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Abstract: Diabetes mellitus (DM) is an important cause of chronic wounds and non-traumatic
amputation. The prevalence and number of cases of diabetic mellitus are increasing worldwide.
Keratinocytes, the outermost layer of the epidermis, play an important role in wound healing. A high
glucose environment may disrupt the physiologic functions of keratinocytes, resulting in prolonged
inflammation, impaired proliferation, and the migration of keratinocytes and impaired angiogenesis.
This review provides an overview of keratinocyte dysfunctions in a high glucose environment.
Effective and safe therapeutic approaches for promoting diabetic wound healing can be developed
if molecular mechanisms responsible for keratinocyte dysfunction in high glucose environments
are elucidated.
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1. Introduction

Diabetes mellitus (DM), an important global health issue, is a metabolic disease char-
acterized by impairment in regulating glucose homeostasis. The total number of diabetic
patients is expected to increase from 171 million in 2000 to 366 million in 2030 [1]. A
hyperglycemic state ultimately leads to the development of macrovascular and/or mi-
crovascular complications involving the eyes, kidneys, nerves, heart, and blood vessels [2].
Poor diabetic wound healing is one of the major complications of DM patients, leading to
ulceration, infection, and ultimately amputation [3]. The incidence of foot ulcers in DM
patients has been estimated to be 19 to 34% [4]. They remain a primary cause of morbidity
and mortality in patients with diabetes [5]. Due to the increasing prevalence of diabetes
worldwide, uncovering the underlying molecular mechanisms that are responsible for the
poor wound healing of DM patients is a vital public health issue that needs to be addressed.
Wound healing is a complicated multicellular process that includes coagulation, inflamma-
tion, proliferation, and remodeling phases. Platelets, inflammatory cells, fibroblasts, and
endothelial cells have been known to play an important role in the wound healing process.
In recent years, the key role of keratinocyte in wound healing has been investigated [6,7].
Keratinocytes can cover wound surfaces to regenerate an epithelial barrier with the outside
environment. Keratinocytes secrete multiple cytokines to stimulate re-epithelialization,
angiogenesis, and the production of a connective tissue matrix. Furthermore, keratinocytes
are at the frontlines of innate immunity. After injury and the invasion of microorganisms,
keratinocytes release various cytokines, chemokines, and antimicrobial peptides (AMPs)
which activate immune cells and eliminate pathogens directly [8]. However, diabetic
wounds have a microenvironment with hyperglycemia, advanced glycation end products
(AGEs), mitochondrial dysfunction, reactive oxygen species (ROS), and inflammatory cy-
tokines that may contribute to the impairment of keratinocyte functions. Physiological
dysfunctions of keratinocytes in high glucose environments include prolonged inflamma-
tion, impaired proliferation, and migration ability, resulting in delayed wound healing.
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Herein, it is important to investigate the physiological functions and molecular mechanisms
of keratinocytes in diabetic wound healing. The current standard treatment for diabetic
foot ulcers includes surgical debridement, anti-infection treatments, wound dressing, pres-
sure off-loading, and vascular surgery [9]. However, long-term surgical intervention and
repeat dressings will cause severe pain and economic burden to the patients. Therapeutic
approaches targeting the epidermal keratinocyte may bring new hope for optimal diabetic
wound care.

2. Normal Wound Healing

Wound healing is a complex multicellular process involving platelets, neutrophils, and
macrophages, fibroblasts, endothelial cells, and keratinocytes. It follows four stages—the
coagulation, inflammation, proliferation, and remodeling phases [10].

2.1. Coagulation

Coagulation is the first step of wound healing leading to clot formation and activation
of the intrinsic and extrinsic coagulation cascade. Immediately after injury, vasoconstriction
contributes to the reduction of bleeding and is followed by the accumulation and activation
of platelets. Activated platelets release growth factors in alpha granules including platelet-
derived growth factors (PDGF), insulin-like growth factors (IGF), epidermal growth factors
(EGF), transforming growth factor-β (TGF-β), and platelet factor 4 [11–13] to recruit other
platelets and inflammatory cells, and promote the proliferation and migration of fibroblasts
and endothelial cells to the injury site [14]. The intrinsic and extrinsic coagulation cascades
are initiated and result in the transformation of prothrombin into thrombin. Thrombin then
catalyzes the conversion of fibrinogen to fibrin and activates Factor XIII. Activated Factor
XIII functions to crosslink fibrin chains, leading to the clot formation that acts as a matrix
for cell migration.

