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Abstract: Throughout the animal kingdom, our two chemical senses, olfaction and gustation, are
defined by two primary factors: genomic architecture of the organisms and their living environment.
During the past three years of the global COVID-19 pandemic, these two sensory modalities have
drawn much attention at the basic science and clinical levels because of the strong association of
olfactory and gustatory dysfunction with viral infection. Loss of our sense of smell alone, or together
with a loss of taste, has emerged as a reliable indicator of COVID-19 infection. Previously, similar
dysfunctions have been detected in a large cohort of patients with chronic conditions. The research
focus remains on understanding the persistence of olfactory and gustatory disturbances in the post-
infection phase, especially in cases with long-term effect of infection (long COVID). Also, both
sensory modalities show consistent age-related decline in studies aimed to understand the pathology
of neurodegenerative conditions. Some studies using classical model organisms show an impact
on neural structure and behavior in offspring as an outcome of parental olfactory experience. The
methylation status of specific odorant receptors, activated in parents, is passed on to the offspring.
Furthermore, experimental evidence indicates an inverse correlation of gustatory and olfactory
abilities with obesity. Such diverse lines of evidence emerging from basic and clinical research
studies indicate a complex interplay of genetic factors, evolutionary forces, and epigenetic alterations.
Environmental factors that regulate gustation and olfaction could induce epigenetic modulation.
However, in turn, such modulation leads to variable effects depending on genetic makeup and
physiological status. Therefore, a layered regulatory hierarchy remains active and is passed on to
multiple generations. In the present review, we attempt to understand the experimental evidence
that indicates variable regulatory mechanisms through multilayered and cross-reacting pathways.
Our analytical approach will add to enhancement of prevailing therapeutic interventions and bring
to the forefront the significance of chemosensory modalities for the evaluation and maintenance of
long-term health.

Keywords: olfaction; gustation; epigenetic and multigenerational inheritance; genome architecture

1. Introduction

All organisms that survive and thrive react to environmental stimuli that impart struc-
tural and functional adaptations. Analysis of pathways leading to such experience-induced
alterations is a fundamental research topic for clinicians and basic science researchers alike.
In an attempt to understand and treat diseases, the field of epigenetics is increasingly
receiving attention. Epigenetic changes might contribute to the etiology of diseases such as
chemosensory dysfunction. The primary needs of breathing and eating expose organisms
to factors which may affect gene regulation and function. At times, such altered regulation
becomes a causative force driving multigenerational impact and helps organisms to survive
and thrive. In the process, genome function is modulated through epigenetic reprogram-
ming [1]. Epigenetics is a field of study that addresses the relationship between genes,
their functional expression and alteration via environmental exposure, and development
of pathological features. Epigenetics involves heritable gene expression changes without
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changes in the DNA sequence itself and affects how the functional trajectory of the same
genes is altered as a modulated epigenome alters their expression in cells. Epigenetic
modifications are the result of one or more factors, such as age, lifestyle, family history, and
disease status. Three major epigenetic modifications have been described: DNA methy-
lation, histone modifications, and non-coding RNA (ncRNA)-associated gene silencing.
Epigenetic modifications can occur during an organism’s lifetime and can also be multi-
generational, being transmitted to the next generation [2]. As illustrated in Figure 1, and
as we have described previously [3], epigenetic regulation involves genome accessibility
to the transcriptional machinery; an apparatus that is vulnerable to spatial and temporal
deregulation as an outcome of interactions with pathogens and pollutants from the living
environment [3]. As shown in Figure 1, methylation at the DNA level, along with histone
deacetylation, represses transcription of condensed chromatin because transcription factors
cannot access DNA binding sites occupied by methyl groups. Both molecular processes,
programmed DNA demethylation and histone acetylation, are amenable to diverse factors
that participate in deregulatory pathways. Altered gene expression is detectable at the
cellular and organ level resulting from the impact of specific environmental factor/s. This
links environmental exposure to diverse diseases through specific alteration of physiolog-
ical pathways [4]. In this review, we provide background information on gustatory and
olfactory dysfunction, followed by a discussion of COVID-19 in relation to our chemical
senses. We will then address SARS-CoV-2 infection pathways and immune response at the
cellular level. The next section is dedicated to experience, environment, and epigenetics,
while another section follows to review olfaction and inheritance.

