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Abstract: Due to the questionable durability of dental restorations, there is a need to increase the
lifetime of composite restoration. The present study used diethylene glycol monomethacrylate/4,4′-
methylenebis(cyclohexyl isocyanate) (DEGMMA/CHMDI), diethylene glycol monomethacrylate/
isophorone diisocyanate (DEGMMA/IPDI) monomers, and bis(2,6-diisopropylphenyl)carbodiimide
(CHINOX SA-1) as modifiers of a polymer matrix (40 wt% urethane dimethacrylate (UDMA), 40 wt%
bisphenol A ethoxylateddimethacrylate (bis-EMA), and 20 wt% triethyleneglycol dimethacrylate
(TEGDMA)). Flexural strength (FS), diametral tensile strength (DTS), hardness (HV), sorption, and
solubility were determined. To assess hydrolytic stability, the materials were tested before and after
two aging methods (I-7500 cycles, 5 ◦C and 55 ◦C, water and 7 days, 60 ◦C, 0.1 M NaOH; II-5 days,
55 ◦C, water and 7 days, 60 ◦C, 0.1 M NaOH). The aging protocol resulted in no noticeable change
(median values were the same as or higher than the control value) or a decrease in the DTS value
from 4 to 28%, and a decrease in the FS value by 2 to 14%. The hardness values after aging were more
than 60% lower than those of the controls. The used additives did not improve the initial (control)
properties of the composite material. The addition of CHINOX SA-1 improved the hydrolytic stability
of composites based on UDMA/bis-EMA/TEGDMA monomers, which could potentially extend
the service life of the modified material. Extended studies are needed to confirm the possible use of
CHINOX SA-1 as an antihydrolysis agent in dental composites.

Keywords: dental composites; hydrolytic stability; aging; clinical performance; urethane-dimethacrylate
derivatives; anti-hydrolysis agent; CHINOX SA-1

1. Introduction

The literature is divided on the clinical longevity of composite dental restorations.
Some sources report that premolars and molars require replacement after five or six
years [1,2]. On the other hand, some researchers show that at least 60% of reconstruc-
tions made correctly with appropriate materials have a chance of surviving for more than
ten years [3]. Due to the questionable durability of dental restorations, much research has
focused on ways to increase the lifetime of composite restoration, particularly the polymer
matrix, filler, and coupling agent.

The polymer matrix is one of the most important components of the composite. Due
to its chemical structure, it is exposed to chemical reactions that can cause degradation. The
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new monomers synthesized for the needs of dentistry can be classified as (I) methacrylate
monomers, (II) vinyl monomers, (III) click chemistry monomers, and (IV) ring-opening
polymerization monomers [4]. There is no extensive research into how new polymer
matrices are resistant to long-term use in the oral cavity. New monomers are charac-
terized by certain desirable features such as low water sorption values, high values of
the degree of conversion or a homogeneous structure, which may increase resistance to
hydrolytic degradation.

Compared to the matrix, the filler plays a greater role in the development of the
strength of the composite material. One promising trend in filler research is nanotechnology.
Nanofillers are characterized by various shapes and morphology, and using them as a
co-filler may have a positive effect on improving the structure and degree of filling. A
certain combination of micron size fillers (or nanoclusters) with a nano size filler has been
shown to exhibit the best packing, yielding very good mechanical properties and increased
abrasion resistance [5,6]. A high degree of filling and homogeneity of the system increase
the stability of composite materials over time [7].

The last issue related to the longevity of dental composites in the oral environment
is the coupling agent. The filler compatibility in a dental composite can be improved by
chemical surface modification, typically with silanes [8–10]. Hydrolysis can be reduced at
the matrix–filler interface by increasing the hydrophobicity of the silane molecule. This
can be done using molecules with an alkoxy group instead of the C=C bond, e.g., in
octyltrimethoxysilane [11]. Additionally, the so-called cross-linking silanes can be used,
which contain two silicon atoms each with three alkoxy groups, e.g., bis-1,2-(triethoxysilyl)
ethane, or bis-1,6-(trichloroxysilyl) ethane. These compounds are able to form extensive
networks that hinder the diffusion of molecules into the bulk of the material, thus increasing
the hydrolytic stability of the dental composite [12].

Composite materials introduced into the market must be evaluated as biomaterials,
and they are often evaluated using the ISO 4049 standard. However, such evaluation is
limited and it cannot be predicted how the material will behave during long-term use
in the oral environment, which due to its variable temperature and pH, friction, and
various biological factors, will limit the time of the restoration [13]. Research using complex
and aggressive environmental factors is very popular in other industries to determine a
product’s lifetime. Hence, there is a need to evaluate the stability of dental materials in a
complex operating environment when developing new materials [14–17].

The present study used diethylene glycol monomethacrylate/4,4′-methylenebis(cyclohexyl
isocyanate) (DEGMMA/CHMDI) and diethylene glycol monomethacrylate/isophorone di-
isocyanate (DEGMMA/IPDI) monomers developed by Prof. I. Barszczewska-Rybarek [18].
These monomers are characterized by good strength properties and relatively low wa-
ter sorption (Table 1). The structure of the DEGMMA/CHMDI and DEGMMA/IPDI
monomers used in the study is presented in Figure 1A.

Table 1. The properties of the used monomers: molecular weight (MW), flexural strength (FS),
flexural modulus (E), water sorption (WS), degree of conversion (DC).

Monomer MW [g/mol] FS [MPa] E [GPa] WS [µg/mm3] DC [%]

UDMA 470 134 a 1.8 a 42.3 a 72 a

Bis-EMA 540 87 a 1.1 a 21.3 a 76 a

TEGDMA 286 99 a 1.7 a 28.8 a 83 a

DEGMMA/CHMDI 611 139 b 3.4 b 18.5 b 41 b

DEGMMA/IPDI 571 141 b 2.8 b 29.9 b 66 b

a—taken from [19]; b—taken from [18]. UDMA—urethane dimethacrylate, bis-EMA—bisphenol A ethoxylated-
dimethacrylate, TEGDMA—triethyleneglycol dimethacrylate, CHINOX SA-1—bis(2,6-diisopropylphenyl)carbodiimide,
DEGMMA/CHMDI—diethylene glycol monomethacrylate/4,4′-methylenebis(cyclohexyl isocyanate), DEGMMA/
IPDI—diethylene glycol monomethacrylate/isophorone diisocyanate.
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Figure 1. Structures of monomers (A) (DEGMMA/CHMDI—diethylene glycol monomethacrylate/4,4′-
methylenebis(cyclohexyl isocyanate), DEGMMA/IPDI—diethylene glycol monomethacrylate/isophorone
diisocyanate) and (B) CHINOX SA-1—bis(2,6-diisopropylphenyl)carbodiimide, used as modifiers.