2.2. Inflammation

Inflammation begins within 24 to 48 h after injury, and the characteristic of this phase
is migration of inflammatory cells to the injury site. Neutrophils, the first arrived inflamma-
tory cells, adhere to the vascular endothelium and further migrate into the extravascular
space. Neutrophils have multiple functions, including antimicrobial ability and the pro-
duction of proinflammatory cytokines, enzymes and oxygen-derived free radicals [15].
Macrophages typically appear within 72 h after injury. Macrophages are the most impor-
tant regulatory cells in the inflammatory phase for the phagocytosis of necrotic material
and bacteria, releasing proteolytic enzymes and growth factors for extracellular matrix
definition (ECM) production, including platelet-derived growth factor, fibroblast growth
factors (FGFs), and vascular endothelial growth factors (VEGFs), as well as TGF-β and
TGF-α. Macrophages can be divided into M1 (classically activated) and M2 (alternatively
activated) macrophages [16,17]. M1 macrophages, activated by interferon-γ (IFN-γ) and
TNF-α, are represented as a pro-inflammatory phenotype, showing increased phagocytic
and antigen presenting capacities, pro-inflammatory cytokine and oxidative metabolite
production to promote host defense, and the elimination of necrotic tissues [18,19]. On the
other hand, M2 macrophages demonstrate a phenotype in the resolution of inflammation
by releasing anti-inflammatory cytokines such as IL-10 [20]. M2 macrophages are derived
from resting macrophages after exposure to Th2 cytokines, such as IL-4 or IL-13 [21]. They
arrive later in the wound healing process for granulation tissue formation. Notably, this
M1/M2 terminology is determined based on in vitro experiments [22,23], and has been
challenged by in vivo studies [24–26]. Actually, macrophages can coexpress both M1 and
M2 markers during different stages of wound healing [27,28]. Using a small number of
markers to categorize M1 or M2 macrophages is not accurate. Pang et al. used single
cell RNA-sequencing and downstream analysis to reveal the different phenotypes and
transitions of macrophages in the course of wound healing in mice [29].
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2.3. Proliferation

The proliferative phase is characterized by fibroblast migration, ECM deposition,
granulation tissue formation, neovascularization, and re-epithelialization. Fibroblasts are
attracted by PDGF and TGF-β and produce components of ECM, including fibronectin,
hyaluronan, collagen and proteoglycans. The formation of ECM is crucial for tissue repair
and serves as a scaffold for cell growth and migration [30]. The main structural element of
the ECM is collagen. The synthesis of collagen is stimulated by PDGF, basic FGF (bFGF),
TGF-β, IL-1, and TNF. Integrins are transmembrane proteins binding the ECM to cytoskele-
tal structures and are important in cell–cell and cell–matrix adhesion [31]. M2 macrophages
in this stage produce anti-inflammatory cytokines, VEGFs and TGF-β for induction of cell
proliferation and the granulation of tissue formation [9]. Neovascularization, also a char-
acteristic of this stage, is stimulated by different angiogenic factors, including VEGF and
fibroblast growth factor-2 (FGF-2) secreted from keratinocytes, fibroblasts and inflammatory
cells [32]. α3β1 integrin in keratinocytes induces the secretion of proangiogenic factors that
promotes endothelial-cell migration leading to angiogenesis [33]. Re-epithelialization is a
critical event in the proliferative phase and is regulated by the migration and proliferation of
keratinocytes from the wound edges or skin adnexal structures [34,35]. Re-epithelialization
is induced by growth factors such as the endothelial growth factor (EGF), the keratinocyte
growth factor (KGF), and the FGF-2 secreted from keratinocytes and other cells [9]. During
keratinocyte migration, matrix metalloproteinases (MMPs) are important for the detach-
ment of keratinocytes from the hemidesmosome and desmosome. MMP-1 can bind the
α2β1 integrin upon release from keratinocytes migrating on type I collagen [11]. MMP-9
plays a crucial role in breaking down Type IV and Type VII collagen, which are major
components of the anchoring fibrils and basement membrane [36]. After breaking down
these complicated structures that anchor the keratinocytes to the basement membrane and
nearby keratinocytes, keratinocyte migration begins and is important for the resurfacing of
the wound. In the normal tissue, MMP-9 is expressed at a low level, and is upregulated
in wounds. As the wound heals, MMP-9 is downregulated [37]. However, the persistent
expression of MMP-9 in chronic wounds contributes to impaired wound healing. The
balance of the bimodal expression of MMP-9 is important to the epithelialization.