Figure 1. The diagram shows how gene expression is subject to epigenetic regulation. Epigenetic
alterations can occur as DNA methylation and/or histone modifications and modify the accessibility
of genes to the transcriptional machinery. This takes place either by inducing a relaxed/open or
condensed/closed chromatin state. In addition, non-coding RNAs such as miRNAs can regulate
the cell phenotype by repressing or enhancing the expression of gene transcripts. These non-coding
RNAs can themselves be epigenetically regulated. Reprinted from [3].

2. Olfactory and Gustatory Dysfunction

While the genetic component primarily contributes to the quality of both olfactory
and gustatory abilities in an organism, these chemosensory modalities have plasticity that
changes with age, nutritional status, pathological conditions, traumatic experience, diet,
as well as additional yet undefined factors [5–10]. For instance, one study, involving a
community-dwelling aging population in the U.S., identified a relatively higher proportion,
approximately 14.8%, of gustatory dysfunction compared to olfactory dysfunction which
was approximately 2.7% [11]. The interaction between smell and taste impairment has been
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well documented. Odors can stimulate olfactory sensory neurons in the olfactory epithe-
lium via two different pathways. In one such pathway known as orthonasal stimulation,
odorant molecules are inhaled through the nose and directly reach the olfactory epithelium.
In the other pathway known as retronasal stimulation, odorant molecules emanate from
food during eating and drinking and reach the olfactory epithelium through the back
of the throat during exhalation [12]. Orthonasal and retronasal olfactory perception are
functionally synced to the respiratory cycle [13–15]. Orthonasal olfactory stimulation takes
place during inhalation, whereas retronasal olfactory stimulation occurs during exhalation.
Gustatory sensation is accomplished in the mouth through stimulation of taste receptor
cells in taste buds housed in papillae on the tongue and soft palate of the oral cavity.
Human gustatory sensation has been evaluated typically along with olfactory sensation.
Since food also releases odorant molecules, it activates retronasal olfactory stimulation and
contributes to the flavor or aroma of food. Gustation and olfaction are known to interact
such that modification of one sense leads to changes in the other sense and vice versa. As a
result, research studies that exclusively address gustatory dysfunction are absent from the
literature. However, the gustatory sense remained unperturbed with transient olfactory
impairment of short duration, whereas decreased gustation was clearly associated with
long-lasting impaired olfaction [16]. While activated gustatory receptors relay our sense of
taste, gustatory cues are augmented by additional sensations through retronasal olfactory
stimulation which adds to mutual chemosensory interactions between smell and taste [17].
In healthy adults, an increasing body mass index (BMI) has been associated with a decline
in olfactory and gustatory sensitivity [18]. However, BMI impact also indicates an age-
dependent variation. In adolescents with higher BMI, there is greater odor sensitivity than
in those adolescents that are in early puberty and have a normal BMI. During late puberty, a
gradual decline in odor sensitivity becomes apparent [19]. Indeed, olfactory perception has
been related to food neophobia in adolescents [20]. Moreover, clinical studies indicate that
smell and taste disorders comprise a significant part of adverse drug reactions to pharmaco-
logical treatment [21,22]. Research in olfactory genetics indicates diversity and individual
differences in olfactory receptor biology. It is further indicative of a differential impact of
genetic effects in aging individuals as well as individual resilience to environmental effects
accumulated over the lifespan [23]. These findings are suggestive of an elaborate network
of pathways that could possibly influence these two sensory modalities individually or in a
combinatorial manner.

3. COVID-19 and Our Chemical Senses

Recent clinical analyses of coronavirus disease 2019 (COVID-19) patients have indi-
cated disturbances in the chemical senses as a manifestation of the pandemic [24–30]. Either
impairment or loss of smell and taste have become clear symptoms of COVID-19 [31–37].
An earlier study using a small but significant number of paucisymptomatic Italian patients
revealed ageusia and anosmia as the first and only symptoms of COVID-19 [27]. Most
patients recover from COVID-19-induced chemosensory dysfunction, but their recovery
rate is variable. In more than 7% of patients, chemosensory disturbances affecting gustation
and olfaction persist even after 60 days of first onset of symptoms [27]. Another study
revealed that approximately 25% of patients show lingering chemosensory dysfunction
after 28 days of first infection [36]. A potentially progressive pattern appears to emerge
in the variability of the degree of taste and smell dysfunction [38]; increasing variability
might be indicative of multiple regulatory pathways affecting these two sensory modalities.
We will try to address such progressive variability in recovery of chemosensory function
based on the available data, providing mechanistic insight on pathways and progression
of infection.