In addition, being a pilot study, bis(2,6-diisopropylphenyl)carbodiimide (CHINOX
SA-1) was added to the composite as an anti-hydrolysis agent in order to improve its
hydrolytic stability (Figure 1B). The industry uses such additives that can increase the
stability of polymeric materials [20]. Although its chemical structure may reduce its
composite biocompatibility, it seems reasonable to conduct research with the use of minor
additives not yet used in dental composites.

The authors did not find information in the literature indicating the use of both
urethane derivatives and an antifhydrolysis agent as modifiers of composites based on
UDMA, bis-EMA, and TEGDMA monomers. In addition, studies evaluating the durability
of new experimental dental composites are not a common approach; however, taking
into account the methods of evaluating materials in other industries, such an assessment
should be a standard procedure. The null hypothesis was that the DEGMMA/CHMDI and
DEGMMA/IPDI monomers or the agent CHINOX SA-1 would not affect the properties or
the hydrolytic stability of the composite assessed based on two aging protocols.

2. Results

The data regarding the composite modified with DEGMMA/CHMDI and DEGMMA/IPDI
are presented in Table 2.

The applied aging protocols had some impact on the selected materials compared to
the control group. In all samples, a significant difference was noted for the hardness values
after aging.

The percentage changes of the measured properties of composites modified with
the DEGMMA/CHMDI and DEGMMA/IPDI monomers after the thermo_NaOH aging
protocol and water_NaOH aging protocol are presented on Figures 2 and 3, respectively.

The thermo_NaOH aging protocol (7500 cycles, 5 ◦C and 55 ◦C, water and 7 days,
60 ◦C, 0.1 M NaOH) yielded greater changes than the water_NaOH aging protocol (5 days,
55 ◦C, water and 7 days, 60 ◦C, 0.1 M NaOH).

The obtained results of the composite modified with the CHINOX SA-1 anti-hydrolysis
agent are presented in Table 3.

After application of the aging protocols, significant changes were observed in the hardness.
The percentage changes in the measured properties of the composites modified with

CHINOX SA 1 after the thermo_NaOHaging protocol and water_NaOH aging protocol are
presented on Figures 4 and 5, respectively.

The CHINOX SA-1-modified materials yielded smaller percentage changes compared
to the non-modified control material.

Box-and-whisker plots of the collected results and exact p-values are provided in
Appendix A (Figures A1–A6).

The sorption and solubility of the tested materials are presented in Table 4.
The applied modifications slightly increased the sorption value. The solubility of the

tested materials increased.
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Table 2. The results of the flexural strength (FS), diametral tensile strength (DTS), and hardness
(HV) of the tested materials modified with DEGMMA/CHMDI and DEGMMA/IPDI after selected
aging protocols. The results with the same assigned letter or uppercase and lowercase letters are
significantly different (p ≤ 0.05). Median values are presented with the interquartile range (IQR).

DTS [MPa] (IQR) FS [MPa] (IQR) HV (IQR)
Number of Samples in the

Study Group n = 9 n = 7 n = 9

None, Control 39.14 e 2.29 93.8 a,b,c,d,e 11.6 32 A(a–h) 1
None, thermo_NaOH 36.33 8.64 78.7 12.7 13 2
None, water_NaOH 40.13 a,b,c,d 1.20 82.6 f 15.1 13 1

IPDI(2.5)_CHMDI(2.5), control 36.90 5.60 86.7 g,i 21.6 29 B(a–h) 1
IPDI(2.5)_CHMDI(2.5),

thermo_NaOH 34.36 2.81 64.5 b,i 9.8 10 Ab,Bb,Cb,Ea 1

IPDI(2.5)_CHMDI(2.5),
water_NaOH 32.94 7.29 62.3 a,f,g,h 7.0 10 Aa,Ba,Ca 1

CHMDI(5), control 37.42 f 2.66 72.9 8.4 30 C(a–h) 1

CHMDI(5), thermo_NaOH 33.23 a 2.56 69.2 c 9.3 9 Ac,Bc,Cc,Da,

Eb,Fa 1

CHMDI(5), water_NaOH 37.28 g 1.76 79.2 h 14.9 14 G 1
CHMDI(10), control 35.35 1.79 83.1 17.9 28 D(a-d) 1

CHMDI(10), thermo_NaOH 34.18 b 3.01 64.5 d 23.7 9 Ad,Bd,Cd,Db,

Ec,Fb 1

CHMDI(10), water_NaOH 30.38 c,e,f,g,h 4.77 73.0 13.8 8 Ae,Be,Ce,Dc,

Ed,Fc,G 1

IPDI(5), control 34.17 2.68 80.6 8.1 29 E(a–g) 1
IPDI(5), thermo_NaOH 33.34 4.52 65.1 e 10.9 9 Af,Bf,Cf,Dd,Ee, Fd 1
IPDI(5), water_NaOH 37.18 h 2.89 80.7 22.9 13 1

IPDI(10), control 35.99 1.80 73.7 14.9 27 F(a–d) 2
IPDI(10), thermo_NaOH 33.90 6.80 71.0 12.0 10 Ag,Bg,Cg,Ef 1
IPDI(10), water_NaOH 32.10 d 5.91 70.7 5.8 10 Ah,Bh,Ch,Eg 1
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Figure 2. Percentage change in the flexural strength (FS), diametral tensile strength (DTS), and
hardness (HV) after the thermo_NaOH aging protocol (7500 cycles, 5 ◦C and 55 ◦C, water and 7 days,
60 ◦C, 0.1 M NaOH) compared to control values.
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Figure 3. Percentage change in the flexural strength (FS), diametral tensile strength (DTS), and
hardness (HV) after the water_NaOH aging protocol (5 days, 55 ◦C, water and 7 days, 60 ◦C, 0.1 M
NaOH) compared to the control value. 0—no change; negative value—the selected property was
higher than the control value after application of the protocol.