2.4. Remodeling

Remodeling, the final phase of wound healing, occurs around 2–3 weeks after injury
and may continue for months. During this phase, the granulation tissue is gradually re-
placed by mature scar tissue [38]. The remodeling of collagen including the synthesizing of
new collagen and collagen degradation is mediated by fibroblasts and MMPs. Collagen
type III is gradually replaced by collagen type I, which has greater tensile strength [39].
Fibroblasts interact with ECM, leading to wound contraction, which is influenced by multi-
ple cytokines, including TGF-β, PDGF, and bFGF. The phenotypic switch from fibroblasts
to myofibroblasts promotes wound contraction, leading to potential scar formation, which
is induced by keratinocytes through TGF-β signals [40–42].

3. Functional Impairments of Keratinocytes in Chronic Diabetic Wounds

Diabetes is a metabolic disease characterized by hyperglycemia, and is a major cause
of chronic wounds that may lead to amputation in affected patients. Diabetic wounds
have a microenvironment with elevated levels of glucose, advanced glycation end products
(AGEs), mitochondrial dysfunction, reactive oxygen species (ROS), and inflammatory
cytokines that may contribute to the impairment of keratinocyte migration and proliferation,
chronic inflammation, chronic infection, and impaired angiogenesis (Figure 1).
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Figure 1. Scheme revealing different factors associated with dysfunctional keratinocytes in diabetic 
wound healing. Advanced glycation end products (AGEs), reactive oxygen species (ROS), and in-
flammatory cytokines may contribute to the impairment of keratinocyte migration and prolifera-
tion, chronic inflammation, chronic infection, and impaired angiogenesis in high glucose environ-
ments, leading to impaired diabetic wound healing due to prolonged inflammation and the im-
paired proliferation phase of wound healing. 

3.1. Increased Oxidative Stress in Keratinocytes 
Emerging evidence has shown that the hyperglycemic environment can increase ox-

idative stress, which indicates an imbalance between free radical formation and adequate 
antioxidant capacity [43,44]. The increased ROS level may contribute to the impairment 
of the ability for wound healing through altering the mitochondrial membrane potential, 
mass, and morphology in mononuclear cells of diabetic patients [45,46] and increasing 
TNF-α in mouse models [47]. ROS can also decrease the diversity of the skin microbiota 
that promotes biofilm formation and further prolongs wound healing [48]. Our previous 
study showed that elevated ROS levels in a high-glucose environment contribute to the 
increase in IL-8 production from keratinocytes, and neutrophil infiltration results in im-
paired wound healing in a diabetic rat model [49]. ROS can upregulate MMP-9 through 
the activation of nuclear factor kappa beta (NF-κB) in human keratinocytes, leading to the 
impairment of keratinocyte migration [50,51]. In addition, the mitochondria, a main 
source of ROS production, can generate huge amounts of ROS in a high glucose environ-
ment, followed by the hampering of the antioxidant ability of the cell and resulting in 
mitochondria damage [52,53]. Excessive ROS then causes the loss of mitochondrial mem-
brane potential and further mtDNA fragmentation. The fragmented mtDNA translocate 
into to cytosol and involve cGAS-STING-IRF3 activation via the ERK1/2-PI3K/Akt-tu-
berin-mTOR pathways [54,55]. Activated interferon regulatory factor 3 (IRF3) then pro-
motes the inflammatory reaction and triggers keratinocyte apoptosis [56]. 

  

Figure 1. Scheme revealing different factors associated with dysfunctional keratinocytes in diabetic
wound healing. Advanced glycation end products (AGEs), reactive oxygen species (ROS), and
inflammatory cytokines may contribute to the impairment of keratinocyte migration and proliferation,
chronic inflammation, chronic infection, and impaired angiogenesis in high glucose environments,
leading to impaired diabetic wound healing due to prolonged inflammation and the impaired
proliferation phase of wound healing.

