test,
and (D) Blood urea nitrogen (BUN) levels were measured at two weeks including 1/3 NT +STZ alone,
1/3 NT + STZ following ACEI (20 mg/kg), EtCE-EA: Ethyl acetate layer after water-ethyl acetate
separation from ethanol crude extract (100, 300 and 500 mg/kg) and HWCE: hot water crude extract
of Inonotus obliquus fruit bodies (500 mg/kg) treatments as compared to the sham group. Sham:
vehicle control; ACEI (Selective ACE Inhibitor); 1/3 NT: residual 2/3 kidney animal model. The data
are expressed as mean ± SD of five mice. *: p < 0.05, **: p < 0.01 and ***: p < 0.001 as compared with
the sham control at two weeks. #: p < 0.05, ##: p < 0.01 as compared with 1/3 NT + STZ alone at the
two-week trial.

In the 1/3 NT + STZ plus EtCE-EA (300 mg/kg) (Figure 5D), the focal glomerulus
remained relatively intact and numerous with hematoxylin and eosin staining. In the
1/3 NT + STZ plus ACEI (20 mg/kg) (Figure 5G), the glomerulus remained relatively in-
tact with positive collagen staining; weak collagen staining was present in the tubules and
the interstitium. In 1/3 NT + STZ treated mice (Figure 5F), obvious mesangial matrix accu-
mulation with diffuse collagen fibril deposition in different compartments was observed. In
1/3 NT + STZ plus EtCE-EA (300 mg/kg) treated mice (Figure 5I), the matrix accumulation
and collagen staining were less severe than those in the control group (1/3 NT + STZ alone).
In 1/3 NT + STZ + HWCE (500 mg/kg) treated mice (Figure 5J), obvious mesangial matrix
accumulation and diffuse collagen staining within renal tissues were observed. It can
be seen from the histopathological section of the renal corpus with H&E stain that after
induction, the accumulation of renal interstitium was less obvious in the ACEI (20 mg/kg)
group, and the morphology of the glomerulus was similar to that of the induction group
(1/3 NT+ STZ) (Figure 5A) and almost complete (Figure 5B). The IOE, EtCE-EA group, accord-
ing to the increase of its concentration (100 mg/kg and 300 mg/kg), can effectively improve
the induced glomerular atrophy and interstitial accumulation (Figure 5C,D). We examined
sections of CRF mouse renal cortex using Masson’s trichrome (MT) staining to detect the
severity of overt nephropathy indicated by collagen fibril deposition in glomeruli, tubules,
and interstitium (5F–J). As shown in Figure 5F, in the slices of the induction group without
treatment (1/3NT + STZ alone), there was a large amount of collagen deposition in the
atrophic interstitium of the glomerulus. While in EtCE-EA group (100 mg/kg, 300 mg/kg),
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the deposition of collagen showed a tendency to slow down due to the increase in concen-
tration (Figure 5H,I). However, in the HWCE (500 mg/kg) group (Figure 5J), although there
was no slowing and improvement, it was worse when compared with the pathological
state of the ACEI group (Figure 5G).
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Figure 5. Histopathological study after Inonotus obliquus fruit bodies extracts (IOEs) treatment on
the renal cortex in CRF mice. Treatment with ACEI (20 mg/kg), EtCE-EA: Ethyl acetate layer after
water-ethyl acetate separation from ethanol crude extract (100 and 300 mg/kg) and HWCE: hot water
crude extract of Inonotus obliquus fruit bodies (500 mg/kg) for two consecutive weeks was given in
CRF mice with 1/3 NT + STZ-induced diabetic nephropathy, and histopathology of the renal cortex
was studied using H&E stain (A–E) and Masson’s trichrome stain (F–J), respectively in sections of
the CRF kidney under magnification 100× and 400×. The podocytes of glomerulus in different
groups under a light microscope (×400). The average number (AN) of foamy podocytes/glomerulus
were calculated. The interstitial fibrosis, IF (% positive) were estimated. Data are presented as
means ± SEM (n = 5). For each animal (n = 5 for each group), all glomeruli (about 25–30) on another
part of a kidney after unilateral nephrectomy sections were counted.