Table 3. The results of the flexural strength (FS), diametral tensile strength (DTS), and hardness (HV)
for tested materials modified with CHINOX SA-1 after selected aging protocols. The results with the
same assigned letter or uppercase and lowercase letters are significantly different. FS is presented
as the mean with standard deviation (SD), while DTS and HV are presented as the median with the
interquartile range (IQR).

DTS [MPa] IQR FS [MPa] SD HV IQR
Number of Samples in the

Study Group n = 9 n = 7 n = 9

None, Control 39.14 2.29 95.0 A(a–h) 7.6 32 a,b,c,d,e 1
None, thermo_NaOH 36.33 8.64 77.0 Aa,C(a–c) 6.5 12 a 3
None, water_NaOH 40.13 a,b,c 1.20 82.5 Ab,B(a–e) 8.1 12 2

CHINOX(0.5), control 34.13 a 2.33 73.0 Ac,Ba,E 7.2 29 f,g,h,i 1
CHINOX(0.5), thermo_NaOH 35.00 2.98 69.5 Ad,Bb 10.6 10 b,f,j 2
CHINOX(0.5), water_NaOH 31.28 b 7.13 77.7 Ae,D(a–c) 5.4 11 c,g,k 2

CHINOX(1.5), control 33.89 c 1.64 65.0 Af,Bc,Ca,Da 11.5 28 j,k,l,m 2
CHINOX(1.5), thermo_NaOH 35.38 2.37 62.7 Ag,Bd,Cb,Db,E 9.0 11 d,h,l 1
CHINOX(1.5), water_NaOH 34.71 4.81 66.0 Ah,Be,Cc,Dc 8.5 10 e,i,m 2
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Figure 4. Percentage change in the flexural strength (FS), diametral tensile strength (DTS), and
hardness (HV) after the thermo_NaOH aging protocol (7500 cycles, 5 ◦C and 55 ◦C, water and 7 days,
60 ◦C, 0.1 M NaOH) compared to controls. 0—no change; negative value—the value was higher than
the control values after application of the protocol.
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Figure 5. Percentage change in the flexural strength (FS), diametral tensile strength (DTS), and
hardness (HV) after the water_NaOH aging protocol (5 days, 55 ◦C, water and 7 days, 60 ◦C, 0.1 M
NaOH) compared to controls. 0—no change; negative value—the value was higher than the control
values after application of the protocol.

Table 4. The results of sorption and solubility. The results are shown as the mean with standard
deviation (SD).

Control CHMDI(2.5)_IPDI(2.5) CHMDI(5) CHMDI(10) IPDI(5) IPDI(10) CHINOX(0.5) CHINOX(1.5)

Sorption n = 5 25.42 (0.53) 28.96 (0.40) 26.55 (1.07) 32.40 (1.56) 26.81 (0.60) 32.64 (2.41) 32.97 (1.53) 32.91 (0.73)
Solubility n = 5 0.70 (0.20) 0.68 (0.15) 1.05 (0.28) 1.46 (0.42) 1.31 (0.08) 1.48 (0.48) 1.26 (0.71) 2.00 (0.29)

3. Discussion

There is a pressing need to identify a composite with increased resistance to hy-
drolytic degradation and hence a longer lifetime [21,22]. It should be borne in mind that
the oral environment has a significant impact on composite durability. As such, it is
crucial that materials are evaluated under accelerated aging conditions with increased
environmental factors.

Our findings indicate that the selected modification did indeed influence the prop-
erties of the control (base) material, thus rejecting the null hypothesis. However, the use
of the DEGMMA/CHMDI, DEGMMA/IPDI monomers and the addition of CHINOX
SA-1 did not improve the initial (control) strength properties. The initial values of the
tested properties were lower than those of the base material, but not all differences were
statistically significant.

The properties of a composite material are influenced by its composition. Considering
that the materials have the same filler, the observed differences in the properties will depend
on the composition of the polymer matrix [23,24]. The tested materials, which consisted
of a basic polymer matrix (40 wt% of UDMA, 40 wt% of Bis-EMA, 20 wt% of TEGDMA),
was modified with two monomers (DEGMMA/CHMDI, DEGMMA/IPD) in different
weight percentages. As the used monomers had two oxyethylene units (DEGMMA), the
molecule showed limited flexibility. Additionally, the monomers contained cycloaliphatic
diisocyanates: CHMDI or IPDI, which differed in their structure symmetry. The monomer
with IPDI is more elastic than the one with CHMDI, which may result in higher DC
and modulus [18]. In our research, a small addition (max 10 wt%) of the cycloaliphatic
urethane-dimethacrylate derivatives did not improve the strength properties. However, the
TEGDMA, Bis-EMA, or UDMA homopolymers demonstrated lower flexural strength and
flexural modulus than the resins used as modification (Table 1). Even so, it should be taken
into account that the properties of the composite result from complex relationships and
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interactions between individual components that cannot be predicted under the current
state of science. It is most likely that the addition of further substances could hinder
the movement of macromolecules during polymerization due to their chemical structure
(Figure 1A) [18]. Composite materials modified with CHMDI or IPDI monomers could
achieve lower DC values resulting in lower FS and DTS values.

In addition, the modification with the anti-hydrolysis agent did not improve the
control values. CHINOX SA-1 includes two phenyl groups connected to each other by a
short carbodiimide group (Figure 1B). This stiff structure, similar to bis-GMA, may prevent
the free movement of macromolecules during polymerization, resulting in a lower degree
of conversion by the composite [25,26]. The lower DC can explain the decreased FS, DTS,
and HV values and the increased sorption of modified composites with CHINOX SA-1.