3.1. Increased Oxidative Stress in Keratinocytes

Emerging evidence has shown that the hyperglycemic environment can increase ox-
idative stress, which indicates an imbalance between free radical formation and adequate
antioxidant capacity [43,44]. The increased ROS level may contribute to the impairment
of the ability for wound healing through altering the mitochondrial membrane potential,
mass, and morphology in mononuclear cells of diabetic patients [45,46] and increasing
TNF-α in mouse models [47]. ROS can also decrease the diversity of the skin microbiota
that promotes biofilm formation and further prolongs wound healing [48]. Our previous
study showed that elevated ROS levels in a high-glucose environment contribute to the
increase in IL-8 production from keratinocytes, and neutrophil infiltration results in im-
paired wound healing in a diabetic rat model [49]. ROS can upregulate MMP-9 through
the activation of nuclear factor kappa beta (NF-κB) in human keratinocytes, leading to the
impairment of keratinocyte migration [50,51]. In addition, the mitochondria, a main source
of ROS production, can generate huge amounts of ROS in a high glucose environment,
followed by the hampering of the antioxidant ability of the cell and resulting in mito-
chondria damage [52,53]. Excessive ROS then causes the loss of mitochondrial membrane
potential and further mtDNA fragmentation. The fragmented mtDNA translocate into
to cytosol and involve cGAS-STING-IRF3 activation via the ERK1/2-PI3K/Akt-tuberin-
mTOR pathways [54,55]. Activated interferon regulatory factor 3 (IRF3) then promotes the
inflammatory reaction and triggers keratinocyte apoptosis [56].
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3.2. Abnormal Expression of Matrix Metalloproteinases (MMPs)

MMPs are endopeptidases involved in degrading extracellular matrix elements such
as collagen, fibronectin and laminin, and have been revealed to play critical roles in wound
healing due to influencing keratinocyte migration. The activities of MMPs are mediated by
the tissue inhibitors of MMPs (TIMPs), and the abnormal expression of MMPs and TIMPs
have been linked to delayed wound healing in diabetes. Our previous work revealed
that a high glucose environment suppressed keratinocyte migration, reduced mRNA
levels and the activity of MMP-2 and MMP-9, but increased the expression of TIMP-1
in cultured keratinocyte [57]. We also demonstrated that keratinocyte cultured in a high
glucose environment decreased the expression of MMP-1 and α2β1 integrin, which are
crucial for the migration of keratinocytes on type I collagen. These events contribute to
delayed diabetic wound healing [58]. Additionally, keratinocyte derived MMPs may be
mediated by cytokines produced by circulating mononuclear cells. Our previous study
showed that the decreased expression of IL-22 from peripheral blood mononuclear cells
may suppress the production of MMP-3 in cultured keratinocytes and the wounds of
diabetic rats, leading to impaired keratinocyte migration in high glucose environments [59].
Chang et al. revealed that infected diabetic wounds increase active MMP-9, increases
inflammation, and decreases angiogenesis leading to prolonged wound healing. (R)-ND-
336, a potent and selective inhibitor of MMP-9, can promote the healing of infected diabetic
wounds in a mouse model [60].