In the immunohistochemical staining test, the expression levels of renal fibrosis factors
TGF-β (Figure 6A–E) and α-SMA (Figure 6F–J) were analyzed. According to the increase in
the concentration (100 mg/kg, 300 mg/kg), EtCE-EA can effectively reduce the expression
of TGF-β and α-SMA after induction, thereby slowing down the degree of kidney damage.
While in the EtCE-EA (300 mg/kg) group, the expression amount is close to the expression
amount of the ACEI (20 mg/kg) group, which shows that it can effectively inhibit the
expression amount and slow down the level of fibrosis. Finally, by quantifying the positive
cells (%) marked by TGF-β and α-SMA, it can be determined that the EtCE-EA (300 mg/kg),
rather than EtCE-EA (100 mg/kg) and HWCE (500 mg/kg), significantly inhibits the
formation of α-SMA myofibroblasts (p < 0.05, p > 0.05, and p > 0.05, respectively) by
reducing the expression of TGF-β (p < 0.01, p < 0.05, and p > 0.05, respectively); therefore, it
can improve the phenomenon of renal deterioration in the animal model of chronic renal
failure compared with the ACEI group (p < 0.01, p < 0.001, respectively) (Figure 6K), thus
confirming the therapeutic potential of Inonotus obliquus fruit bodies extract (IOE), the
EtCE-EA in chronic renal failure.
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Figure 6. Immunohistochemical staining (TGF-β and α-SMA) after Inonotus obliquus fruit bodies
extracts (IOEs) treatment in CRF kidney. Treatment with ACEI (20 mg/kg), EtCE-EA: Ethyl acetate
layer after water-ethyl acetate separation from ethanol crude extract (100 and 300 mg/kg) and HWCE:
hot water crude extract of Inonotus obliquus fruit bodies (500 mg/kg) for two consecutive weeks was
given in CRF mice with 1/3 NT + STZ-induced diabetic nephropathy, and histopathology of the renal
cortex was studied using immunohistochemical staining of TGF-β (A–E) and α-SMA (F–J) expression,
respectively at two weeks. The representative staining photomicrographs of TGF-β-positive cells and
α-SMA -positive cells in each section were examined under light microscopy (magnification ×400).
After 5 random fields from each section were captured, the number of TGF-β-positive cells and
α-SMA -positive cells (in brown) in the corresponding proliferative zone (glomerulus area) within
each field was computed by using Image Pro Plus software (Version 5.1) and was compared to the
1/3 NT + STZ (K). *: p < 0.05, **: p < 0.01 and ***: p < 0.001 as compared with the normal control at
two weeks.

3. Discussion

In recent years, growing interest was seen in the use of Inonotus obliquus extracts (IOEs)
for the treatment of diabetes and renal disease. Still, a limited number of studies have
demonstrated the therapeutic effectiveness of IOEs in the treatment of diabetic nephropathy.
In this study, treatment with the extraction of EtCE-EA (Ethyl acetate layer after water-ethyl
acetate separation from Inonotus obliquus ethanol crude extract) can effectively improve the
renal damage in 1/3 NT + STZ-induced CRF mice with an increase in concentration (100,
300, and 500 mg/kg). An effective reduction in the expression of TGF-β and α-SMA after
induction and subsequent slowing of the degree of kidney damage was observed.