As most COVID-19 patients experience loss of smell and taste without nasal conges-
tion and discharge, their anosmia is thought to be the outcome of localized sensorineural
damage involving sustentacular (supporting) cells in the olfactory epithelium [37,39,40].
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible
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for COVID-19, has been found in these support cells. The observation is based on the
expression of viral entry proteins angiotensin-converting enzyme 2 (ACE2) and trans-
membrane protease serine 2 (TMPRSS2) [41–43]. For infection to occur, the virus uses
ACE2 protein as the cell surface receptor for binding to its spike protein [44]. The next
step is facilitated by the proteolytic action of host proteases such as TMPRSS2 [43]. Thus,
SARS-CoV-2 uses ACE2 receptors for endocytic host cell entry and TMPRSS2 for spike
glycoprotein (S protein) priming and activation [43], which results in direct damage of the
olfactory epithelium [39]. The immune system responds to the SARS-CoV-2 virus with
hyperactivity and an excessive inflammatory reaction [45]. During COVID-19 infection,
proinflammatory cytokine levels are strongly elevated, resulting in a cytokine storm which
gives rise to the infiltration of activated immune cells that further interfere with the ol-
factory system [45,46]. A study involving objective screening of olfactory and gustatory
dysfunction in COVID-19 patients indicates that damage to the olfactory system is the pri-
mary contributor to symptoms of taste loss rather than viral damage to taste receptors [47]
However, the idea has been challenged in subsequent studies. Since the ACE2 receptor,
the facilitator of SARS-CoV-2 invasion, is expressed in both neuroepithelium and taste
buds [48,49], this is a plausible mechanism of direct impairment of taste-bud receptors by
SARS-CoV-2 [47]. However, another study using functional testing of various gustatory
modalities in COVID-19 patients failed to detect bona fide hypogeusia [50]. While many
COVID-19 patients in this study presented with a loss of taste, this was interpreted as
caused by impaired retronasal olfaction. Olfactory dysfunction impacts patients’ lives and
psychology [51,52]. Except for olfactory training which involves 15-min interval sniffing
of four different odorants (essential oils) twice a day, until now, no effective treatment for
COVID-19-related olfactory dysfunction has been found [53,54]. Olfactory training has
been used in conjunction with testing the ability for odor discrimination, odor identification,
and odor threshold. Age did not affect the results of olfactory training. The odor thresholds
improved for several but not all essential oils, whereas the results regarding improvement
of discrimination and identification of odors were not clear, suggesting that sensing smell
is separate from recognizing identity of odor or requires more training [54]. Post-viral
infection-related olfactory loss has already been documented as post-infection outcome for
some time [55]. However, its prevalence without rhinorrhea and nasal congestion suggests
that this specific virus may follow a distinct pathway to affect its targets rather than the
pathways utilized by common cold viruses [40]. A number of explanations have been
proposed regarding mechanistic aspects of COVID-19-related anosmia and its possible
impact/infection in the brain [56]. Based on the neuro-invasive potential of other corona
viruses [57], the cause of COVID-19-related anosmia could be the direct infection, injury,
and death of neuronal cells [37,58]. Microvascular injury in the olfactory bulb of COVID-19
patients [59], viral infection of ACE2-expressing vascular pericytes, immune-mediated
vascular damage to the olfactory bulb and olfactory mucosa and resulting inflammation
can also possibly lead to anosmia [37]. Altered function of olfactory sensory neurons due
to infection, damage, and death of supporting cells, microvillar cells, vascular pericytes
along with inflammation-mediated mechanisms leading to airflow obstruction are all likely
contributors to ansomia [37,60]. Single-cell RNA-sequencing analysis reveals significantly
higher expression of ACE2 receptors in epithelial cells of the tongue and, therefore, the
buccal mucosa is likely to be susceptible to viral infection as well [49]. The hypothesis
that taste disorders of COVID-19 may involve indirect damage of taste receptors through
infected epithelial cells and subsequent local inflammation, prevails [37].