3.3. Impaired Proliferation and Migration of Keratinocyte

Keratinocyte migration is important in the re-epithelialization stage of wound heal-
ing. Our previous study revealed that a high glucose environment downregulated the
expression of phosphorylated p125FAK (pp125FAK) in cultured human keratinocytes, which
is a crucial factor in the organization of cytoskeletal protein and cell migration [57]. The
hyperglycemic environment promotes the polyol pathway, resulting in increasing intra-
cellular sorbitol and further stimulating the formation of AGEs and pro-inflammatory
cytokines. Keratinocytes cultured with AGE modified human serum albumin showed
impairment of keratinocyte adhesion and migration as well as the decreasing expression
of integrin alpha 3 [61]. In addition, increased O-linked N-acetylglucosamine (O-GlcNAc)
glycosylation in a high glucose environment is responsible for reduced Gal-7 expression in
cultured human keratinocytes, which plays an important role in keratinocyte migration [62].
p38/mitogen-activated protein kinase (MAPK) is also an important kinase promoting ker-
atinocyte migration and proliferation through the reorganization of the cytoskeleton [63–66].
Autophagy, a downstream target of the p38/MAPK pathway for the degradation of mis-
folded proteins [67–69], has been revealed as a regulator in early differentiation [70,71], cell
death [72,73], and the cell migration of keratinocytes [74,75]. Li et al. demonstrated that the
p38/MAPK pathway in human immortalized keratinocyte HaCaT cells is downregulated
and followed by the inactivation of autophagy in a high glucose environment, leading
to the impairment of keratinocyte migration [76]. The migration of keratinocytes from
the perilesional area is essential for re-epithelialization. Our previous study revealed that
an increased percentage of M1 macrophages and a high level of TNF-α were detected in
the perilesional area of diabetic rats. We further found that a high glucose environment
induces M1 macrophage infiltration followed by the increased secretion of TNF-α, which
upregulates the TIMP-1 expression in keratinocytes, resulting in impaired keratinocyte
migration. The recovery rate of a wound can be significantly improved after the admin-
istration of a TNF-α inhibitor to the perilesional area of diabetic rats [77]. Leucine-rich
repeat LGI family member 3 (LGI3) has various functions involved in neuronal exocytosis,
β-amyloid endocytosis, and it induces neuronal differentiation. A recent study found that
the increasing expression of LGI3 can restore cell migration in a high glucose environment
and reduce LGI3 expression by siRNA into HaCaT cells, inhibiting wound closure [78].
KIM et al. revealed that LGI3 in HaCaT cells can regulate the migration of keratinocytes
via the Akt pathway, which also plays an important role in keratinocyte migration and
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differentiation, influencing wound healing ability [79] through the phosphorylation of
forkhead box protein O1 (FOXO1) [80] and β-catenin [81]. Recent studies revealed that
increased FOXO1 in keratinocytes can diminish the expression of TGF-β1 but stimulate
the expression of MMP-9, CCL20, IL-36γ, and SERPINB2, leading to the impairment of
re-epithelialization, connective tissue healing, and angiogenesis in diabetic conditions [7].
In addition to keratinocyte migration, the proliferation of keratinocytes and the dynamic ex-
pression of gap junctions between keratinocytes are also a critical step in re-epithelialization.
Previous studies have shown that decreased basal epidermal proliferation and decreased in-
duction of keratinocyte mitogens including KGF are noted in the wound healing of diabetic
mice [82,83]. The mechanism of this phenomenon is currently unclear, but may be related
to the abnormal expression of apoptotic proteins [84], impaired K16 expression [58] or the
increased expression of suppressors of cytokine signaling (SOCS)-3 in keratinocytes [85] in
a high glucose environment. Increased Connexin 43 (Cx43) expression, a gap junction pro-
tein, has been demonstrated in keratinocytes from the wound edge in diabetic rats [86,87].
Further knockout Cx43 in mice can accelerate re-epithelialization in wound healing [88].
Acetylcholine (Ach) is not only a cholinergic neurotransmitter, but also has non-neuronal
functions in the activation of cholinergic signaling in nonneuronal cells. Interestingly,
keratinocytes are one of the nonneuronal cells which is responsive to Ach with an unknown
role and mechanism in re-epithelialization [89,90]. A recent study demonstrated that Ach
could upregulate the expression of TGFβRII in cultured human keratinocytes by activat-
ing the Src-ERK pathway to promote TGFβ1-SMAD2-mediated epithelial mesenchymal
transition (EMT). However, keratinocytes in a high glucose environment were resistant to
Ach due to the activation of the p38 kinase pathway, which inhibits the Src-ERK cascade
leading to reduced TGFβRII, the impairment of the TGFβ1-mediated signaling pathway,
and delayed EMT in diabetic mice [91]. Therefore, a high glucose environment may inhibit
keratinocytes’ response to Ach and further impair diabetic wound healing. Figure 2 sum-
marizes the factors that affect the proliferation and migration ability of the keratinocytes in
a high glucose environment.
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inhibition of keratinocyte migration. Increased O-linked N-acetylglucosamine (O-GlcNAc) glyco-
sylation in a high glucose environment is responsible for reduced Gal-7 expression, which plays
an important role in keratinocyte migration. Increased forkhead box protein O1 (FOXO1) in ker-
atinocytes can stimulate the expression of MMP-9, leading to the impairment of keratinocyte mi-
gration. Leucine-rich repeat LGI family member 3 (LGI3) can promote the degradation of FOXO1
through phosphorylation of FOXO1 via the Akt pathway. A high glucose environment stimulates the
formation of advanced glycation end products (AGEs) and keratinocyte resistance to acetylcholine
(Ach), leading to the impairment of keratinocyte migration. A high glucose environment induces
M1 macrophage infiltration, followed by the increased secretion of TNF-α, which upregulates tissue
inhibitor matrix metalloproteinase 1 (TIMP-1) expression in keratinocytes, resulting in impaired
keratinocyte migration.