Chaga fungus was proven to possess antioxidant, hypoglycemic, hypolipidemic, and
anti-tumor properties, and the use of Chaga extracts, IOEs in the treatment of diabetes
and kidney disease has been examined by several scientific studies. Chaga extracts con-
tain several compounds such as polysaccharides, triterpenes, and polyphenols [23]. The
exact mechanisms of action for the hypoglycemic effect of IOEs have not been reached
conclusion. So far, it has been described that I. obliquus polysaccharides in streptozotocin
(STZ)-induced diabetic rats reduced blood glucose levels and restored the structure of
β-cells after diabetes-induced cellular damage [24]. Wang et al. reported that Inonotus
obliquus polysaccharides enhanced the serum levels of insulin and alleviated the metabolic
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derangement of glucose enzymes in the STZ-induced diabetic mice model [21]. Another
study has found that the ingestion of Inonotus obliquus polysaccharide had improved serum
insulin levels, moderately expanded the pancreatic islets, and reduced pancreatic injuries
in alloxan-induced diabetic mice [25]. One of the main ingredients of Inonotus obliquus
extract, Trametenolic acid (TA), was also recently reported to have a renal protective effect
in diabetic nephropathy by relieving oxidative stress and inflammation via Nrf2/HO-1
and NF-κB signaling pathways [26]. However, the role of Inonotus obliquus ethyl acetate
extract in the protection of renal impairment caused by diabetes still remains uncertain.
We proposed that the critical issue could be the preparation of IOE, and our method with
ethyl acetate extract was evaluated. Further, transforming growth factor-β (TGF-β) is a
potent stimulator that drives fibrosis, and the downregulation of TGF-β has been found
to significantly limit the fibrotic process in chronic kidney disease [27–29]. The induction
of alpha-smooth muscle actin (α-SMA), a smooth muscle cell marker protein, increases
extracellular matrix deposition and glomerulosclerosis, and a high α-SMA expression in
kidneys is a hallmark of tubular epithelial-myofibroblast trans-differentiation [30]. Our re-
sults demonstrated dose-related improvements in blood glucose and renal function results
with the EtCE-EA. We also found that EtCE-EA had a renal protective function through
the downregulation of both TGF-β1 and α-SMA. These findings suggest that EtCE-EA
could provide renal protection in diabetic mice with severe CKD, which requires additional
clinical validation.

Animal models are crucial for pathological and clinical research on disease treatment
therapies to understand therapeutic outcomes and drug safety. The process of selection of
the animal model is a very intricate part as many factors need to be considered to reproduce
the disease and pathology at the same level as that of humans [31]. Streptozotocin is
one of the most commonly used substances to induce diabetes in experimental mice [32].
Also known as subtotal nephrectomy, 5/6 nephrectomy has been a widely used model for
studying CKD [33]. However, this model causes a great risk of hemorrhage and infection
during surgery and high animal mortality [34]. In the present study, the selected animal
model was created with the combination of STZ and 1/3 nephrectomy to closely mimic
chronic and more severe renal injury and to signify the protective effect of EtCE-EA.

Fasting blood glucose, the albumin-creatinine ratio (ACR), serum creatinine levels,
and serum blood urine nitrogen (BUN) levels are the most used biochemical parameters
to estimate the progression of renal disease and diabetes control. In our study, treatment
with EtCE-EA can effectively regulate blood sugar, ACR, serum creatinine, and BUN
according to the increase of its concentration (100 mg/kg, 300 mg/kg, 500 mg/kg) while
HWCE treatment has caused more severe damage. According to previous studies, different
extraction methods have exhibited different drug components and properties [35]. It is
preliminarily inferred that the hot water extraction of Chaga mushroom directly dissolved
potential substances that accelerate the deterioration and failure of the kidneys. Cases of
oxalate-induced nephropathy from long-term ingestion of Chaga mushroom powder were
reported in recent studies [36]. Oxalate, an organic acid found in Chaga mushroom extracts,
can cause nephropathy from excessive intake [37]. It is found in high concentrations
especially in water extracts of Chaga mushroom than in ethanolic extracts [38]. Therefore,
noting the oxalate concentration of Chaga mushroom extracts and methods of extraction
may be important in order to avoid or lessen the risk of oxalate nephropathy. Xu and
co. reported that an ethanol extract of the dry matter of a culture broth of I. obliquus has
shown significant anti-hyperglycaemic, as well as anti-lipid peroxidative effects, against
alloxan-induced diabetic mice [34].

