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Abstract: Triple negative breast cancer (TNBC) is a subtype of breast cancer with typically poorer
outcomes due to its aggressive clinical behavior and lack of targeted treatment options. Currently,
treatment is limited to the administration of high-dose chemotherapeutics, which results in significant
toxicities and drug resistance. As such, there is a need to de-escalate chemotherapeutic doses in
TNBC while also retaining/improving treatment efficacy. Dietary polyphenols and omega-3 polyun-
saturated fatty acids (PUFAs) have been demonstrated to have unique properties in experimental
models of TNBC, improving the efficacy of doxorubicin and reversing multi-drug resistance. How-
ever, the pleiotropic nature of these compounds has caused their mechanisms to remain elusive,
preventing the development of more potent mimetics to take advantage of their properties. Using
untargeted metabolomics, we identify a diverse set of metabolites/metabolic pathways that are
targeted by these compounds following treatment in MDA-MB-231 cells. Furthermore, we demon-
strate that these chemosensitizers do not all target the same metabolic processes, but rather organize
into distinct clusters based on similarities among metabolic targets. Common themes in metabolic
targets included amino acid metabolism (particularly one-carbon and glutamine metabolism) and
alterations in fatty acid oxidation. Moreover, doxorubicin treatment alone generally targeted dif-
ferent metabolites/pathways than chemosensitizers. This information provides novel insights into
chemosensitization mechanisms in TNBC.

Keywords: triple negative breast cancer; metabolomics; drug response; polyphenols; omega-3
polyunsaturated fatty acids

1. Introduction

Breast cancer is the most commonly diagnosed cancer in women and is the second
leading cause of cancer-related deaths in women [1]. Triple negative breast cancer (TNBC) is
a notoriously aggressive and highly metastatic classification of breast cancer characterized
by a lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2). TNBC accounts for approximately 15–20% of
all breast cancer cases and has lower survival rates compared to hormone receptor-positive
breast cancers due to a greater risk of recurrence and a more aggressive disease course [2,3].
Because TNBC does not respond to hormone therapy or HER2 directed therapeutics,
treatment is limited to an aggressive course of cytotoxic chemotherapeutic drugs, which
commonly includes high doses of anthracycline and taxane-based regimens [3]. This
therapeutic strategy has significant health impacts, including issues with future fertility,
premature menopause, cardiovascular toxicity, cognitive dysfunction, and poorer bone
health [4]. As opposed to ER/PR-positive and HER2-positive breast cancers, few new
treatment options have emerged for TNBC, resulting in little improvement in overall
survival rates over the past 20–30 years compared to other cancers [5]. Recently, a panel of
experts came up with a list of the top research needs in breast cancer, which was published
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in Annals of Oncology. This list included (1) improvement of care in young patients
with breast cancer (due to higher rates of TNBC), (2) identification/validation of targets
mediating chemotherapy resistance, and (3) identification of new targets in TNBC [6]. This
highlights the necessity to explore new treatment options and/or methods to de-escalate
chemotherapy in TNBC.

Certain dietary factors, such as polyphenols and omega-3 polyunsaturated fatty acids
(PUFAs), have been shown to enhance the efficacy of chemotherapeutics or reverse multi-
drug resistance (MDR) in vitro and in vivo against various cancers [7–9]. In particular,
tannic acid [10], resveratrol [11,12], genistein [13], quercetin [14,15], curcumin [16], do-
cosahexaenoic acid (DHA) [17], and eicosapentaenoic acid (EPA) [17] have been shown
to increase the efficacy of doxorubicin—a first-line drug for TNBC—in MDA-MB-231 and
MDA-MB-468 TNBC cell lines [10–16,18–20]. Moreover, these compounds have been shown
to reverse MDR in cell lines of TNBC or other cancers [21–28]. A limitation of these com-
pounds, particularly polyphenols, is their low bioavailability due to poor absorption or
metabolic degradation by host/microbial enzymes [7,29,30], although major advancements
have been made to overcome these issues using delivery systems such as nanoparticles
or liposomes [31,32]. Nonetheless, these compounds still provide an excellent model to
uncover novel therapeutic targets to enhance chemotherapeutic efficacy and/or reverse
MDR. These dietary compounds are well-tolerated in humans and, therefore, therapeu-
tics mimicking their actions (with improved pharmacokinetic properties) are likely to
have favorable toxicity profiles. However, the mechanisms by which these compounds
chemosensitize TNBC and reverse MDR remain unclear due to their pleiotropic nature.
Indeed, many targets have been identified for these compounds, and it is ambiguous which
targets are most crucial for their therapeutic effects [33–36].

Polyphenols and omega-3 PUFAs are highly studied molecules found in the diet, and
much research has investigated their effects on cancer cells, including TNBC cells. In partic-
ular, these compounds and other anticancer nutrients/nutraceuticals have been shown to
affect metabolic activity or processes regulating metabolism, which is associated with their
anticancer activity [29,33,37,38]. Cancer cell metabolism greatly influences the response of
cancer cells to therapeutics and the development of resistance, likely making metabolism
a key target of these chemosensiziting compounds [39–41]. Moreover, co-administration
of metabolic inhibitors has been shown to enhance the efficacy of chemotherapeutics [41],
further strengthening the rationale that the metabolic targets of polyphenols/omega-3
PUFAs are critical for their chemosensitizing/MDR reversal effects. Research over many
years has made it clear that these compounds affect multiple cellular targets, which has
made it extremely difficult to identify the exact mechanisms of these nutrients using tar-
geted methods. As a result, the literature is filled with various proposed mechanisms
without a clear consensus on the critical targets of these compounds. Additionally, it is
unknown whether the chemosensitizing effects of these compounds are due to targeting
the same metabolic pathways as, or different ones from, TNBC chemotherapeutics (e.g.,
doxorubicin). Due to their pleiotropic properties, these nutrients/dietary compounds are
well-positioned to be studied using omics techniques that can simultaneously measure
many molecular species in a biological sample. In the current investigation, we present the
use of metabolomics to elucidate metabolites/metabolic pathways targeted by a panel of
polyphenols and PUFAs in the MDA-MB-231 TNBC cell line, providing insight towards
the molecular mechanisms by which these compounds exert their chemosensitizing/MDR
reversal effects (Figure 1).