3.4. Chronic Inflammation

In wound healing, the acute inflammatory phase may last 2 weeks. The prolongation of
inflammation may impair wound healing. Previous studies revealed that more neutrophils
and macrophages were noted in diabetic wounds [9,15,49,92]. Increased pro-inflammatory
cytokines such as IL-1, IL-6, IL-8 and TNF-α were also found [9,93]. Neutrophils play
a crucial role in the inflammatory phase, and it can generate ROS and serine proteases
for preventing wound infections. However, prolonged neutrophil infiltration may im-
pair wound healing. Our previous study demonstrated that reducing pro-inflammatory
cytokines and decreasing neutrophil infiltration promoted diabetic wound healing in a
diabetic rat model [49]. Recent studies revealed the important role of keratinocytes, which
secrete various chemokines and pro-inflammatory cytokines in the chronic inflammation
of diabetic wounds. We have revealed that increased IL-8 expression from keratinocytes
in a high-glucose environment is known to recruit and activate neutrophils that produce
ROS, contributing to impaired diabetic wound healing [49,93]. The activation of TNF-α
and toll-like receptor 4 (TLR4) signaling pathways in monocytes and endothelial cells due
to increased oxidative stress in the high-glucose environment have been found in diabetic
patients and animal models [94]. Cheng et al. revealed the association between TNF-α
and TLR4 in keratinocytes stimulated by the high-glucose environment in animal mod-
els [95]. Wang et al. revealed that Wnt family member 7A (wnt7a) in human umbilical vein
endothelial cells speeds up wound healing through the promotion of angiogenesis and the
amelioration of local inflammation. The decreased expression of wnt7a is noted in wounds
of diabetic rats [96]. Exogenous Wnt7a can reverse the high glucose-induced TNF-α pro-
duction, TNF-α related TLR4 signaling, and high glucose-induced excessive autophagy in
HaCaT cells [97]. Other keratinocyte-derived cytokines involved in different mechanisms
were also found. The increased expression of macrophage inflammatory protein-2 (MIP-2)
and macrophage chemoattractant protein-1 (MCP1) from keratinocytes at the wound edges
were noted in the diabetic wounds of mice [92]. Kampfer et al. demonstrated that decreased
cyclooxygenase-1 (COX-1) expression and increased COX-2 expression in wound margin
keratinocytes of diabetic mice may influence inflammatory responses due to the abnormal
production of prostaglandin [98].

3.5. Chronic Infection

A diabetic wound is characterized by an increased risk of infection, and an in-
fected wound may further delay wound healing because of a prolonged inflammatory
phase [99,100]. Increased ROS due to chronic inflammation may reduce the diversity of
microbiota and promote biofilm formation [48]. The strain-level variation of Staphylo-
coccus aureus, one of the dominant bacteria in human skin, is correlated with delayed
re-epithelialization in diabetic wounds [101,102]. Bacteria may further provoke inflam-
mation that deteriorates the re-epithelialization process and directly influences epidermal
keratinocytes, such as by increasing apoptosis and diminishing keratinocyte migration
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and proliferation [103]. As a defense mechanism, keratinocytes play a key role in cuta-
neous innate immunity through the secretion of antimicrobial peptides including human
β-defensins (HBD), cathelicidins and Psoriasin for defending bacteria, fungi, and viruses.
Our previous study revealed that keratinocytes cultured in a high-glucose environment
show decreasing mRNA and protein levels of HBD-2 and HBD-3. The reduction of HBD-2
is mediated by AGEs and the signal transducer and activator of the transcription (STAT)-1
pathway in human umbilical vein endothelial cells [104] and reduced HBD-3 is regulated
by AGEs and the inhibition of the p38/MAPK pathway in diabetic rats [105]. Apart from
its antimicrobial activity, HBD-2 has been shown to induce keratinocyte proliferation, mi-
gration, and angiogenesis through stimulating the proliferation and migration of human
umbilical vein endothelial cells [106]. Cathelicidin, the other keratinocyte derived antimi-
crobial peptide, also showed decreased expression of mRNA and protein levels in human
keratinocytes cultured in a high glucose environment, leading to decreased antimicrobial
protection [107,108].