Although dental materials placed on the market must meet certain requirements, such
as biocompatibility, the relevant ISO and ADA standards include no tests for assessing the
stability of materials in the oral cavity. Water sorption can be used to assess the behavior of
materials in a water environment. The ISO 4049 standard specifies that the sorption of the
composite material cannot be higher than 40 µg/mm−3 at a solubility of 7.5 µg/mm−3 [27].
For the tested modified monomers, the sorption was relatively low (Table 1). Regarding
the DEGMMA/CHMDI monomer, the low sorption values are due to the presence of
symmetrical cycloaliphatic moieties, which causes a reduction in the space between the
polymer chains. In contrast, the asymmetric core in IPDI can create more free space in the
polymer network for water to enter, resulting in higher sorption. In the study, composites
modified with selected urethane derivatives showed similar sorption values as the control
materials. Minor amounts of selected monomers were added (max. 10 wt%); therefore, the
effect on sorption was small. The sorption values increased noticeably in comparison with
the control when CHINOX SA-1 added, but these values were still at an acceptable level.
There was also no difference between the addition of 0.5 and 1.5%. The solubility of the
tested materials compared to the control material increased. The observed changes may
also be related to the structure of the used modifiers, which could have resulted in a lower
degree of the conversion values. Materials with lower DC showed higher sorption and
solubility values [28].

Of the two tested aging protocols, the thermocycler approach (7500 cycles, 5 ◦C and
55 ◦C, water and 7 days, 60 ◦C, 0.1 M NaOH) reduced the value of the tested properties more
effectively (Figures 2–5) than water (5 days, 55 ◦ C, water and 7 days, 60 ◦C, 0.1 M NaOH).
It has been shown that thermocycles affect the degradation of the polymer matrix as well as
the stability of the matrix–filler interface [29,30]. Boussès et al. reported slow degradation of
at the filler–matrix interface for the first 5000 thermocycles, while significant changes were
noted after 10,000 thermocycles [31]. From a chemical point of view, composite samples
take up water during aging, resulting in hydrolysis of the polymer matrix and interface.
Firstly, the matrix protects the interface from degradation until the polymer structure is
saturated with water. Once water reaches the interphase, the siloxane bonds are exposed to
hydrolysis. Unfortunately, this type of bond, which results from filler silanization, is not
resistant to hydrolytic degradation [10,32]. Thermocycling causes successive contractions
and expansions of the material due to temperature variations. In addition, due to different
thermal expansion coefficients, local overstress is generated at the interface. This may
cause the occurrence of micro-cracks and interface damage, leading to a greater decrease
in strength [31]. In the present study, the effect of the thermocycler was enhanced by
NaOH; this causes accelerated degradation of dental polymer materials due to a high
amount of hydroxyl ions, which are responsible for the hydrolysis of the bonds present in
the polymer matrix, the coupling agent or the interphase [33–35]. It is worth mentioning
that the phenomenon of degradation of dental materials does not occur only under the
influence of substances and physical conditions (aqueous environment, temperature, pH,
chewing forces, friction) occurring in the oral cavity. Aging of materials also develops under
the influence of biological factors—salivary enzymes and bacterial activity. It has been
shown that these factors also cause the hydrolysis of chemical bonds found in composite
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materials [36]. However, enzyme-based analyses are costly and more demanding than the
proposed aging protocols.

Research has shown that the top layer is the most susceptible to aging and degradation.
For most of the studied groups, the hardness values after aging were more than 60% lower
than those of the controls. The aging medium reduces hardness by affecting the matrix and
weakens the siloxane bonds in the silane coupling agent [37]. The alkalinity provides a large
amount of hydroxyl ions, which are responsible for hydrolysis [38]. The microstructure of
the dental composite changes after chemical or thermal aging. Plucking out, fractures of
filler particles, and degradation–delamination of the matrix were observed [14,34,39,40].
The aging protocol resulted in no noticeable change (median values were the same as or
higher than those of the control value) or a decrease in the DTS value from 4 to 28% and
a decrease in the FS value by 2 to 14% (Figures 2–5). Considering the lower percentage
changes in strength, it appears that the degradation effect is more superficial and does not
propagate into the bulk of the material. However it should be underlined that in the oral
environment, the top aged layer will be successively lost due to the continuous friction
applied by chewing forces, allowing the restoration to be continually eroded [41].

No relationship was found between the percentage composition of the polymer matrix
and the hydrolytic resistance, identified by changes in selected properties. Smaller changes
in DTS and FS were observed in the CHMDI(5) and the IPDI(5) and (10) groups; these values
were very close to those of the control. No significant improvement in stability against hy-
drolytic degradation was noted for most composites, which was probably more dependent
on the network structure of the materials and the complex interaction between the used
monomers. The UDMA monomer and its cycloaliphatic derivatives (DEGMMA/IPDI and
DEGMMA/CHMDI) have urethane bonds, which are prone to form strong hydrogen bonds.
These bonds acts as physical crosslinks in the resulting polymer network. The enrichment
of the studied system with DEGMMA/IPDI and DEGMMA/CHMDI may cause increase
in the physical crosslinked density. Hence, monomers of the UDMA/bis-EMA/TEGDMA
matrix could form less homogeneous structures, which would influence the changes in the
tested properties after aging. Some inhomogeneity in materials may create a spot where a
stress accumulates, resulting in microcracks and treatment failure. It should be remembered
that any imperfection in the material can influence its durability.

The addition of CHINOX SA-1 improved the hydrolytic stability of the tested materials.
The percentage changes in the DTS and FS values following aging were limited, even at low
CHINOX SA-1 concentrations (0.5%). Unfortunately, no data regarding this concentration
in dental materials could be found in previous studies; however, research conducted,
for example, with poly (lactic acid) has shown that carbodiimide compounds increase
the resistance to hydrolytic degradation due to the water reacting with anti-hydrolysis
compounds, producing urea derivatives [42,43]. It is most likely that the reaction of
the CHINOX SA-1 anti-hydrolysis agent and water molecule proceeds according to the
equation presented in Figure 6.
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As small additions have been found to be effective in increasing hydrolytic stability, it
is likely that the cellular response will not be impaired. However, future studies are still
needed to determine the biocompatibility of such composites.
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4. Materials and Methods

The basic material used in this work was a polymer matrix consisting of 40 wt%
UDMA, 40 wt%, bis-EMA, and 20 wt% TEGDMA. A resin matrix was prepared according
to the weight percentage of the selected monomers. UDMA, TEGDMA, and bis-EMA
were delivered by Esstech Inc. (Essington, PA, USA). Such a resin matrix was additionally
modified with a specific amount of selected urethane monomers or anti-hydrolysis agent
(Table 5). Each mixture contained camphorquinone (<1 wt%) and N, N-dimethylaminoethyl
methacrylate. Monomers were synthesized, and their structure was confirmed as described
previously [18,44]. CHINOX SA-1 was delivered by TCI Chemicals (Fukaya, Japan).