Int. J. Mol. Sci. 2023, 24, 4406 3 of 20Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 20 
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this panel of compounds to uncover potential mechanisms by which these substances sensitize triple 
negative breast cancer (TNBC) cells to chemotherapeutics. 

2. Results 
Following data preprocessing and filtering, 5097 peaks remained in the normalized 

metabolomics dataset, which were used for multivariate analyses. Quality control study 
pools (QCSPs) clustered tightly in the middle of the study samples, indicating the data 
collected was of sufficient quality (Figure S1). Principal component analysis (PCA) of all 
peaks showed moderate separation due to chemosensitizer treatment in MDA-MB-231 
cells, with the largest separations seen with tannic acid, genistein, and EPA treatment 
compared to vehicle (Figure 2A). Orthogonal partial least squares-discriminant analysis 
(OPLS-DA), a supervised multivariate technique that uses class information, was able to 
produce very clear separation between treatment groups (Figure 2B). Importantly, this 
analysis showed treatments with similar metabolic profiles. For example, quercetin was 
closer in multivariate space to DHA compared to genistein, indicating that quercetin has 
a more similar metabotype with DHA. To further analyze overall similarities/differences 
in metabotypes between treatments, hierarchical clustering analysis (HCA) was per-
formed on the OPLS-DA model to identify how treatments organized into clusters, 

Figure 1. Chemical structures of chemosensitizing nutrients/dietary compounds used in this study.
The goal of the current investigation is to use metabolomics to determine the metabolic targets of
this panel of compounds to uncover potential mechanisms by which these substances sensitize triple
negative breast cancer (TNBC) cells to chemotherapeutics.

2. Results

Following data preprocessing and filtering, 5097 peaks remained in the normalized
metabolomics dataset, which were used for multivariate analyses. Quality control study
pools (QCSPs) clustered tightly in the middle of the study samples, indicating the data
collected was of sufficient quality (Figure S1). Principal component analysis (PCA) of
all peaks showed moderate separation due to chemosensitizer treatment in MDA-MB-
231 cells, with the largest separations seen with tannic acid, genistein, and EPA treatment
compared to vehicle (Figure 2A). Orthogonal partial least squares-discriminant analysis
(OPLS-DA), a supervised multivariate technique that uses class information, was able to
produce very clear separation between treatment groups (Figure 2B). Importantly, this
analysis showed treatments with similar metabolic profiles. For example, quercetin was
closer in multivariate space to DHA compared to genistein, indicating that quercetin has a
more similar metabotype with DHA. To further analyze overall similarities/differences in
metabotypes between treatments, hierarchical clustering analysis (HCA) was performed
on the OPLS-DA model to identify how treatments organized into clusters, identifying
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which treatments produced similar metabolic perturbations (Figure 2C). This clustering
analysis revealed three distinct clusters: one cluster with resveratrol and curcumin, another
cluster with DHA and quercetin, and a third cluster with tannic acid, EPA, and genistein.
Notably, pairwise OPLS-DA comparisons between vehicle and each treatment group
showed good model statistics with R2X, R2Y, and Q2 > 0.5, indicating that each treatment
produced a robust effect on the metabolome of MDA-MB-231 cells, including treatment
with doxorubicin (Supplementary Materials Table S1). These pairwise OPLS-DA models
were used to calculate Variable Importance to Projection (VIP) scores for each peak, a
multivariate score that indicates the contribution of a peak to the model. A full list of
VIP scores, along with p-values and fold changes, for each vehicle–treatment combination
is listed in Supplementary Materials Table S2. Furthermore, PCA of samples and QCSP
replicates showed sufficient clustering and centering of QCSP samples, indicating good
data quality.
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Figure 2. Multivariate analysis of all metabolomics peaks following 24 h of exposure of MDA-MB-
231 cells to each treatment. (A) PCA and (B) OPLS-DA plots of cells treated with each chemosensitizer
or vehicle control (DMSO). (C) Hierarchical clustering analysis of (B) showing treatments that give
similar metabolic profiles. The X-axis represents the samples (colored by treatment) and the y-axis
shows the similarity index calculated using all seven principal components of the OPLS-DA model.
Distances between clusters calculated using the Ward method.
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To better understand the metabolic targets of each treatment compound, pairwise
pathway analyses were performed for each vehicle–treatment combination. For each
comparison, all peaks with their corresponding p-values and fold changes were input
into MetaboAnalyst 5.0 for pathway analysis. Significant pathways for each treatment are
listed in Table 1. This analysis showed that several pathways were found to be altered by
multiple treatments. Notably, C21-steroid hormone biosynthesis and metabolism, histidine
metabolism, aspartate and asparagine metabolism, linoleate metabolism, prostaglandin
formation from arachidonate, and urea cycle/amino group metabolism were found to
be perturbed by five out of the eight treatments. A graphical representation of these
results can be found in Figure 3, which plots the −log (p-value) for each pathway for
each treatment (only pathways significant in three or more treatments are displayed).
This analysis highlights that for most treatments, there are one or two pathways that are
noticeably more affected than the rest. For example, curcumin seems to primarily affect
aspartate and asparagine metabolism, genistein primarily affects the carnitine shuttle, and
resveratrol primarily affects histidine metabolism; however, each treatment has significant
activity in many other pathways, which is in agreement with the pleiotropic properties that
have been reported for these compounds.

Table 1. Significant pathways (p < 0.05) for each treatment calculated using MetaboAnalyst. Values re-
ported are combined p-values calculated with MetaboAnalyst 5.0 using both the mummichog and GSEA
pathway algorithms. The default top 10% of the p-values was selected for the mummichog algorithm.