In this study, we examined the potential renal protective role of EtCE-EA from Chaga
mushroom in mice after preparation with 1/3 NT + STZ [36]. To demonstrate the renal pro-
tective role of EtCE-EA beyond its anti-diabetic effect, an animal model was systematically
established to mimic pathophysiology of severe renal impairment in diabetes patients. In
natural medicine, unlike conventional medicine, methods of preparation have an impact on
the function/chemical property of the extracts. Thus, we further investigated the efficacy
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of IOEs by different methods. We believe that this study has provided strong evidence that
IOE plays a renal protective role in diabetes nephropathy, which may be at least partially
attributed to the decreased expression of transforming growth factor-β1 and α-smooth
muscle actin, deepening the understanding functions of IOE in diabetic nephropathy.

4. Materials and Methods
4.1. Chemicals and Reagents

Culture medium RPMI-1640, fetal bovine serum, sodium bicarbonate, l-glutamine,
and 0.05% trypsin-EDTA were from Gibco Ltd. Streptozotocin (STZ) was from Sigma
(Saint Louis, MO, USA). Inonotus obliquus fruit body was produced by TCM Biotech Inter-
national Corp. (Xizhi District, New Taipei, Taiwan). Selective ACE Inhibitor was produced
by Taiwan Tanabe Seiyaku Co., Ltd. (Nangang, Taipei, Taiwan). Renal tubular cells, LLC-
PK1 were purchased from Food Industry Research and Development Institute (Eastern
Hsin Chu, Taiwan). Culture medium RPMI-1640 was produced by Thermo Fisher Sci-
entific Inc. (Waltham, MA, USA). Thiazolyl Blue Tetrazolium Bromide was produced by
Sigma–Aldrich Inc. (Burlington, MA, USA). The rabbit polyclonal antibodies-TGF-β, Rabbit
α-SMA Polyclonal Antibody were from Santa Cruz Biotechnology, Inc. (Delaware Ave,
Santa Cruz, CA, USA).

4.2. Preparation of Inonotus obliquus Body Extract

An amount of 10 g of Inonotus obliquus fruiting body was taken out again; 100 mL of
95% ethanol was added to extract for 24 h, and the suspension was obtained by centrifuga-
tion. The suspension was placed in an oven at 60 ◦C for 6 h, and concentrated to 10 mL to
obtain the EtCE, ethanol crude extract of Inonotus obliquus fruiting bodies. Then, the EtCE
was partitioned between water and ethyl acetate solution (v/v = 1:1 ratio) and centrifuged
to obtain the ethyl acetate layer (EtCE-EA) and water layer. The water layer was partitioned
between water and n-butanol (v/v = 1:1 ratio) to finally gain the n-butanol layer (EtCE-nB)
and the water layer (EtCE-W), respectively. Then, the water layer was mixed with n-butanol
(v/v = 1:1 ratio) to finally obtain the n-butanol layer and the water layer. Additionally,
the hot water crude extract of Inonotus obliquus fruit bodies (HWCE) was also prepared
(w/v = 1:10 ratio). These fractions above were placed in an oven at 60 ◦C for 6 h, and after
concentrating the suspension to 10 mL, freeze-drying was performed to obtain the extracts
of Inonotus obliquus fruiting body (IOEs). The MWs of HWCE are closely correlated with
their functional bioactivities, and HWCE active polysaccharide mostly ranged 780 kDa
(Mw), identified with gel permeation chromatography analysis. Meanwhile, the HWCE
extract contained 17.11 mg/mL of total polysaccharide by the phenol-sulfuric said method
and dinitrosalicylic acid colorimetric method.