A genome-wide association study (GWAS) of COVID-19-related loss of smell and taste
of self-reported participants revealed a significant locus in the vicinity of the UGT2A1 and
UGT2A2 genes [61]. These two genes belong to the uridine diphosphate glycosyltransferase
family and encode enzymes that metabolize lipophilic substrates. Both genes are expressed
in the olfactory epithelium. The enzymes eliminate odorants in the nasal cavity after
binding to olfactory receptors, thus clearing odorants and facilitating transient olfactory
responses [61–63]. While the specific function of UGT2A1/UGT2A2 is not clear in COVID-
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19-related loss of smell, this study provides a first genetic link between the physiology
of infected cells and subsequent functional olfactory impairment. Experimental evidence
suggests that damage to the olfactory epithelium and cilia on receptor cells due to viral
infection contributes to anosmia without infection of olfactory neurons [37].

4. SARS-CoV-2 Infection Pathways and Immune Response at the Cellular Level

SARS-CoV-2 virus infection appears to display distinct characteristic features. A recent
study has revealed that anosmia related to SARS-CoV-2 virus infection was associated
with viral persistence and continued inflammation as virus replication progressed in the
olfactory neuroepithelium of the patients [64]. Shifts in the basal microbiome with acute
SARS-CoV-2 infection have also been detected when patients have an increased load of
bacterial pathogens; such pathogen abundance leads to rise in viral mRNA load, increased
inflammation, and damage to neurons [65].

Both in humans and animal models, SARS-CoV-2 virus or viral antigen have been
detected in brain endothelial cells [66], despite scant evidence of direct infection in those
cells, as they lack detectable level of ACE2 receptor mRNA or protein [67]. In the central
nervous system (CNS), despite widespread evidence of SARS-CoV-2 virus [68], the infection
is limited to certain cell types [67]. In some infected cell types, virus replication could
be inefficient to abortive where virus-infected cells continuously show altered functional
responses without additional follow-up production of virus progeny [69]. This could
account for an array of mild to moderate symptoms because outcome of virus infection that
alters cell functions depending on virus load, the neuro-virulence and neuro-invasiveness
of virus variants and the factors regulating immune functions of the patients and/or
infected individuals [70]. Further support for this hypothesis comes from experimental
evidence using comparative analysis of cellular effects of SARS-CoV-2 and influenza
virus IAV infections, with SARS-CoV-2 inflammation in the olfactory bulb and olfactory
epithelium being visible even after more than 30 days of initial infection [71]. At the same
time, another independent study has shown that SARS-CoV-2 induced antibody response
increased in the first months and could be long-lasting in infected individuals, particularly
in those with anosmia/dysgeusia, and might be linked to lingering virus in the olfactory
bulb [72]. Indeed, experimental evidence indicates an association of neuroinflammation
with qualitative difference of neuro-invasiveness and neuro-virulence specific to different
variants of the SARS-CoV-2 virus [70,73]. COVID-19-associated olfactory dysfunction
leading to anosmia might reflect constantly evolving dynamic interactions of mis-regulated
immune system responses in the olfactory bulb, olfactory mucosa, and virus-induced
lesions along the entire olfactory tract [71,74].

5. Environment, Experience, and Epigenetics

As with other systems, and as we have described previously [2,3], olfactory receptor
gene expression is at the interplay of the environment, living conditions and experience.
Specifically, the olfactory system is under the influence of learning, fear conditioning,
physiological state, social interactions, etc., and, thereby, epigenetics (Figure 2). For example,
the presence or absence of odorants affects the sensitivity of the olfactory system as shown
for pheromones using a mouse model [75]. Progesterone causes vomeronasal sensory
neurons in female mice to be unresponsive to male pheromones during the diestrus stage,
but they respond when female mice are in the estrous stage [76,77].