Table 5. Matrix composition of the tested composites, which contained 45 wt% of silanized silica.

Material Signature Base Material Modification

Control

UDMA 40 wt%
bis-EMA 40 wt%

TEGDMA 20 wt%

None

CHMDI(2.5)_IPDI(2.5) DEGMMA/CHMDI 2.5 wt%
and DEGMMA/IPDI 2.5 wt%

CHMDI(5) DEGMMA/CHMDI 5 wt%
CHMDI(10) DEGMMA/CHMDI 10 wt%

IPDI(5) DEGMMA/IPDI 5 wt%
IPDI(10) DEGMMA/IPDI 10 wt%

CHINOX(0.5) CHINOX SA-1 0.5 wt%
CHINOX(1.5) CHINOX SA-1 1.5 wt%

UDMA—urethane dimethacrylate, bis-EMA—bisphenol A ethoxylateddimethacrylate, TEGDMA—triethyleneglycol
dimethacrylate, CHINOX SA-1—bis(2,6-diisopropylphenyl)carbodiimide, DEGMMA/CHMDI—diethylene
glycol monomethacrylate/4,4′-methylenebis(cyclohexyl isocyanate), DEGMMA/IPDI—diethylene glycol
monomethacrylate/isophorone diisocyanate.

After modification, 45 wt% filler was added to each of the prepared polymer ma-
trices using a mortar. The filler was silica (Arsil, Zakłady Chemiczne “RUDNIKI” S.A.,
Rudniki, Poland) silanized with γ-Methacryloxypropyltrimethoxy silane (Unisil Sp. Z o. O.,
Tarnów, Poland).

Two different ageing protocols were used (Table 6) to evaluate the hydrolytic stability
of the tested materials. The flexural strength, diametral tensile strength, and hardness
were determined with and without the influence of the aging protocols. The protocols
were selected on the basis of previous research [14]. Briefly, hydrolytic degradation was
accelerated by NaOH solution. Thermocycles and increased temperature affect sorption and
dissolution. The combination of thermal and chemical factors better mimic the prolonged
influence of the oral environment on restoration. Accelerated aging with more aggressive
or greater amounts of factors can be used to evaluate the lifetime performance of dental
composite in vivo [14,45]. It can be assumed that the proposed aging protocols will simulate
several years in the oral environment; however, such a prediction is very complex and
difficult to make.

Table 6. Description of selected aging protocols used to evaluate the tested materials.

Ageing Protocol Signature Description

control 24 h, 37 ◦C, distilled water
thermo_NaOH 7500 cycles, 5 ◦C and 55 ◦C, water and 7 days, 60 ◦C, 0.1 M NaOH
water_NaOH 5 days, 55 ◦C, water and 7 days, 60 ◦C, 0.1 M NaOH

The NaOH solution was prepared in a volumetric flask. The NaOH (Avantor Perfor-
mance Materials, Gliwice, Poland) was measured on an analytical balance (Radwag XA
82/220/X, Puszczykowo, Poland). The samples were placed in plastic dishes in a DZ-2BCII
Vacuum Drying Oven (ChemLand, Stargard Szczecinski, Poland) for a period (Table 6) or
were subjected to 7500 thermocycles (water, 20 s dwell time, 5 and 55 ◦C) using a THE
1200 thermocycler (SD Mechatronic, Feldkirchen-Westerham, Germany).
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Flexural strength (FS) was determined based on ISO 4049:2019. Seven measurements
were made for each study group, using rectangular samples (25 mm long, 2 mm wide,
2 mm thick). Nine cylindrical samples (diameter 6 mm and thickness 3 mm) for each study
group were used to establish the diametral tensile strength (DTS). The FS and DTS tests
were performed using a Z020 universal testing machine (Zwick–Roell, Ulm, Germany). The
traverse speed was 2 mm/min in the DTS test and 1 mm/min in FS. Nine measurements
of Vickers hardness (1000 g applied load, 10 s penetration time) were carried out for each
study group. The Zwick ZHV2–m hardness tester (Zwick–Roell, Ulm, Germany) was
used in this study. In addition, water sorption and the solubility of the tested materials
were evaluated, based on ISO standard (4049:2019 Dentistry—Polymer-based restorative
materials). Five cylindrical samples (15 mm in diameter, 1 mm in width) were prepared for
each composite.

Water sorption (Wsp) and solubility (Wsl) were calculated for each specimen using the
following equations:

Wsp =
m2 −m1

V
·100% (1)

Wsp =
m1 −m3

V
·100% (2)

where m1 is the conditioned mass of the specimen, m2 is the mass of the specimen af-
ter immersion in water, m3 is the reconditioned mass of the specimen, and V is the
specimen volume.

The Shapiro–Wilk test was used to assess the normality of the distribution of the data.
Based on the results, either the Kruskal–Wallis test with multiple comparisons of mean
ranks or one-way ANOVA was applied, followed by Tukey’s post hoc test. The accepted
level of significance was α = 0.05. Data with a normal distribution and homogeneity of
variance are presented as mean values with standard deviation (SD), while those without
are presented as median values with the interquartile range (IQR). All analyses were
performed using Statistica version 13 software (StatSoft, Kraków, Poland).

5. Conclusions

These studies examined one composite, albeit as five variants with DEGMMA/CHMDI,
DEGMMA/IPDI monomers, and two modifications with the CHINOX SA-1 anti-hydrolysis
agent. Further research is needed with a wider group of materials and more testing methods.
Nevertheless, our findings indicate the following:

• The additives (DEGMMA/CHMDI, DEGMMA/IPDI, CHINOX SA-1) did not improve
the initial (control) properties of the composite material.