3.6. Impaired Angiogenesis

Angiogenesis is an important step in achieving proper wound healing by the for-
mation of blood vessels. Several angiogenic factors including VEGF, FGF, angiogenin
(RNase 5), and angiopoietins (Ang1 and Ang2) were generated by endothelial cells and
keratinocytes [109,110]. The defective angiogenesis in diabetes has been linked to the
impaired recruitment and migration of endothelial cells and endothelial progenitor cells
(EPCs) [111]. Galiano et al. showed that the administration of VEGF in diabetic wounds
can enhance angiogenesis due to the increased mobilization of EPCs from the bone marrow,
which have the ability to differentiate into endothelial cells [112]. Marin-Luevano et al.
revealed that synthetic innate defense regulator-1018 (IDR-1018) can promote VEGF-165
(pro-angiogenic molecules) in a cultured human endothelial cell line and HaCaT cells
and reduce hypoxia-induced transcription factor-1 (HIF-1) (anti-angiogenic molecules) to
stimulate endothelial cell migration [113]. We previously showed that the increased expres-
sion of the angiogenesis inhibitor Thrombospondin-1 (TSP-1), is mediated by increased
DNA hypomethylation at the promoter region of TSP-1 and increased oxidative stress in
cultured human keratinocytes exposed to a high glucose environment. The administration
of antioxidants can normalize TSP-1 expression and improve wound healing in diabetic
rats [114]. These studies indicate the important role of oxidative stress-derived TSP-1
in defective angiogenesis in diabetic wounds. In addition, the impaired expression of
VEGF in keratinocytes can also induce abnormal angiogenesis, leading to chronic diabetic
wounds [115,116].

4. Novel Therapeutic Strategies for the Treatment of Diabetic Wounds

Multiple mechanisms are involved in impaired diabetic wound healing, as described
above. Targeting these pathways and correcting the physiologic functions of keratinocytes
may provide novel therapeutic methods to improve wound healing in diabetic patients.
For example, our previous study revealed that the administration of a TNF-α inhibitor
can significantly improve wound healing in diabetic rats, since increased TNF-α in the
wound environment may impair keratinocyte migration [77]. The p38/MAPK pathway
is known to be involved in influencing keratinocyte migration through different mecha-
nisms. The increased expression of FOXO1 in a high glucose environment may impair
re-epithelialization and angiogenesis, which are important steps in wound healing. Target-
ing the p38/MAPK pathway or inhibiting FOXO1 expression may be a potential adjunctive
treatment for promoting diabetic wound healing. In addition, Kulkarni et al. found that
topical esmolol hydrochloride (Galnobax) can improve wound healing in diabetes through
pleiotropic mechanisms [117]. It can inhibit aldose reductase and the formation of sorbitol
and AGEs which interfere with keratinocyte migration, induce autophagy, and modulate
macrophage polarization. Esmolol hydrochloride can also induce NO production, promot-
ing keratinocyte proliferation and angiogenesis, which is significantly reduced in diabetic
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wounds [118]. Moreover, it can reduce caspase-3 and upregulate B-cell lymphoma 2 (Bcl-2)
to prevent necrosis of the wound bed in animal models [119]. Therefore, esmolol hydrochlo-
ride may be a new option for the treatment of diabetic ulcers. MicroRNAs (miRNAs) are
endogenous noncoding small RNAs participating in cell proliferation, apoptosis, and cell
differentiation through the regulation of gene and protein expression [120]. Etich et al.
showed that the changing expression of miR-204 was noted during wound healing [121].
Further studies demonstrated that the overexpression of miR-204-3p in cultured human
keratinocytes can increase the expression of TGF-β and Bcl-2 in a high glucose environment,
promoting the proliferation and migration of keratinocytes via suppressing levels of Bax
and cleaved caspase-3. These results show that the overexpression of miR-204-3p can
improve the functional impairment of keratinocytes in a high glucose environment, and it
may be a novel therapeutic target for the treatment of diabetic wounds in the future [122].
In recent years, nanotechnology-based diabetic foot ulcer therapies have been developed.
Nanomaterials can not only deliver drugs or cytokines to the cells, but they can also remodel
the microenvironment of diabetic wounds [123]. Yoon et al. used a chemokine-loaded
hydrogel to promote angiogenesis, collagen deposition, and re-epithelialization [124]. Lipid
nanoparticles implanted with recombinant human EGF can promote re-epithelialization
through stimulating fibroblast and keratinocyte proliferation in animal models [125]. In ad-
dition to mechanism-based therapies, various clinical trials focused on cell-based products
and cell-based therapies including allogeneic keratinocyte sheets [126], autologous fibrob-
lasts and keratinocytes implants/grafts [127,128] have been developed in the treatment of
diabetic wound healing. Cell therapy is a highly promising method for diabetic wound
treatment, and it can correct the factors that lead to prolonged wound healing through
various mechanisms [129]. Autologous and allogeneic keratinocytes transplanted to the
wound can improve wound healing via increasing the expression of growth factors [130]
and ECM proteins [131]. Although allogeneic keratinocytes cannot permanently remain
in the wound, they can stimulate the migration and proliferation of native keratinocytes
from the wound edges in chronic leg ulcers [132]. In addition, the topical application
of keratinocyte sheets has shown its effectiveness in the treatment of diabetic wounds
in patients [126,133]. Furthermore, mesenchymal stem cells (MSCs) have been shown to
enhance angiogenesis in pre-clinical and clinical studies [134,135]. Paracrine signaling and
the ability of stem cells to differentiate into specialized cells including fibroblasts, vascular
endothelial cells, and keratinocytes contribute to promote angiogenesis, neovascularization,
and re-epithelialization [136]. Intravenously injected MSCs can migrate to the acute wound
area and differentiate into keratinocytes, endothelial cells, monocytes, and pericytes in
mice [137]. Although several studies have shown that cell therapy is a potent tool for the
treatment of chronic diabetic wounds, adverse effects have also been reported [138]. Major
adverse events include pulmonary and renal thromboembolism, heart failure, and liver
fibrosis [139,140]. Therefore, it is important to evaluate the effectiveness of treatment and
patients’ safety under cell therapy.