4.3. Cell Viability Assay

When the growth density of LLC-PK1 in 75 flask reached 80–90%, trypsin was added
to interact with the cells after washing with PBS. After the cells were dispersed, the number
of cells was counted with a hemocytometer. RPMI-1640 containing 10% (v/v) FBS and 1%
penicillin was put in 96-well of cell culture plates, and 10 µL of FBS-containing culture
medium was added to each well. After culturing for 24 h and after the cells were adsorbed
to the bottom, the culture medium was removed, and STZ was added to stimulate oxidative
stress, and then, the culture was continued for 48 and 72 h. An amount of 20 uL MTT
solution (dissolved in 5 mg/mL PBS) was added per well, and the wells were put into
a carbon dioxide incubator with 5% CO2 at 37 ◦C and a constant temperature of 90% to
react with cells for 4 h. Then, the solution in each well was poured out, followed by adding
100 uL DMSO to dissolve the blue-violet crystals in each well and protect them from light
for about 10 min. The 96-well plates were shaken evenly to ensure that the blue-violet
crystals are completely dissolved, and the absorbance was read at a wavelength of 570 nm
with an enzyme immunoassay reader. Because only living cells have active mitochondrial
dehydrogenase, the measured light absorbance was proportional to cell viability. The
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higher the reading, the greater the relative number of living cells. In the experimental
framework of the above cell viability, the time points were set as the first day and the third
day, and two concentrations of STZ (10 µm) were used to destroy renal tubular cells. The
other drug concentrations were ACEI (1 mg/mL and 100 µg/mL), ARB (1 mg/mL and
100 µg/mL) and EtCE (1 mg/mL and 100 µg/mL), EtCE-EA (1 mg/mL and 100 µg/mL),
EtCE-nB (1 mg/mL and 100 µg/mL), EtCE-W (1 mg/mL and 100 µg/mL), and HWCE
(1 mg/mL and 100 µg/mL). The third day of cell culture from the 96-well plate was the
zeroth day of the above experimental design. After removing the culture medium and
drugs of various concentrations were added, the experiment started, and each culture time
point was reached after collecting the data.

4.4. Animal Preparation

Female CRF mice, 6 weeks of age, were purchased from the BioLASCO Taiwan Co.,
Ltd. (Nangang, Taipei, Taiwan). All animals were maintained in laminar flow cabinets with
free access to food and water under specific pathogen-free conditions in facilities approved
by the Accreditation of Laboratory Animal Care and the Institutional Animal Care and Use
Committee (IACUC) of the Animal Research Committee of the Southern Taiwan University
of Science and Technology, Tainan, Taiwan (Approval No. STUT-IACUC-98-05). Five mice
per cage were fed with mouse chow and water ad libitum. The mice were acclimatized to
the 12/12 h light-dark cycle conditions in the cages and were kept in the housing facility
for a 1-week acclimation period before the surgical injury. After the experimental animals
were stably raised for two weeks, the kidneys (1/3 NT and 5/6 NT residual kidney) were
removed in vivo. Each experimental mouse was anesthetized by intraperitoneal injection,
and the dose of anesthetic was 0.01 c.c. Through back surgery, the unilateral kidney was
divided into three equal parts, the upper and lower parts were sutured, and antibiotics were
applied to the wound to avoid infection and death. The survival rate and postoperative
recovery were recorded.