• No relationship was found between the percentage composition of the polymer matrix
and hydrolytic stability, tested by changes in selected properties after aging.

• The addition of CHINOX SA-1 improved the hydrolytic stability of the composites
based on the UDMA/bis-EMA/TEGDMA monomers.

• In all materials, the hardness dropped dramatically after the aging protocols. This
may prove that the degradation of materials takes place mainly in the top layer.

The standardization of the aging protocol for dental materials is a separate project
(funded by National Science Centre, Poland grant number: UMO-2020/37/N/ST5/00191, 2021).
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Abbreviations

List of abbreviations:
bis-EMA bisphenol A ethoxylateddimethacrylate,
CHINOX SA-1 bis(2,6-diisopropylphenyl)carbodiimide,
CHINOX(0.5) addition of 0.5 wt% CHINOX SA-1,
CHINOX(1.5) addition of 1.5 wt% CHINOX SA-1,
CHMDI(10) addition of 10 wt% DEGMMA/CHMDI,
CHMDI(2.5)_IPDI(2.5) addition of 2.5 wt% DEGMMA/CHMDI and 2.5 wt% DEGMMA/IPDI,
CHMDI(5) addition of 5 wt% DEGMMA/CHMDI,
Control 24 h, 37 ◦C, distilled water,

DEGMMA/CHMDI
diethylene glycol monomethacrylate/4,4′-methylenebis
(cyclohexyl isocyanate),

DEGMMA/IPDI diethylene glycol monomethacrylate/isophorone diisocyanate
DTS diametral tensile strength [MPa],
FS flexural strength [MPa],
HV hardness [-],
E flexural modulus [GPa],
WS water sorption [µg/mm3],
DC degree of conversion [%],
IPDI(10) addition of 10 wt% DEGMMA/IPDI,
IPDI(5) addition of 5 wt% DEGMMA/IPDI,
MW molecular weight [g/mol],
TEGDMA triethyleneglycol dimethacrylate,

thermo_NaOH
aging for 7500 cycles, 5 ◦C and 55 ◦C, water and 7 days, 60 ◦C,
0.1 M NaOH,

UDMA urethane dimethacrylate,
water_NaOH aging for 5 days, 55 ◦C, water and 7 days, 60 ◦C, 0.1 M NaOH.
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Figure A1. Box-and-whisker plot of the diametral tensile strength (DTS) of the tested mate-
rials. Statistically significant differences were detected between the following: (a,b,c,d) None,
water_NaOH vs. (a) CHMDI(5), thermo_NaOH (p = 0.0261), (b) CHMDI(10), thermo_NaOH
(p = 0.0272), (c) CHMDI(10), water_NaOH (p = 0.00002), (d) IPDI(10), water_NaOH (p = 0.0087);
(e,f,g,h) CHMDI(10), water_NaOH vs. (e) None, control (p = 0.0005), (f) CHMDI(5), control
(p = 0.0082), (g) CHMDI(5), water_NaOH (p = 0.0421), (h) IPDI(5), water_NaOH (p = 0.0095).
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Figure A2. Box-and-whisker plot of the flexural strength (FS) of the tested materials. Statistically 
significant differences were detected between the following: (a,b,c,d,e) None, control vs. (a) 
CHMDI(2.5)_IPDI(2.5), water_NaOH (p = 0.00004), (b) CHMDI(2.5)_IPDI(2.5), thermo_NaOH (p = 
0.0005), (c) CHMDI(5), thermo_NaOH (p = 0.0151), (d) CHMDI(10), thermo_NaOH (p = 0.0103), (e) 
IPDI(5), thermo_NaOH (p = 0.0034); (a,f,g,h) CHMDI(2.5)_IPDI(2.5), water_NaOH vs. (f) None, wa-
ter_NaOH (p = 0.0165), (g) CHMDI(2.5)_IPDI(2.5), control (p = 0.0051), (h) CHMDI(5), water_NaOH 
(p = 0.0254); (i) CHMDI(2.5)_IPDI(2.5), control vs. (i) CHMDI(2.5)_IPDI(2.5), thermo_NaOH (p = 
0.0459). 

