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Abstract: Radiogenomic heterogeneity features in 18F-fluorodeoxyglucose positron emission to-
mography (18F-FDG PET) have become popular in non-small cell lung cancer (NSCLC) research.
However, the reliabilities of genomic heterogeneity features and of PET-based glycolytic features in
different image matrix sizes have yet to be thoroughly tested. We conducted a prospective study with
46 NSCLC patients to assess the intra-class correlation coefficient (ICC) of different genomic hetero-
geneity features. We also tested the ICC of PET-based heterogeneity features from different image
matrix sizes. The association of radiogenomic features with clinical data was also examined. The
entropy-based genomic heterogeneity feature (ICC = 0.736) is more reliable than the median-based
feature (ICC = −0.416). The PET-based glycolytic entropy was insensitive to image matrix size change
(ICC = 0.958) and remained reliable in tumors with a metabolic volume of <10 mL (ICC = 0.894).
The glycolytic entropy is also significantly associated with advanced cancer stages (p = 0.011). We
conclude that the entropy-based radiogenomic features are reliable and may serve as ideal biomarkers
for research and further clinical use for NSCLC.

Keywords: tumor heterogeneity; whole exome sequencing; 18F-FDG PET; molecular imaging;
lung cancer

1. Introduction

Lung cancer is among the most prevalent cancers worldwide, with 85% of lung cancer
cases presenting with non-small cell lung cancer (NSCLC) histopathology [1]. Apart from
histopathology, novel gene tests enable a more detailed cancer sub-classification according
to driver gene mutations or the mutation burden [2]. The sub-classification based on
driver gene mutations and mutation burden can guide targeted therapies such as those
using tyrosine kinase and immune checkpoint inhibitors. Targeted therapeutics have
improved survival outcomes of NSCLC compared to traditional chemotherapies [2,3].
Therefore, NSCLC is a heterogeneous disease, and gene testing has become pivotal in its
management [2]. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET)
is an important imaging tool for assessing the extent of NSCLC. The metabolic radiomics
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derived from 18F-FDG PET feature tumor glycolytic activity and heterogeneity. Higher
18F-FDG PET-derived glycolytic activity and heterogeneity are associated with regional
nodal metastasis and unfavorable survival outcomes. These features also reportedly predict
pathological response after neoadjuvant chemoradiotherapy in patients with NSCLC [4–6].
The combination of gene tests and metabolic radiomics of 18F-FDG PET (radiogenomics)
has gained increasing attention in NSCLC research [7,8].

In lung cancer, tumors evolve and accumulate sufficient mutations to allow dissemina-
tion; thus, the metastasis competent subclone arises at a late stage of tumor progression [9].
Hence, tumors accumulating more heterogeneous subclones are more likely to disseminate.
Therefore, higher tumor heterogeneity is associated with a less favorable prognosis [9–11].
Genomics enables the quantification of genomic heterogeneity. 18F-FDG PET-derived ra-
diomic features are able to reflect the heterogeneity of tumor glycolysis. Different genomic
heterogeneity features, such as mutant-allele tumor heterogeneity (MATH, a median-based
heterogeneity feature) and Shannon entropy (an entropy-based heterogeneity feature), have
been reported to correlate with prognosis or glycolytic heterogeneity [12,13]. However,
there is currently no consensus on the optimal population allele frequency (PAF) cutoff
for somatic mutation calls in tumor-only tests [14,15]. Whether genomic heterogeneity
features remain reliable when different PAFs are applied has not been thoroughly studied.
On the other hand, the reliability of 18F-FDG PET-derived radiomics for lung cancer has
been vigorously investigated. Features such as first-order entropy have been proven to be
insensitive to respiratory motion and reproducible in different reconstruction or segmenta-
tion methods [16–18]. With the advent of novel digitalized PET hardware and advanced
reconstruction algorithms, the image contrast and resolution have substantially improved,
allowing larger image matrix sizes [19]. However, few studies have investigated whether
changes in matrix size affects the quantification of PET-derived radiomics [20]. Radiomic
features should be stable in different matrix sizes so that the biomarkers can retain their
clinical values in the era of digitalized PET units.

Therefore, this prospective study aimed to investigate and compare the reliability of
two commonly used genomic heterogeneity features (MATH and Shannon entropy) using
different PAF cutoffs. We also analyzed the reliability of digitalized 18F-FDG PET-derived
radiomics in different image matrix sizes. Finally, we correlated the genomic and radiomic
biomarkers with clinical data from patients with NSCLC.