The experimental animals were stably raised for two weeks and underwent Sham-
operated kidney excision surgery. Each mouse was anesthetized with an intraperitoneal
injection with an anesthetic dose of 0.01 c.c. From the back operation, the unilateral
kidney was taken out of the abdominal cavity and put back and sutured without harming
the kidney, and antibiotics were applied to the wound to avoid infection and death; the
mice were observed for 7 days, and the survival rate and postoperative recovery were
recorded. After the experimental animals were stably reared for two weeks and fed a
normal diet, they were given a high dose of STZ 100 mg/kg/7 days, and middle doses of
STZ 75 mg/kg/7 days were injected intraperitoneally to induce renal lesions (chemically-
induced chronic nephropathy). Their survival was recorded, and weight monitoring was
done weekly. After the experimental animals were established with 1/3 NT residual kidney
animal type, they were given a high dose of STZ 100 mg/kg/7 days and a middle dose of
STZ 75 mg/kg/7 days 1/3 NT plus STZ-induced chronic renal failure model.

The study group consisted of normal control, Sham group, 1/3 NT, STZ 75 mg/kg/
7 days/i.p., STZ 100 mg/kg/7 days/i.p., 1/3 NT + STZ 100 mg/kg/7 days/i.p., and
1/3 NT+ STZ 100 mg/kg/7 days i.p. According to each time point before and after surgery
and before and after administration of high-dose STZ, urine protein content was detected
by the metabolic cage method. At each time point, the mice were treated with STZ before
and after treatment. One week after induced STZ, the laboratory animals were stimulated to
urinate, and the urine was collected and sent to the medical laboratory for testing. Normal
control, Sham group, 1/3 NT, STZ 75 mg/kg/7 days/i.p., STZ 100 mg/kg/7 days/i.p.,
1/3 NT + STZ 100 mg/kg/7 days/i.p., 1/3 NT + STZ 100 mg/kg/7 days i.p. blood col-
lection was performed at each time point before and after surgery and before and after
administration of high-dose STZ for the relevant biochemical value detection. If the animal
did not need anesthesia or restraint with a restraint device, blood collection from the eye
socket was used to confirm. After there was blood flowing out, about 0.5 mL of whole
blood was collected with a blood collection tube, and after centrifugation at 5000 rpm for
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10 min, 0.2 mL of serum was taken for biochemical value experiments. Blood biochemical
values measured were creatinine (Cre), blood urea nitrogen (BUN). During the experiments,
we recorded the survival rate and weekly body weight measurement of each mouse.

4.5. Blood Biochemical Profile

All groups’ blood samples were collected from the tail vein. FBG was measured
with glucose oxidase strips (Easytouch, Taipei, Taiwan). Sham group, 1/3 NT + STZ
group, 1/3 NT + STZ + ACEI (20 mg/kg) group, 1/3 NT + STZ + EtCE-W/EA group
(100 mg/kg, 300 mg/kg and 500 mg/kg), and 1/3 NT + STZ + HWCE group (500 mg/kg)
were continuously administrated for 2 weeks. According to each time point before and after
surgery and before and after administration of high-dose STZ, urine protein content was
detected by the metabolic cage. At each time point, the mice were treated with STZ before
and after treatment. One week after induced STZ, the laboratory animals were stimulated
to urinate, and the urine was collected and sent to the medical laboratory for testing. Blood
collection was performed at each time point before and after surgery and before and after
administration of high-dose STZ for relevant biochemical value detection. If the animal did
not need anesthesia or restraint with a restraint device, blood collection from the eye socket
was used to confirm. After there was blood flowing out, about 0.5 mL of whole blood
was collected by a blood collection tube, and after centrifugation at 5000 rpm for 10 min,
0.2 mL of serum is taken for biochemical value experiments. Blood biochemical values
(Glucose, Albumin-Creatinine Ratio (%), blood urea nitrogen (BUN), Creatinine (Cre)) were
measured during the experiments. Blood serum metabolic enzymes were quantified using
an enzyme-linked immunosorbent assay (ELISA).