Figure A2. Box-and-whisker plot of the flexural strength (FS) of the tested materials. Statistically significant
differences were detected between the following: (a,b,c,d,e) None, control vs. (a) CHMDI(2.5)_IPDI(2.5),
water_NaOH (p = 0.00004), (b) CHMDI(2.5)_IPDI(2.5), thermo_NaOH (p = 0.0005), (c) CHMDI(5),
thermo_NaOH (p = 0.0151), (d) CHMDI(10), thermo_NaOH (p = 0.0103), (e) IPDI(5), thermo_NaOH
(p = 0.0034); (a,f,g,h) CHMDI(2.5)_IPDI(2.5), water_NaOH vs. (f) None, water_NaOH (p = 0.0165),
(g) CHMDI(2.5)_IPDI(2.5), control (p = 0.0051), (h) CHMDI(5), water_NaOH (p = 0.0254);
(i) CHMDI(2.5)_IPDI(2.5), control vs. (i) CHMDI(2.5)_IPDI(2.5), thermo_NaOH (p = 0.0459).
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Figure A3. Box-and-whisker plot of the Vickers hardness (HV) of the tested materials. Statistically 
significant differences were detected between the following: (A(a–h)) None, control vs. (Aa) 
CHMDI(2.5)_IPDI(2.5), water_NaOH (p = 0.0005), (Ab) CHMDI(2.5)_IPDI(2.5), thermo_NaOH (p = 
0.0004), (Ac) CHMDI(5), thermo_NaOH (p = 0.0000), (Ad) CHMDI(10), thermo_NaOH (p = 0.0000), 
(Ae) CHMDI(10), water_NaOH (p = 0.0000), (Af) IPDI(5), thermo_NaOH(0.0000), (Ag) IPDI(10), 
thermo_NaOH (p = 0.0001), (Ah) IPDI(10), water_NaOH (p = 0.0001); (B(a–h)) 
CHMDI(2.5)_IPDI(2.5), control vs. (Ba) CHMDI(2.5)_IPDI(2.5), water_NaOH (p = 0.0298), (Bb) 
CHMDI(2.5)_IPDI(2.5), thermo_NaOH (p = 0.0212), (Bc) CHMDI(5), thermo_NaOH (p = 0.0001), (Bd) 
CHMDI(10), thermo_NaOH (p = 0.0001), (Be) CHMDI(10), water_NaOH (p = 0.0000), (Bf) IPDI(5), 
thermo_NaOH(0.0007), (Bg) IPDI(10), thermo_NaOH (p = 0.005366), (Bh) IPDI(10), water_NaOH (p 
= 0.0049); (C(a-h)) CHMDI(5), control vs. (Ca) CHMDI(2.5)_IPDI(2.5), water_NaOH (p = 0.0080), (Cb) 
CHMDI(2.5)_IPDI(2.5), thermo_NaOH (p = 0.0055), (Cc) CHMDI(5), thermo_NaOH (p = 0.0000), 
(Cd) CHMDI(10), thermo_NaOH (p = 0.0000), (Ce) CHMDI(10), water_NaOH (p = 0.0000), (Cf) 
IPDI(5), thermo_NaOH(0.0002), (Cg) IPDI(10), thermo_NaOH (p = 0.0013), (Ch) IPDI(10), wa-
ter_NaOH (p = 0.0011); (D(a–d)) CHMDI(10), control vs. (Da) CHMDI(5), thermo_NaOH (p = 0.0022); 
(Db) CHMDI(10), thermo_NaOH (p = 0.0016), (Dc) CHMDI(10), water_NaOH (p = 0.0001), (Dd) 
IPDI(5), thermo_NaOH (p = 0.0106); (E(a–g)) IPDI(5), control vs. (Ea) CHMDI(2.5)_IPDI(2.5), 
thermo_NaOH (p = 0.0401), (Eb) CHMDI(5), thermo_NaOH (p = 0.0003), (Ec) CHMDI(10), 
thermo_NaOH (p = 0.0002), (Ed) CHMDI(10), water_NaOH (p = 0.0000), (Ee) IPDI(5), 
thermo_NaOH(0.0016), (Ef) IPDI(10), thermo_NaOH (p = 0.0107), (Eg) IPDI(10), water_NaOH (p = 
0.0097); (F(a–d)) IPDI(10), control vs. (Fa) CHMDI(5), thermo_NaOH (p = 0.0022); (Fb) CHMDI(10), 
thermo_NaOH (p = 0.0016), (Fc) CHMDI(10), water_NaOH (p = 0.0001), (Fd) IPDI(5), thermo_NaOH 
(p = 0.0106); (G) CHMDI(5), water_NaOH vs. (G) CHMDI(10), water_NaOH (p = 0.0289). 

Figure A3. Box-and-whisker plot of the Vickers hardness (HV) of the tested materials. Statisti-
cally significant differences were detected between the following: (A(a–h)) None, control vs. (Aa)
CHMDI(2.5)_IPDI(2.5), water_NaOH (p = 0.0005), (Ab) CHMDI(2.5)_IPDI(2.5), thermo_NaOH
(p = 0.0004), (Ac) CHMDI(5), thermo_NaOH (p = 0.0000), (Ad) CHMDI(10), thermo_NaOH
(p = 0.0000), (Ae) CHMDI(10), water_NaOH (p = 0.0000), (Af) IPDI(5), thermo_NaOH(0.0000),
(Ag) IPDI(10), thermo_NaOH (p = 0.0001), (Ah) IPDI(10), water_NaOH (p = 0.0001); (B(a–h))
CHMDI(2.5)_IPDI(2.5), control vs. (Ba) CHMDI(2.5)_IPDI(2.5), water_NaOH (p = 0.0298), (Bb)
CHMDI(2.5)_IPDI(2.5), thermo_NaOH (p = 0.0212), (Bc) CHMDI(5), thermo_NaOH (p = 0.0001), (Bd)
CHMDI(10), thermo_NaOH (p = 0.0001), (Be) CHMDI(10), water_NaOH (p = 0.0000), (Bf) IPDI(5),
thermo_NaOH(0.0007), (Bg) IPDI(10), thermo_NaOH (p = 0.005366), (Bh) IPDI(10), water_NaOH
(p = 0.0049); (C(a-h)) CHMDI(5), control vs. (Ca) CHMDI(2.5)_IPDI(2.5), water_NaOH (p = 0.0080),
(Cb) CHMDI(2.5)_IPDI(2.5), thermo_NaOH (p = 0.0055), (Cc) CHMDI(5), thermo_NaOH (p = 0.0000),
(Cd) CHMDI(10), thermo_NaOH (p = 0.0000), (Ce) CHMDI(10), water_NaOH (p = 0.0000), (Cf) IPDI(5),
thermo_NaOH(0.0002), (Cg) IPDI(10), thermo_NaOH (p = 0.0013), (Ch) IPDI(10), water_NaOH
(p = 0.0011); (D(a–d)) CHMDI(10), control vs. (Da) CHMDI(5), thermo_NaOH (p = 0.0022); (Db)
CHMDI(10), thermo_NaOH (p = 0.0016), (Dc) CHMDI(10), water_NaOH (p = 0.0001), (Dd) IPDI(5),
thermo_NaOH (p = 0.0106); (E(a–g)) IPDI(5), control vs. (Ea) CHMDI(2.5)_IPDI(2.5), thermo_NaOH
(p = 0.0401), (Eb) CHMDI(5), thermo_NaOH (p = 0.0003), (Ec) CHMDI(10), thermo_NaOH (p = 0.0002),
(Ed) CHMDI(10), water_NaOH (p = 0.0000), (Ee) IPDI(5), thermo_NaOH(0.0016), (Ef) IPDI(10),
thermo_NaOH (p = 0.0107), (Eg) IPDI(10), water_NaOH (p = 0.0097); (F(a–d)) IPDI(10), control
vs. (Fa) CHMDI(5), thermo_NaOH (p = 0.0022); (Fb) CHMDI(10), thermo_NaOH (p = 0.0016), (Fc)
CHMDI(10), water_NaOH (p = 0.0001), (Fd) IPDI(5), thermo_NaOH (p = 0.0106); (G) CHMDI(5),
water_NaOH vs. (G) CHMDI(10), water_NaOH (p = 0.0289).
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Figure A4. Box-and-whisker plot of the diametral tensile strength (DTS) of the tested materials. Sta-
tistically significant differences were detected between the following: (a,b,c) None, water_NaOH vs. 
(a) CHINOX(0.5), control (p = 0.0440); (b) CHINOX(0.5), water_NaOH (p = 0.0170), (c) CHINOX(1.5), 
control (p = 0.0340). 
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Figure A5. Box-and-whisker plot of the flexural strength (FS) of the tested materials. Statistically 
significant differences were detected between the following: A(a–h)) None, control vs. (Aa) None, 
thermo_NaOH (p = 0.0002), (Ab) None, water_NaOH (p = 0.0075),(Ac) CHINOX(0.5), control (p = 
0.0000), (Ad) CHINOX(0.5), thermo_NaOH (p = 0.0000), (Ae) CHINOX(0.5), water_NaOH (p = 
0.0003), (Af) CHINOX(1.5), control (p = 0.0000), (Ag) CHINOX(1.5), thermo_NaOH (p = 0.0000), (Ah) 
CHINOX(1.5), water_NaOH (p = 0.0000); B(a–e) None, water_NaOH vs. (Ba) CHINOX(0.5), control 