5. Conclusions

Keratinocytes play an important role in wound healing. A high glucose environment
can change the gene and protein expression in keratinocytes, leading to prolonged inflam-
mation, impaired proliferation, and the migration of keratinocytes and impaired angiogen-
esis during wound healing (Table 1). Elucidating the precise molecular dysfunction in ker-
atinocytes will likely result in the development of effective and safe therapeutic approaches
for optimal wound healing in patients with diabetes, as topical treatments are likely to
succeed if treatment targets dysfunctional keratinocytes in the high glucose environment.
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Table 1. Various mechanisms related to dysfunctional keratinocytes in diabetic wound healing.

Dysfunction Mechanism Ref.

Increased oxidative stress and ROS Impaired antioxidant ability results in mitochondria damage [52]

Abnormal expression of MMPs

Decreased mRNA level and activity of MMP-2 and MMP-9 and
increased TIMP-1 [57]

Decreased expression of MMP-1 and α2β1 integrin [58]
Decreased expression of IL-22 may suppress production of

MMP-3 in keratinocytes [59]

Impaired proliferation and migration
of KCs

Decreased expression of phosphorylated p125FAK [57]
Increased AGEs [61]

Increased O-GlcNAc glycosylation and decreased expression
of Gal-7 [62]

Downregulated the p38/MAPK pathway followed by
inactivation of autophagy [76]

Increased percentage of M1 macrophage infiltration followed by
increased secretion of TNF-α, which upregulates

TIMP1 expression
[77]

Increased expression of FOXO1 stimulates the expression
of MMP-9 [7]

Impaired expression of K16 [58]
Increased expression of suppressor of cytokine

signaling-3 (SOCS-3) [85]

Increased expression of Connexin 43 [86]
Increased keratinocyte resistance to acetylcholine (Ach) [91]

Chronic inflammation

Increased neutrophil and macrophage infiltration [49]
Increased pro-inflammatory cytokines (IL-1, IL-6, IL-8

and TNF-α) [93]

Activation of the TNF-α and TLR4 signaling pathway [95]
Decreased expression of Wnt family member 7A (wnt7a) [97]

Increased expression of MIP-2 and MCP1 [92]
Decreased COX-1 expression and increased COX-2 expression [98]

Chronic infection

Reduced diversity of microbiota and promoted
biofilm formation [48]

Bacteria directly influenced keratinocytes (increasing apoptosis,
diminishing keratinocyte migration and proliferation) [103]

Decreasing mRNA and protein levels of human β-defensins-2
(HBD-2) and HBD-3 [104]

Decreased expression of mRNA and protein of cathelicidin [107]

Impaired
angiogenesis

Impaired the recruitment and migration of endothelial cells
and EPCs [112]

Increased the expression of Thrombospondin-1 (TSP-1) [114]
Decreased the expression of vascular endothelial growth

factor (VEGF) [116]
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