Doxorubicin EPA DHA Quercetin Genistein Resveratrol Tannic Acid Curcumin

C21-steroid hormone
biosynthesis and

metabolism
4.7 × 10−2 3.6 × 10−2 2.4 × 10−2 4.1 × 10−2 4.6 × 10−2 1.3 × 10−2 4.9 × 10−2

Histidine metabolism 1.4 × 10−3 2.4 × 10−2 1.6 × 10−2 5.5 × 10−3 6.0 × 10−5 1.3 × 10−2 1.5 × 10−2

Aspartate and asparagine
metabolism 1.0 × 10−3 4.5 × 10−2 4.8 × 10−2 5.3 × 10−4 3.0 × 10−2 <1.0 × 10−5

Linoleate metabolism 3.9 × 10−2 3.2 × 10−4 1.6 × 10−2 3.6 × 10−2 5.0 × 10−2 2.3 × 10−2

Prostaglandin formation
from arachidonate 3.5 × 10−2 9.2 × 10−3 4.4 × 10−3 9.2 × 10−3 1.7 × 10−2 1.1 × 10−2

Urea cycle/amino group
metabolism 6.9 × 10−3 1.5 × 10−2 3.5 × 10−2 4.4 × 10−2 7.9 × 10−3 1.8 × 10−2

Carnitine shuttle 3.1 × 10−2 2.0 × 10−5 1.7 × 10−3 1.5 × 10−4 1.4 × 10−2

Drug
metabolism—cytochrome

P450
4.4 × 10−2 3.0 × 10−2 9.9 × 10−3 1.8 × 10−2 3.0 × 10−2

Glycerophospholipid
metabolism 8.2 × 10−3 4.2 × 10−2 4.5 × 10−2 2.3 × 10−2 4.3 × 10−4

Pyrimidine metabolism 2.5 × 10−2 3.7 × 10−2 3.1 × 10−2 3.8 × 10−2 3.7 × 10−2

Bile acid biosynthesis 1.3 × 10−4 1.5 × 10−2 2.3 × 10−2 3.0 × 10−5

C5-Branched dibasic acid
metabolism 3.4 × 10−2 3.2 × 10−2 3.5 × 10−2 2.1 × 10−2

Fatty acid activation 4.0 × 10−3 1.2 × 10−2 2.6 × 10−2 1.6 × 10−3

Leukotriene metabolism 1.3 × 10−2 5.0 × 10−2 3.0 × 10−2 1.2 × 10−2

N-Glycan biosynthesis 3.3 × 10−3 5.0 × 10−2 3.5 × 10−2 5.0 × 10−2

Purine metabolism 3.3 × 10−2 4.6 × 10−2 3.3 × 10−2 4.3 × 10−2

Vitamin A (retinol)
metabolism 1.1 × 10−3 2.2 × 10−2 1.6 × 10−3 2.8 × 10−2

Arachidonic acid
metabolism 1.3 × 10−2 4.4 × 10−2 1.2 × 10−2

De novo fatty acid
biosynthesis 1.1 × 10−2 2.9 × 10−2 1.6 × 10−3

Glutathione metabolism 1.6 × 10−2 8.7 × 10−3 9.0 × 10−3
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Table 1. Cont.

Doxorubicin EPA DHA Quercetin Genistein Resveratrol Tannic Acid Curcumin

Glycolysis and
gluconeogenesis 2.2 × 10−2 4.7 × 10−3 4.3 × 10−2

Glycosphingolipid
metabolism 3.6 × 10−2 3.0 × 10−3 5.3 × 10−4

Prostaglandin formation
from dihomo

gama-linoleic acid
3.9 × 10−2 4.0 × 10−2 3.6 × 10−2

Putative
anti-inflammatory

metabolites formation
from EPA

2.8 × 10−2 2.9 × 10−2 3.3 × 10−2

Sphingolipid metabolism 2.8 × 10−2 6.9 × 10−3 5.0 × 10−3

Tryptophan metabolism 4.3 × 10−2 3.0 × 10−2 4.3 × 10−2

Tyrosine metabolism 4.3 × 10−2 3.3 × 10−2 4.5 × 10−2

Alanine and aspartate
metabolism 4.7 × 10−2 6.5 × 10−3

Arginine and proline
metabolism 2.0 × 10−2 7.7 × 10−3

Beta-Alanine metabolism 1.9 × 10−2 5.0 × 10−2

Fatty acid metabolism 9.6 × 10−3 8.6 × 10−3

Fatty acid oxidation,
peroxisome 2.4 × 10−2 9.4 × 10−3

Glutamate metabolism 1.6 × 10−2 5.4 × 10−4

Glycine, serine, alanine
and threonine metabolism 4.0 × 10−3 2.4 × 10−3

Methionine and cysteine
metabolism 2.2 × 10−2 4.3 × 10−2

Nitrogen metabolism 2.8 × 10−2 4.7 × 10−2

Omega-3 fatty acid
metabolism 2.9 × 10−2 2.6 × 10−2

Pyruvate metabolism 4.6 × 10−3 5.0 × 10−2

Saturated fatty acid
beta-oxidation 1.5 × 10−2 4.4 × 10−2

Sialic acid metabolism 3.2 × 10−2 2.6 × 10−2

Squalene and cholesterol
biosynthesis 3.6 × 10−2 3.6 × 10−2

TCA cycle 3.7 × 10−2 3.7 × 10−2

Vitamin E metabolism 4.3 × 10−2 2.1 × 10−2

3-oxo-10R-
octadecatrienoate

beta-oxidation
3.6 × 10−2

Aminosugars metabolism 4.3 × 10−2

Blood group biosynthesis 2.3 × 10−2

Carbon fixation 8.3 × 10−3

Di-unsaturated fatty acid
beta-oxidation 4.8 × 10−2

Dimethyl-branched-chain
fatty acid mitochondrial

beta-oxidation
3.1 × 10−2

Fructose and mannose
metabolism 7.0 × 10−3

Galactose metabolism 2.4 × 10−2

Glycosphingolipid
biosynthesis—
ganglioseries

2.6 × 10−2
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Table 1. Cont.