Figure A4. Box-and-whisker plot of the diametral tensile strength (DTS) of the tested materials.
Statistically significant differences were detected between the following: (a,b,c) None, water_NaOH vs.
(a) CHINOX(0.5), control (p = 0.0440); (b) CHINOX(0.5), water_NaOH (p = 0.0170), (c) CHINOX(1.5),
control (p = 0.0340).
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Figure A4. Box-and-whisker plot of the diametral tensile strength (DTS) of the tested materials. Sta-
tistically significant differences were detected between the following: (a,b,c) None, water_NaOH vs. 
(a) CHINOX(0.5), control (p = 0.0440); (b) CHINOX(0.5), water_NaOH (p = 0.0170), (c) CHINOX(1.5), 
control (p = 0.0340). 
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Figure A5. Box-and-whisker plot of the flexural strength (FS) of the tested materials. Statistically 
significant differences were detected between the following: A(a–h)) None, control vs. (Aa) None, 
thermo_NaOH (p = 0.0002), (Ab) None, water_NaOH (p = 0.0075),(Ac) CHINOX(0.5), control (p = 
0.0000), (Ad) CHINOX(0.5), thermo_NaOH (p = 0.0000), (Ae) CHINOX(0.5), water_NaOH (p = 
0.0003), (Af) CHINOX(1.5), control (p = 0.0000), (Ag) CHINOX(1.5), thermo_NaOH (p = 0.0000), (Ah) 
CHINOX(1.5), water_NaOH (p = 0.0000); B(a–e) None, water_NaOH vs. (Ba) CHINOX(0.5), control 

Figure A5. Box-and-whisker plot of the flexural strength (FS) of the tested materials. Statisti-
cally significant differences were detected between the following: A(a–h)) None, control vs. (Aa)
None, thermo_NaOH (p = 0.0002), (Ab) None, water_NaOH (p = 0.0075),(Ac) CHINOX(0.5), con-
trol (p = 0.0000), (Ad) CHINOX(0.5), thermo_NaOH (p = 0.0000), (Ae) CHINOX(0.5), water_NaOH
(p = 0.0003), (Af) CHINOX(1.5), control (p = 0.0000), (Ag) CHINOX(1.5), thermo_NaOH (p = 0.0000),
(Ah) CHINOX(1.5), water_NaOH (p = 0.0000); B(a–e) None, water_NaOH vs. (Ba) CHINOX(0.5),
control (p = 0.0389), (Bb) CHINOX(0.5), thermo_NaOH (p = 0.0057), (Bc) CHINOX(1.5), control
(p = 0.0003), (Bd) CHINOX(1.5), thermo_NaOH (p = 0.0001), (Be) CHINOX(1.5), water_NaOH
(p = 0.0006); C(a–c) None, thermo_NaOHvs. (Ca) CHINOX(1.5), control (p = 0.0104), (Cb) CHI-
NOX(1.5), thermo_NaOH (p = 0.0026); (Cc) CHINOX(1.5), water_NaOH (p = 0.0187); D(a–c)
CHINOX(0.5), water_NaOH vs. (Da) CHINOX(1.5), control (p = 0.0070), (Cb) CHINOX(1.5),
thermo_NaOH (p = 0.0017); (Cc) CHINOX(1.5), water_NaOH (p = 0.0128); (E) CHINOX(0.5), control
vs. (E) CHINOX(1.5), thermo_NaOH (p = 0.0272).
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Figure A6. Box-and-whisker plot of the Vickers hardness (HV) of the tested materials. Statistically 
significant differences were detected between the following: (a,b,c,d,e) None, Control vs.(a) None, 
thermo_NaOH ( p = 0.0237), (b) CHINOX(0.5), thermo_NaOH (p = 0.0000), (c) CHINOX(0.5), wa-
ter_NaOH (p = 0.0001), (d) CHINOX(1.5), thermo_NaOH (p = 0.0000), (e) CHINOX(1.5), wa-
ter_NaOH (p = 0.0000); (f,g,h,i) CHINOX(0.5), control vs. (f) CHINOX(0.5), thermo_NaOH(p = 
0.0007), (g) CHINOX(0.5), water_NaOH (p = 0.0143), (h) CHINOX(1.5), thermo_NaOH(p = 0.0059), 
(i) CHINOX(1.5), water_NaOH (p = 0.0006); (j,k,l,m) CHINOX(1.5), control vs. (j) CHINOX(0.5), 
thermo_NaOH (p = 0.0018), (k) CHINOX(0.5), water_NaOH (p = 0.0335), (l) CHINOX(1.5), 
thermo_NaOH (p = 0.0146), (m) CHINOX(1.5), water_NaOH (p = 0.0013). 
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