Exposure to odorants stimulates neurogenesis of olfactory sensory neurons despite the
fact that increasing age and the environment negatively affect neurogenesis [78]. However,
experimental restriction of odorant exposure by closing one nostril in mice leads to selective
reduction in specific subtypes of olfactory sensory neurons. This is the result of a change
in the rate of generating neurons while their survival rate remains unchanged [78]. The
results suggest that an experimental reduction in odorant exposure stimulates neurogenesis
of a specific subtype of olfactory neurons, which supports the notion that the mammalian
olfactory system can undergo changes in response to the environment.



Int. J. Mol. Sci. 2023, 24, 4179 6 of 14

Figure 2. Environmental and genetic influences on the expression of phenotype. Development of
polygenic conditions, such as diseases, depend on complex and interacting genetic and environmental
pathways. Adapted from [3].

Olfactory emotional learning has been demonstrated to change the perceptual and
cortical representations of previously indiscriminable odor cues in humans [79]. Using
aversive and appetitive conditioning in mouse models, it was shown that emotional
learning of odor cues alters the primary sensory representation within the nose and brain
of adult mice. To illustrate this, transgenic mice were labeled at the M71 odorant receptor,
which is specifically activated by the odorant acetophenone. Mice were then behaviorally
trained with olfactory-dependent fear conditioning using the odorant acetophenone or
conditioned place preference. The mice showed a larger glomerulus (M71-specific) in
the olfactory bulb that specifically responded to acetophenone and more odor-specific
sensory neurons (M-71-specific) that responded to the odorant compared to mice that were
not trained or trained with other odorants [80]. Plasticity and learning in the olfactory
system are phenomena that are present in young as well as adult animals, and at the
level of olfactory sensory neurons and their projections to the brain. Exposure to odorants
can enhance olfactory sensitivity and discrimination and increase the number of new
olfactory sensory neurons which supports the notion that smell training can be an effective
therapeutic strategy to restore olfactory function after experiencing hyposmia or anosmia
as in COVID-19.

There is clear evidence of unique genome-wide methylation profiles for olfactory neu-
roblastoma tumors [81,82]. Such findings along with evidence of altered cellular function
based on transcriptomic data indicate that environmental factors might be modulating
the epigenome after viral infection. This phenomenon adds another regulatory layer in
the pathology of COVID-19. Nutritional status is a significant factor that influences the
internal environment and, thereby, overall cellular function. Tissue-specific altered cellular
activity is likely to perturb the microbiome. Since SARS-CoV-2 infections cause shifts in
the basal microbiome affecting the severity of COVID-19 symptoms [65] as well as severity
and variability of anosmia and dysgeusia, nutrient availability and intake could affect
autophagy by modulating neurogenesis [83].

In the animal world, the sense of olfaction is directly correlated with successful forag-
ing, social interactions, fear conditioning and protective cues. In humans, environmental
odors impact the activation of the autonomic nervous system, influence perception of stress,
and impact avoidance behavior and fear [84–86]. Akin to their canine relatives, humans also
possess odor tracking abilities [87], and their individual olfactory perception is suggestive
of significant non-olfactory genetic information pertaining to age-dependent immunolog-



Int. J. Mol. Sci. 2023, 24, 4179 7 of 14

ical function [88]. It is an established fact that developmental stage, age and gender are
significant modifiers of human olfaction [89–91], as is genetic makeup [92,93]. For instance,
people with isolated congenital anosmia show somewhat enhanced social anxiety with
increased risk of development of depressive symptoms [92–94] and the sense of olfaction
has been established as a marker of depression using female subjects [94]. Environmental
modifiers include odorant exposure, infections, as well as social factors [68,95,96]. Indeed,
specific adaptations of olfactory sensory neurons based on their exposure to odorants are
evident at the cellular and molecular level in experiments with a mouse model [95]. At
the histopathological level, severe neuronal loss in the choroid plexus and other brain
regions has been detected in a toddler that succumbed to SARS-CoV-2 infection [68]. In
adult patients that had faced childhood maltreatment and were suffering with symptoms
of depression, decline in olfactory function was also accompanied by decline in volume of
olfactory bulb [96].