Doxorubicin EPA DHA Quercetin Genistein Resveratrol Tannic Acid Curcumin

Glycosphingolipid
biosynthesis—lactoseries 2.3 × 10−2

Glycosphingolipid
biosynthesis—
neolactoseries

2.3 × 10−2

Hexose phosphorylation 1.7 × 10−2

Limonene and pinene
degradation 3.4 × 10−2

Lysine metabolism 3.0 × 10−2

Omega-6 fatty acid
metabolism 2.1 × 10−2

Pentose and glucuronate
interconversions 4.9 × 10−2

Pentose phosphate
pathway 2.7 × 10−2

Phytanic acid peroxisomal
oxidation 1.1 × 10−2

Polyunsaturated fatty acid
biosynthesis 3.8 × 10−2

Selenoamino acid
metabolism 2.1 × 10−2

Valine, leucine and
isoleucine degradation 5.6 × 10−3

Vitamin B3 (nicotinate and
nicotinamide) metabolism 2.4 × 10−2

Vitamin B9 (folate)
metabolism 3.6 × 10−2

Vitamin D3
(cholecalciferol)

metabolism
3.6 × 10−2

Vitamin K metabolism 2.1 × 10−2

While informative, MetaboAnalyst’s pathway analysis assigns metabolites to peaks
based on accurate mass (MS) matches, which may lead to erroneous assignments due to
lack of retention time (RT) and MS/MS matching. Because of this, we matched peaks to
an in-house library of chemical reference standards that were run under identical instru-
ment conditions, providing matches with increased evidence. From this, 169 peaks were
matched to the in-house library at a level of OL1 (MS, RT, and MS/MS match), OL2a (RT
and MS match), or OL2b (MS and MS/MS match). Displayed in Figure 4A is a heatmap
of the in-house matched metabolites showing differences in abundance profiles across the
different treatments. Clustering based on these metabolites leads to the similar grouping
shown in Figure 2C using all of the metabolomics peaks, although EPA was shown to
cluster with quercetin and DHA rather than tannic acid. ANOVA analysis of all in-house
matched metabolites across all treatments was performed to identify compounds driving
the observed clustering. Supplementary Materials Table S3 provides the p-values for all
in-house metabolites using this analysis, revealing 58 in-house matched metabolites with
an ANOVA of p < 0.05. Notable significant metabolites identified from this analysis were
creatine, glutamine, DHA, docosatetraenoic acid, sphinganine, spermine, and putrescine,
which all had p-values < 1 × 10−5. Pathway analysis was performed on all 58 of these signif-
icant metabolites, which identified glutathione metabolism, aminoacyl-tRNA biosynthesis,
and arginine and proline metabolism as major metabolic pathways driving the clustering
of treatments (Supplementary Materials Table S4).
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Figure 3. Significant pathways (p < 0.05) between vehicle and each treatment using all metabolomics
peaks. Only pathways that are significant in three or more treatments are displayed (full list of signif-
icant pathways can be found in Table 1). Pathway analysis was conducted using MetaboAnalyst 5.0.
CUR, curcumin; DOX, doxorubicin; GEN, genistein; Q, quercetin; RES, resveratrol; TA, tannic acid.

To gain a better understanding of each treatment on specific metabolite groups, metabo-
lites were subdivided into categories based on Refmet classifications [42] and heatmaps
were generated for each category, which included fatty acyls (Figure 4B), organic acids
(Figure 4C), carbohydrates (Figure 4D), nucleic acids (Figure 4E), organoheterocyclics
(Figure 4F), and acylcarnitines—a subgroup of fatty acyls (Figure 4G). Clustering of each
treatment in these category heatmaps provide more insight into the metabolic targets of
each chemosensitizer based on distance from the vehicle-treated MDA-MB-231 cells. EPA,
DHA, curcumin, and quercetin had the largest effect on fatty acyls, generally increasing
the long-chain forms and decreasing the short-chain forms (Figure 4B). Quercetin, DHA,
resveratrol, and tannic acid had the largest effect on organic acids, particularly quercetin,
which showed strong increases in glutamine, serine, asparagine, and betaine relative to
the vehicle. Other amino acids were generally decreased with treatment by these four
compounds; however, genistein, despite clustering closely with the vehicle, showed strong
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increases in some amino acids including histidine, methionine, isoleucine, phenylalanine,
tryptophan, and cystine (Figure 4C). For carbohydrates, quercetin, DHA, and EPA had
the largest effect, with increases in S-adenosylmethionine and decreases in mannose and
lactose (Figure 4D). Quercetin, DHA, EPA, and curcumin had the largest effect on nu-
cleic acids, with the former three decreasing and the latter increasing these metabolites
(Figure 4E). For organoheterocyclics (a class that includes many B vitamin forms), quercetin
and genistein had the largest effects, with the former leading to increases and the latter
leading to decreases in these metabolites (Figure 4F). Finally, acylcarnitines were strongly
increased in curcumin, resveratrol, genistein, and tannic acid, particularly medium- and
long-chain acylcarnitines (Figure 4G).
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Figure 4. (A) Heatmap of all in-house matched metabolites across each treatment generated by
MetaboAnalyst 5.0. Heatmaps were further subdivided based on Refmet categories: (B) fatty acyls,
(C) organic acids, (D) carbohydrates, (E) nucleic acids, (F) organoheterocyclics, and (G) acylcarnitines.
Hierarchical clustering was performed on samples using Euclidean distance measures. Heatmaps are
auto-scaled (mean-centered and divided by standard deviation) for each metabolite.
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To provide more robust pathway analysis, in-house matched metabolites with fold
changes for each treatment were input into GeneGo Metacore for pathway analysis. Metabo-
lites with a VIP > 1 for a given vehicle–treatment comparison were considered significant
and used for pathway mapping. Figure 5 displays the top five metabolic pathways identi-
fied by this analysis (Supplementary Materials Table S5 contains the full list of pathways).
This analysis identified several amino acid-related pathways as significantly altered by the
treatments, including pathways related to glycine, serine, arginine, cysteine, glutathione,
and aminoacyl tRNAs. This agrees with the MetaboAnalyst results in Figure 3, which also
identified glycine, serine, arginine, and glutathione pathways as significantly altered by
treatment. Notably, the GeneGo Metacore analysis identified fewer fatty acid/cholesterol-
related pathways compared to the MetaboAnalyst results, which may be due to the GeneGo
Metacore analysis only using the in-house matched metabolites, which had a higher repre-
sentation of amino acids and their metabolites.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 20 
 