4.6. Hematoxylin and Eosin (HE)

After mice were sacrificed, the excised kidney samples were fixed in formalin. The
samples were dehydrated through a gradient mixture of ethyl alcohol and water, then
rinsed with xylene before being embedded in paraffin. The formalin fixed tissues were
sliced in 5 µm sections using a Microtome RM2135 (Leica Microsystems Inc., Bannockburn,
IL, USA) and prepared on silane-coated slides. The slides were immersed in Tris-buffered
saline (TBS, pH 7.4) after being rehydrated in graded ethanol solutions, dried at 37 ◦C
overnight, and then stored at room temperature. The 5 µm kidney sections were stained
with hematoxylin (Shandon™ Gill™ III) and Shandon Eosin Y (Thermo Scientific™). Lastly,
the slides underwent microscopic examination by means of a Motic BA 400 microscope
with Motic Advance 3.0 software (Motic Co., Fujian, China).

4.7. Masson Trichrome Staining

Kidney samples were fixed in 10% formal-saline for 48 h and then dehydrated by
successively passing through a gradient of mixtures of ethyl alcohol and water. The samples
were then rinsed with xylene and embedded in paraffin. Kidney sections (5µm thick) were
prepared and stained with Dietrich scarlet-acid fuchsin solution for 15 min, then transferred
directly to aniline blue solution and stained for 5–10 min. Finally, the sections were mounted
using neutral deparaffinated xylene (DPX) medium for microscopic examination on a Motic
BA 400 microscope using Motic Advance 3.0 software.

4.8. Immunohistochemical Stain

The kidney samples were fixed in formalin and dehydrated with a gradient mixture
of ethyl alcohol and water. The samples were then rinsed with xylene and embedded in
paraffin. The formalin-fixed tissues were sliced by Microtome RM2135 (Leica Microsystems
Inc., Bannockburn, IL, USA) into 5 µm sections and placed on silane-coated slides. The
slides were immersed in Tris-buffered saline (TBS, pH 7.4) after being rehydrated in graded
ethanol solutions, dried at 37 ◦C overnight, and stored at room temperature. After that,
the sections were soaked in 0.3% H2O2 to block the endogenous peroxidase activity. They
were then placed in the 10 mM citrate buffer solution (pH = 6.0) and microwave boiled
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for 10 min for completing antigen retrieval. The sections were incubated with primary
antibodies against TGF-β and α-SMA (1:250 dilution) in a humidified chamber at room
temperature for 2 h. The LSAB2 detection and DAB substrate kits were used for staining
processes according to the manufacturer DAKO’s instructions. Finally, the sections were
counterstained with hematoxylin (Shandon™ Gill™ III) and the number of stained nuclei
(dark blue color) per square millimeter was calculated using an eyepiece graticule. For the
positive labeling index for TGF-β and α-SMA, each tissue slide was illustrated as an average
percentage of dividing the numbers of a TGF-β and α-SMA-positive cell (visualized in
brown) by the total numbers of nuclei (visualized in blue). With each staining run, both
positive and negative controls were provided, and overexpression was considered positive
if more than 10% of the cells were showing.

4.9. Statistical Analysis

All the results were presented as the mean ± standard deviation (SD). Differences
between groups were evaluated with an analysis of variance and post hoc comparisons
with the Bonferroni step-down (Holm) correction. Statistical analysis was performed
using SigmaPlot software (version 10.0; SPSS Inc., Chicago, IL, USA). Post hoc testing of
behavioral data utilized a two-tailed Welch’s t-test. Post hoc testing of biochemical data
utilized a regression analysis. Each value represents the mean ± SD of 8 mice; p values less
than 0.05 were considered statistically significant. The values * p < 0.05, ** p < 0.01, and
*** p < 0.001 represent significant differences between the vehicle control and normal group
(drinking water alone), and # p < 0.05, ## p < 0.01, and ### p < 0.001 represent significant
differences from the 1/3 NT group and same dose of STZ.
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37. Glamočlija, J.; Ćirić, A.; Nikolić, M.; Fernandes, Â.; Barros, L.; Calhelha, R.C.; Ferreira, I.C.F.R.; Soković, M.; van Griensven, L.J.L.D.
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