6. Olfaction and Inheritance

Using the specificity of olfactory molecules, researchers have examined the underlying
mechanism of the observed phenomenon of inheritance of parental traumatic exposure in
rodent models [97]. Exposure of a known activator of the mouse odorant receptor Olfr151
in the parental generation of FO and subsequent analysis of behavioral sensitivity to the
same odorant in subsequent F1 and F2 generations, revealed enhanced neuroanatomical
representation of the Olfr151 pathway along with evidence of CpG hypomethylation (CpG:
5′-C-phosphate-G-3′) in both parental and F1 gametes [97]. This study demonstrated a
trans-generational effect on a fear-conditioned olfactory system that was mediated by
epigenetic regulation through the sperm of the sire. Similar changes in olfactory sensitivity
can be obtained by rewarding appetitive conditioning [80]. Additionally, repeated exposure
to an odorant can lead to the induction of enhanced olfactory sensitivity [98]. This was
shown when study participants were exposed to several odorants for which they had
average baseline sensitivity. Significant changes in olfactory acuity followed in repeated
test exposures to the odorants. The increased sensitivity was gender specific such that it was
observed only among females of reproductive age, indicating greater olfactory sensitivities
in females, possibly related to reproductive behavior [98].

In rodents, odorant receptor proteins localized in olfactory sensory neurons of the
olfactory epithelium lining the nasal cavity, are the first molecules exposed to inhaled
odorants [99]. In contrast to developing olfactory sensory neurons that transiently express
multiple olfactory receptor genes, mature olfactory sensory neurons strictly follow a one-
neuron–one-olfactory receptor expression pattern [100,101]. Advancing the experiment
with traumatic experience further, a comparative analysis of induced odor fear along with
foot shock and then extinguishing the fear with odor exposure only, revealed that F1 off-
spring were fear extinguished showing lack of behavioral sensitivity towards the exposed
odors [102]. At the cellular level, fear-extinguished F1 offspring lacked enhanced repre-
sentation of M71 or MOR23 odorant receptors in the olfactory system that was evident in
fear-trained F1 offspring. Mice were trained with odorants that specifically activated these
receptors [102]. Analysis of the methylation level at promoters for genes encoding Olfr151
and Olfr160 receptors revealed decreased methylation in F0-trained gametes (F0-trained
male mice were trained to associate acetophenone or hydroxymethylpentylcyclohexenecar-
boxaldehyde (Lyral) presentations with mild foot shocks) compared to F0-exposed gametes
(odor presentations were not accompanied by foot shocks) [102]. Similar hypomethylation
was evident with another odorant that affected the Olfr16 promoter. Promoters in F0-trained
and F0-extinguished gametes (mice exposed to 30 presentations of the conditioning odor
but without foot shocks) were less methylated in comparison to F0-exposed gametes [102].
These findings indicate that application of interventional and perhaps therapeutic strategies
in the parental generation is effective either in prevention and/or in reversal of transmission
of intergenerational influence of negative experience, harmful exposure, and/or stress.
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Identifying and mapping transcriptomic clusters to different glomeruli by single-cell
RNA-sequencing in developing Drosophila olfactory sensory neurons indicates that these
neurons use diverse regulatory mechanisms to coordiante their physiology and connectivity
through a wide range of expressed transcription factors [103]. Similar regulatory mecha-
nisms are likely to exist in rodents and humans, making the olfactory system susceptible
to epigenetic influences. As we have described previously, these could be such diverse
influences as traumatic experience, various environmental factors, and in this particular
case pathogenic, specifically SARS-CoV-2 infection (Figure 3) [3].

Figure 3. Gene-environment interactions during development and disease occur at different lev-
els. Environmental factors can lead to either inhibition or enhancement of gene expression by
incorporating these factors through epigenetic processes such as chromatin remodeling. While the
environmental effects manifest themselves initially at the cellular level, they are then incorporated at
all levels from cells to the whole organism. Disease etiology occurs in the same hierarchical sequence.
In this particular case, SARS-CoV-2 alters epigenetic state contributing to anosmia and dysgeusia.
Adapted from [3].