 

pathways). This analysis identified several amino acid-related pathways as significantly 
altered by the treatments, including pathways related to glycine, serine, arginine, cysteine, 
glutathione, and aminoacyl tRNAs. This agrees with the MetaboAnalyst results in Figure 
3, which also identified glycine, serine, arginine, and glutathione pathways as signifi-
cantly altered by treatment. Notably, the GeneGo Metacore analysis identified fewer fatty 
acid/cholesterol-related pathways compared to the MetaboAnalyst results, which may be 
due to the GeneGo Metacore analysis only using the in-house matched metabolites, which 
had a higher representation of amino acids and their metabolites. 

 
Figure 5. Top five most significant pathways calculated in GeneGo Metacore using all in-house 
matched metabolites. Pathway p-values (nominal and FDR corrected) are provided for each treat-
ment. Pathways are ordered based on minimum p-value—the lowest p-value achieved by any of the 
treatments. 

3. Discussion 
Metabolic reprogramming is a hallmark of cancer and leads to cancer cells having 

distinct metabolic profiles compared to normal cells. This is due to cancer cells rewiring 
metabolic processes to overcome regulatory systems that would otherwise limit their 
growth and survival. This reprogramming also occurs in response to stressors, such as 
chemotherapy treatment, to promote the survival of cancer cells. In this way, alterations 
in cellular metabolism can modulate the response of cancer cells to drug treatment [43,44]. 
Certain nutrients/phytochemicals such as omega-3 PUFAs (often found in fish, nuts, and 
seeds) and polyphenols (commonly found in fruits, vegetables, nuts, and whole grains) 
have received significant interest in the research community for their observed health ef-
fects, such as their ability to prevent cancer and/or induce cancer cell death in experi-
mental systems [34,45]. Included in these observations is the ability of these compounds 

Figure 5. Top five most significant pathways calculated in GeneGo Metacore using all in-house
matched metabolites. Pathway p-values (nominal and FDR corrected) are provided for each treat-
ment. Pathways are ordered based on minimum p-value—the lowest p-value achieved by any of
the treatments.

3. Discussion

Metabolic reprogramming is a hallmark of cancer and leads to cancer cells having
distinct metabolic profiles compared to normal cells. This is due to cancer cells rewiring
metabolic processes to overcome regulatory systems that would otherwise limit their
growth and survival. This reprogramming also occurs in response to stressors, such as
chemotherapy treatment, to promote the survival of cancer cells. In this way, alterations in
cellular metabolism can modulate the response of cancer cells to drug treatment [43,44].
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Certain nutrients/phytochemicals such as omega-3 PUFAs (often found in fish, nuts, and
seeds) and polyphenols (commonly found in fruits, vegetables, nuts, and whole grains)
have received significant interest in the research community for their observed health effects,
such as their ability to prevent cancer and/or induce cancer cell death in experimental
systems [34,45]. Included in these observations is the ability of these compounds to enhance
the anticancer effect of chemotherapeutics. Because drug response is closely linked to
cancer cell metabolism, we hypothesize that this chemosensitization effect is due to these
compounds altering the metabotype of cancer cells, making them more responsive to
the cytotoxic effect of chemotherapeutics. In the current investigation, we investigated a
panel of polyphenols and omega-3 PUFAs that have previously been shown to increase the
anticancer effect of doxorubicin in triple negative breast cancer cells. Using an untargeted
metabolomics approach, we sought to identify the metabolites/metabolic pathways that
are targeted by these chemosensitizing compounds (Figure 6).
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Figure 6. Proposed schema for chemosensitization of TNBC cells by polyphenols/omega-3 PUFAs.
Metabolic targets of chemosensitizers were primarily focused towards amino acid metabolism and
fatty acid oxidation. Chemosensitizers were observed to deplete glutamine levels, dysregulate amino
acids in one-carbon metabolism, and (particularly for curcumin, resveratrol, tannic acid, and genistein)
elevate acylcarnitines. These collective metabolic perturbations may underlie the chemosensitizing
properties of these nutrients/dietary compounds. FAO; fatty acid oxidation; OXPHOS, oxidative
phosphorylation. Figure created with BioRender.com.

Importantly, our findings indicated that the metabolic effects of these chemosensitizing
compounds were broad, and often distinct from one another. This is in agreement with
many studies that indicated that these compounds are pleiotropic. Additionally, this
also suggests that there are multiple mechanisms by which metabolism can be altered
to improve drug response. Even EPA and DHA, which are highly related metabolites
that belong to the same metabolic pathway, showed different metabolic effects, although
clustering analyses frequently placed these two treatments into the same cluster. This agrees
with previous studies that have shown that EPA and DHA can have different anticancer
effects, with DHA often shown to have greater anticancer effects than EPA [37]. Notably,
doxorubicin-treated MDA-MB-231 cells generally showed very different metabolic profiles
than chemosensitizer-treated cells. This suggests that these polyphenols and omega-3
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PUFAs sensitize TNBC cells by targeting different, complementary metabolites to increase
the drug’s cytotoxic effect.

Pathway analyses provide a means to more easily interpret overall biological effects
in metabolomics data. Herein, we provided two pathway analyses: one using all peaks
via MetaboAnalyst and another using only in-house matched metabolites via GeneGo.
Both analyses indicated amino acid metabolism as a major target, with the GeneGo results
(using only matches with the highest evidence basis) particularly identifying amino acids
involved in one-carbon metabolism (glycine, serine, cysteine, and cystine)—a pathway that
controls the flux of one-carbon units towards numerous pathways including nucleotide
and lipid metabolism [46]. Cancer cells are particularly sensitive to deprivation of one-
carbon units through nutrient restriction or pharmacological inhibition of the one-carbon
metabolic pathway, as seen with the clinical success of folate inhibitors such as methotrex-
ate and pemetrexed [47]. Indeed, cancer cells rely on this pathway to increase anabolic
pathways (nucleotide/lipid synthesis), produce NADPH to adapt to the high levels of
reactive oxygen species that are characteristic of cancer cells, produce energy in the form of
adenosine triphosphate (ATP), and alter DNA methylation patterns [46,47]. Interestingly,
the direction of change of metabolites in this pathway varied across treatments, suggesting
that dysregulation of this pathway—by either increasing or decreasing activity—can lead
to chemosensitization towards doxorubicin treatment.

Another amino acid that was heavily affected by chemosensitizer treatment was glu-
tamine, which was decreased in all chemosensitizer treatments. Conversely, glutamine
levels were strongly increased following doxorubicin treatment (VIP > 1, p = 8.61 × 10−5,
fold change > 5) (Supplementary Materials Table S2). This was one of the few instances
where an OL1 metabolite was consistently changed in the same direction by all chemosen-
sitizers while also being significantly affected by doxorubicin treatment. Increases in
glutamine uptake are commonly seen in cancers to support biosynthetic reactions and
combat redox stress, and yield these results by replenishing TCA cycle intermediates, which
are then shuttled to anabolic reactions [48]. The observation that glutamine was increased
following doxorubicin treatment may be an indicator that increased glutamine uptake
is a stress response that TNBC cells undergo to survive the cytotoxic effects of this drug.
Consequently, this panel of polyphenols/omega-3 PUFAs may enhance doxorubicin’s cyto-
toxic effect by depleting glutamine levels, preventing this survival response. In addition to
glutamine, three other in-house matched metabolites were altered in all treatment groups
(VIP > 1): myristoylcarnitine, octadecanoylcarnitine, and 3-hydroxyhexadecanoylcarnitine
(Supplementary Materials Table S2). This indicates that these acylcarnitines and glutamine
are shared targets of doxorubicin and these chemosensitizers, and that the simultaneous
disruption of these metabolic pathways during doxorubicin treatment may lead to in-
creased drug efficacy. Future studies are needed to investigate the metabolic profiles of
cells co-treated with doxorubicin and these chemosensitizers to determine if these effects
are seen when both agents are administered simultaneously. In addition, while previous
studies have shown an increase in cytotoxicity from these co-treatments in TNBC cells, we
did not assess cell viability with these combinations, which should be confirmed in future
studies. Future studies should also investigate if these metabolic processes are targeted
by other polyphenols/PUFAs beyond those used in this study. Lastly, additional TNBC
models should be studied to confirm our results, as the current investigation only assessed
the effects of these chemosensitizers in the MDA-MB-231 cell line.

One of the observed effects of polyphenols on cancer cells is their ability to modulate
cellular energetics. Polyphenols have been shown to activate AMPK, which alters many
anabolic and catabolic processes, such as fatty acid oxidation, glycolysis, lipogenesis,
and autophagy [49]. Cancer cells carefully balance energy consumption and generating
pathways to sustain increased proliferation and manage reactive oxygen species (ROS)
levels [50]. Disrupting this balance may be a mechanism by which polyphenols cause
cancer cell death and/or increase chemotherapeutic efficacy. Our findings that a subset of
polyphenols (curcumin, genistein, tannic acid, and resveratrol) greatly alters acylcarnitine
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levels in TNBC cells, typically increasing their levels. Acylcarnitines are intermediates
in fatty acid oxidation that are formed from acyl-CoA and carnitine by the action of
carnitine palmitoyltransferase 1 (CPT-1). Once formed, acylcarnitines are able to pass
into the mitochondrial matrix, where they are re-converted into acyl-CoA by CPT-2 and
then oxidized via β-oxidation to acetyl-CoA, which is then used in the TCA cycle for ATP
production [51]. In the context of diabetes, disturbances in the acylcarnitine pool have
been shown to be established markers of mitochondrial dysfunction and the uncoupling
of fatty acid oxidation (FAO) from oxidative phosphorylation [52]. Indeed, elevation of
acylcarnitines has been shown to occur when FAO activity outpaces the TCA cycle, leading
to increased lipolysis and incomplete mitochondrial substrate oxidation [53,54]. Under
these conditions, where substrate catabolism exceeds ATP demand, the increased reducing
pressure of the cell (NADH, FADH2) on the electron transport chain leads to the generation
of ROS (H2O2, •O2) [53]. Excessive mitochondrial ROS and accumulation of acyls in the
mitochondria have been shown to open the mitochondrial permeability transition pore
(PTP), causing cell death [52,55–58]. Our data suggest that a similar mechanism may
occur in cancer cells following treatment with these polyphenols. Although polyphenols
have historically been recognized as antioxidants, they are now recognized to have pro-
oxidant effects in cancer cell environments [59–62], which may be due to the accumulation
of acylcarnitines. Interestingly, the breast cancer cell response to doxorubicin is heavily
influenced by mitochondrial activity, with factors such as mitochondrial oxidation state,
depolarization, matrix calcium levels, and ROS production mediating its activity [63,64].
Although the exact mechanism of action of doxorubicin remains unclear, it has been well
observed to lead to mitochondrial dysfunction, which is thought to play a critical role in
the cardiotoxicity seen with this drug in in vitro, in vivo, and clinical studies [65]. Our
observation that a subset of chemosensitizers heavily affects acylcarnitine levels suggests
that these compounds increase doxorubicin efficacy in breast cancer cells by shifting the
equilibrium of mitochondrial activity. In turn, this shifting of mitochondrial activity may
lead to a cytoprotective effect of these compounds in cardiomyocytes against doxorubicin-
mediated toxicity [66–68]. More research is needed to better understand if the metabolic
effects of these compounds are also seen in cardiomyocytes and if they contribute to this
observation of selective toxicity (cytotoxic in cancer cells, cytoprotective in healthy cells).
The generally higher levels of ROS seen in cancer cells versus normal cells may play a role
in determining this selective toxicity, making cancer cells more sensitive to imbalances in
mitochondrial metabolism/ROS production [69]. Of note, acylcarnitine treatment has been
shown to slow the development of certain cancers, such as colon cancer in vivo [70].