Adding to these observations of extended gustatory and olfactory dysfunction in
a group of COVID-19 patients, it is plausible that viral infection alters the designated
methylation at promoters of certain sets of affected olfactory receptor genes, thereby leading
to prolonged anosmia-hyposmia along with dysgeusia. A supporting clue to this hypothesis
is the recommendation of oral and/or nasal steroid treatment to reset the normal olfactory
receptor function as well as to test those patients for auto-antibodies with specificity to
olfactory recptors [104]. Moreover, a computation analysis of reconstructed chromatin
ensembles of olfactory receptors obtained from COVID-19 patients and control samples
indicates structural modifications in COVID-19 patients on different levels of chromatin
organization [105]. Specifically, there is evidence of pathology-associated changes on
already established and known regulatory elements [105]. Indeed, a role of the epigenome
in COVID-19-related anosmia has begun to emerge.

7. Discussion

Our review of the published literature and analysis of the interactions of environmental
factors with the chemical senses indicate a higher degree of vulnerability for these senses
as a function of diverse effects of living conditions, including altered histopathology due
to bacterial and viral infections. In day-to-day living, exposure to odorants imparts a
significant impact on the autonomic nervous system with a decline in olfactory processing,
perception of stress, and its resulting physiological outcomes [85,86,106,107]. Indeed,
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odorants come under the category of strong environmental stimuli, specifically in humans;
and the sense of olfaction has a crucial impact on overall behavior, including feeding [108].

Some progress has been made in unraveling the underlying mechanisms of viral
infection-associated chemical sense disorders at the cellular and molecular levels. Histopa-
thological analysis reveals that persistent anosmia and olfactory dysfunctions that continue
several weeks after SARS-CoV-2 virus infection are accompanied by an altered ratio of
olfactory sensory neurons and support cells, and aberrant gene expression. This alteration
appears to reflect continued inflammatory signaling [109]. Analysis of gene expression
profiles of olfactory epithelium from autopsies of COVID-19 patients shows that SARS-CoV-
2 virus infection correlates with significant downregulation of olfactory receptor transcripts
as well as the transcripts for olfactory receptor signaling genes [74]. Effects of SARS-CoV-2
virus infection on nuclear architecture are non-cell autonomous and significantly affect
odor perception [74].

As discussed above, anosmia and dysgeusia associated with COVID-19 correlate
with a diverse range of symptoms that also vary based on physiological, genetic and
environmental factors [110–112]. A consistent finding is the presence of widespread inflam-
mation and altered expression of inflammation-related signaling molecules [19,64,74]. In
fact, throughout the biological kingdom, inflammation has been known to provide crucial
protection from adverse effects of environmental factors to maintain the functional and
structural integrity at the cellular level [113]. The possibility of some degree of adult neuro-
genesis in the olfactory bulb and olfactory neuroepithelium of COVID-19 patients could
be a mechanism to compensate for the cellular loss caused by virus-induced autophagy.
A similar autophagic hypothesis has been postulated to explain age-related decline of
olfactory processing in mice [114].

In terms of therapeutic interventions, phytochemicals have emerged as effective
agents that could facilitate the recovery of COVID-19-induced anosmia and ageusia [115].
An additional therapeutic approach could involve the regulation of signaling pathways
associated with Neuropilin-1 and semaphorins, which are the key molecules participating in
gustatory and olfactory axon guidance [116]. Future research aimed at understanding their
impact on recovery of post-infection chemical senses would possibly evaluate epigenetic
alterations that might account for resistance to infection, and reduced impact on olfactory
and gustatory dysfunction and/or loss.

8. Concluding Comments

Among the major effects of SARS-CoV-2 virus infection is the change in both olfactory
and gustatory function/sensibility. Multiple factors regulate post-infection alterations
in the chemical senses, and include physiological, environmental as well as genetic and
epigenetic factors.

Increased abundance of bacterial pathogens in nasal epithelium and evidence of
a specific shift in the nasal microbiome of severe COVID-19 patients indicate an ad-
ditional environmental factor contributing to COVID-19 symptoms. Disruption of the
epigenome through altered methylation and acetylation could impart prolonged, or at
times, permanent disruption of the chemical senses. In addition, preliminary evidence
from computational analysis of reorganized chromatin further suggests active participation
of the epigenome.
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