Additionally, polyphenols/omega-3 PUFAs have been shown to alter the activity
of the PI3K-Akt/mTOR/AMPK signaling axis, which is well known to modulate amino
acid metabolism and mitochondrial activity/fatty acid oxidation, providing a possible
mechanism for how these chemosensitizing compounds affect the pathways seen in this
study [37,71,72]. Indeed, the mTOR signaling pathway is a central metabolic regulator
in the cell that senses the nutritional status of the cell, controlling growth and metabolic
activity [73]. Previous studies have shown that modulation of mTOR activity in combina-
tion with doxorubicin shows synergistic activity in in vitro and in vivo models of various
cancers [74,74–76]. This combination treatment has also been shown to be effective in a
Phase I trial for the treatment of mesenchymal TNBC [77]. mTOR inhibition has also been
shown to be effective in combination with other anticancer therapeutics, indicating that
targeting of this pathway is a promising avenue for chemosensitization [78]. Because our
panel of chemosensitizers shows different profiles of metabolic perturbations, it is possible
that they target different locations on the mTOR pathway and/or have different off-target
effects, which may contribute to their anticancer effects and/or favorable toxicity profiles.

Previous metabolic effects of these compounds in other disease contexts are in agree-
ment with our results. Resveratrol, curcumin, genistein, and tannic acid have been shown
to increase acylcarnitine profiles systemically and/or in skeletal muscle, alter the expression
of mitochondrial β-oxidation enzymes, affect mitochondrial biogenesis, and change mito-
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chondrial bioenergetics, which has been linked to the anti-obesogenic and anti-aging effects
of these compounds [79–85]. Additionally, resveratrol, curcumin, genistein, quercetin,
DHA, and EPA have all been shown to modulate glutaminolysis/glutamine levels in vitro
or in vivo [86–90]. While these previous studies give additional validity to our results, this
study was a screening approach to identify a list of metabolic targets of these compounds,
and will need to be validated using targeted methods in additional model systems.

The pleiotropic effects of these polyphenols/omega-3 PUFAs highlight the promise of
multi-targeted therapy in cancer. Indeed, the anticancer effect of these compounds may
be attributed to a combination of effects on multiple metabolites/pathways rather than a
single primary target. Our study uncovers novel metabolic targets of these compounds that
aid in explaining their chemosensitizing effects, and these metabolic targets may provide
an explanation for the health benefits of these compounds in other disease areas (aging,
cardiovascular disease, neurodegeneration, etc). However, it should be noted that the
concentrations, dose times, and cell model used in this study were specifically designed
in the context of enhancing the effect of doxorubicin in TNBC, and therefore may not
necessarily reflect the metabolic effects seen in these other contexts. Furthermore, our
observation that each treatment generally produced unique metabolic profiles indicates
that different polyphenols/omega-3 PUFAs target different sets of metabolites/metabolic
pathways. This may provide a rationale for combining polyphenols/omega-3 PUFAs based
on their targeting of similar/complementary metabolites to obtain an additive/synergistic
effect—for example, resveratrol and genistein may be combined as a co-treatment since
both increase acylcarnitines. Conversely, this may also be a way to predict compounds that
could antagonize each other’s effects, leading to diminished therapeutic effects. Indeed,
combinations of these compounds have been shown to be a promising area for improving
their effects [7,30]; therefore, using omics technologies to make rationalized combinations
is an area worthy of future study.

In conclusion, our study uncovered novel mechanisms by which polyphenols/omega-
3 PUFAs target metabolism under doxorubicin-chemosensitizing conditions. While bioavail-
ability issues continue to be a challenge in using these compounds clinically, mechanistic
information, such as the data presented herein, may form a basis for developing mimet-
ics with more favorable pharmacokinetic profiles. For TNBC specifically, understanding
these chemosensitization mechanisms is clinically very valuable, as there is a great need
to improve treatment outcomes and de-escalate drug doses to mitigate side effects. It is
important to note that more information is needed concerning the mechanism of action of
these polyphenols and omega-3 PUFAs, as well as more testing in experimental and clinical
settings. These needs must be met to fully understand their anticancer properties and to
use this information to improve outcomes for TNBC patients.

4. Materials and Methods
4.1. Chemical Reagents

Optima grade solvents (water with 0.1% formic acid and methanol with 0.1% formic
acid) and fetal bovine serum (FBS) were purchased from Fisher Scientific (Waltham, MA,
USA). Dubelcco’s Modified Eagle Medium (DMEM) with high glucose and phosphate
buffered saline (PBS) was purchased from Gibco (Grand Island, NY, USA). Resveratrol,
curcumin, quercetin, genistein, tannic acid, DHA, and EPA were purchased from Cayman
Chemical (Ann Arbor, MI, USA). The MDA-MB-231 cell line was purchased from the
American Type Culture Collection (ATCC) (Manassas, VA, USA).

4.2. Cell Culture

MDA-MB-231 cells were cultured according to manufacturer guidelines. Cells were
cultured in DMEM supplemented with 10% FBS, 2 mM glutamine, 50 U/mL penicillin,
and 50 µg/mL streptomycin. Cells were plated in 10 cm culture dishes and grown to ~70%
confluency. Cells were treated with individual test compounds at concentrations previously
shown to chemosensitize cells to doxorubicin (resveratrol—50 µM, curcumin—40 µM,
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tannic acid—25 µM, genistein—50 µM, DHA—29 µM, EPA—32µM) [10–17]. Concentration
of the vehicle (dimethyl sulfoxide, DMSO) was kept at 0.01% for all treatments. Additional
dishes were treated with vehicle alone and doxorubicin (0.2 µM). All treatments were
performed in triplicate for 24 h.

4.3. Metabolite Extraction

After treatment, metabolites were extracted from cell samples as described previ-
ously [91–93]. Briefly, treatment media were aspirated, and cells were washed with 5 mL
of ice-cold PBS. After aspirating off PBS, 2 mL of ice-cold 80% methanol was added to
culture dishes, and cells were detached using cell scrapers. Cell suspensions were added
to MagNA lyser homogenization tubes with ceramic beads inside and were lysed using
an Omni Bead Ruptor Elite (OMNI International) at 6.00 m/s for two cycles at 45 s each
with 30 s dwell time between each cycle. Additional 80% methanol was added to each
tube to normalize for protein concentration. Samples were centrifuged at 16,000× g at 4 ◦C
for 10 min and supernatants were transferred to autosampler vials for analysis by ultra-
high-pressure liquid chromatography–high-resolution mass spectrometry (UHPLC-HRMS).
Quality control study pools (QCSP) were created by combining 10 µL of each sample into a
single mixture. Method blanks were created by adding 500 µL of 80% methanol to empty
MagNA lyser tubes and were processed in an identical manner as the study samples.

4.4. UHPLC-HRMS Metabolomics Data Acquisition, Preprocessing, and Multivariate Analysis

Metabolomics data were acquired via previously published UHPLC-HRMS methods
using a Vanquish UHPLC system coupled to a Q Exactive™ HF-X Hybrid Quadrupole-
Orbitrap Mass Spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with
an HSS T3 C18 column (2.1 × 100 mm, 1.7 µm, Waters Corporation) held at 50 ◦C [91–98].
A binary pump was used with water + 0.1% formic acid (A) and methanol + 0.1% formic
acid (B) as mobile phases. The mobile phase gradient started from 2% B, increased to
100% B in 16 min, and was then held for 4 min with a flow rate of 400 µL/min. Mass
spectral data were collected using a data-dependent acquisition mode in positive polarity
at 70–1050 m/z. QCSP and blank injections were placed at a rate of 10% throughout the
study samples. An injection volume of 5 µL was used for analysis of each sample. Raw
UHPLC-HRMS data were imported into Progenesis QI (version 2.1, Waters Corporation,
MA, USA) for alignment, peak picking, and deconvolution. Background signals were
removed by filtering out peaks with a higher average abundance in the blank injections as
compared to the QCSP injections. Data were normalized using a QCSP reference sample
using the “normalize to all” function in progenesis [99].

4.5. Multivariate and Univariate Statistical Analysis

The normalized, filtered data were imported into SIMCA 16 (Sartorius Stedim Data
Analytics AB, Umeå, Sweden), scaled using Unit Variance (UV) scaling, and then used
to generate principal component analysis (PCA) and orthogonal partial least squares-
discriminant analysis (OPLS-DA). PCA plots were used to assess data quality and clustering
of QCSP samples, and OPLS-DA plots were used to assess the separation of metabolomes
between vehicle and treated cells as well as to calculate variable importance to projection
(VIP) scores for each peak. Heatmaps were generated using MetaboAnalyst 5.0. Fold
changes and p-values were calculated for each peak for each treatment as compared to the
vehicle control. p-values were calculated using Student’s t-test. p-values were not adjusted
for multiple testing due to the small sample size of this study and the exploratory, rather
than confirmatory, nature of this study [100].

4.6. Compound Identification/Annotation

Peaks were matched to an in-house library of reference standards or public mass
spectral databases from the National Institute of Standards and Technology (NIST) and
METLIN. Peaks were matched to metabolites by retention time (RT, ±0.5 min, in-house
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library only), exact mass (MS, <5 ppm), and fragmentation pattern (MS/MS, similarity
score > 30). An ontology system was given to denote the evidence basis for each metabolite
assignment. OL1 refers to a match to the in-house library for RT, MS, and MS/MS; OL2a
refers to an in-house match to the in-house library for RT and MS; OL2b refers to a match
to the in-house library for MS and MS/MS; PDa refers to a match to public databases for
MS and MS/MS; PDb refers to a public database match for MS and theoretical MS/MS
(HMDB); PDc refers to a public database match for MS and isotopic similarity; PDd refers
to a public database match for MS only.

4.7. Pathway Analysis

For each treatment–vehicle comparison, all untargeted peaks, along with their calcu-
lated p-values and fold changes, were imported into the “Functional Analysis” module in
MetaboAnalyst 5.0 to identify significantly perturbed metabolic pathways. Both mummi-
chog and gene set enrichment analysis (GSEA) algorithms were chosen for analysis. The
default top 10% of peaks by p-value was chosen for the mummichog algorithm. For more
robust pathway analysis, only metabolites that matched to levels of OL1, OL2a, and OL2b
along with their fold changes were imported into GeneGo Metacore (Clarivate Analytics,
London, UK), and pathway analysis was performed for metabolites that had a VIP > 1 in
the pairwise OPLS-DA comparisons between vehicle and each treatment.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24054406/s1.
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