2. Results
2.1. Patient Characteristics

We enrolled 46 patients for the analysis. Twenty patients (43.5%) were diagnosed
with stage IV disease. Whole exome sequencing (WES) specimens were obtained from
surgical specimens in 27 (58.7%) patients and biopsies from 19 (41.3%) patients. The median
tumor content of the WES specimens was 50%, with an interquartile range (IQR) of 32.5%.
The means ± standard deviation (SD) of the 18F-FDG PET-based maximum standardized
uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG)
and entropy derived from standard image matrix size were 11.9 ± 7.01, 29.5 ± 55.15,
291.1 ± 646.69 and 4.2 ± 0.84, respectively. Regarding the genomic features, the means
± SD of tumor mutation burden from PAF cutoffs of 1% (TMBc), MATHc and Shannon
entropy.c were 18.6 ± 8.91, 47.1 ± 14.54 and 2.8 ± 0.17, respectively. When using a PAF
of 0.01% as the cutoff, the TMBm, MATHm and Shannon entropy.m were 12.0 ± 8.87,
55.5 ± 12.97 and 2.6 ± 0.24, respectively. We detected EGFR mutations in 16 patients
(34.8%). BRAF and KRAS mutations were detected in one (2.2%) and two (4.3%) patients,
respectively. Additionally, two patients (4.3%) had ALK overexpression. Otherwise, no
ROS-1 rearrangement or MET mutations were detected.

2.2. Reliability of Radiogenomic Features

We assessed the reliability of radiogenomic features using the intraclass correlation
coefficient (ICC), and Figure 1 presents the results. TMB showed excellent consistency
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under different PAF cutoff values. Regarding genomic heterogeneity, Shannon entropy was
moderately reliable (ICC = 0.736), whereas MATH showed poor reliability (ICC = −0.416).
Our study’s intensity, volumetric and heterogeneity radiomic features showed excellent
reliability under different image matrix sizes (ICC > 0.9). We further performed subgroup
analyses to examine how tumor size affects the reliability of radiomic features. Although
the radiomic features generally showed inferior ICCs in patients with an MTV < 10 mL, the
ICCs still showed good to excellent reliability.
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Figure 1. The ICC of radiogenomic features. ICC, intraclass correlation coefficient; TMB, tumor
mutation burden; MATH, mutant-allele tumor heterogeneity; SUV, standardized uptake value; MTV,
metabolic tumor volume; TLG, total lesion glycolysis.

2.3. Correlation of Radiogenomics and Clinical Characteristics

We assessed the Pearson’s correlation between genomic and radiomic features
(Figure 2). Glycolytic imaging entropy was significantly correlated with Shannon entropy.c
(r = 0.31, p = 0.036) and Shannon entropy.m (r = 0.32, p = 0.030). The PD-L1 expression in
tumor cells (TC) did not significantly correlate with any radiogenomic features.
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We also compared the radiogenomic features between patients with stages I–III and
IV disease (Figure 3). Genomic heterogeneity did not differ significantly between patients
with locoregional and disseminated diseases. Nevertheless, patients with stage IV disease
showed significantly higher primary tumor glycolytic heterogeneity, intensity and vol-
ume. Furthermore, a significantly higher TMB was observed in ever-smokers (Table S1).
Otherwise, the distribution of radiogenomic features did not differ among the clinical
characteristics, including smoking status, histology and actionable EGFR status.
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Figure 3. Comparing the TMB (a), MATH (b), Shannon entropy (c), SUVmax (d), MTV (e), TLG (f)
and entropy (g) between patients with cancer stages of I to III and IV. TMB, tumor mutation burden;
MATH, mutant-allele tumor heterogeneity; SUV, standardized uptake value; MTV, metabolic tumor
volume; TLG, total lesion glycolysis.

The median follow-up of our patients was 13.1 m (1.8–26.7 m). Eleven (23.9%) patients
died during follow-up. The association of overall survival (OS) with radiogenomic features
is summarized in Table 1. Our preliminary survival analysis showed that a higher TMB,
SUVmax and entropy derived from reduced matrix-size images were significantly associated
with unfavorable OS. Additionally, the entropy derived from standard matrix-size images
showed a trend toward a poor OS.
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Table 1. The association of radiogenomic features with overall survival.

Variables HR (95% CI) p-Value

TMBc 1.048 (1.002–1.096) 0.042
TMBm 1.049 (1.003–1.096) 0.037
MATHc 1.045 (0.988–1.106) 0.121
MATHm 0.972 (0.929–1.016) 0.210

Shannon entropy.c 6.581 (0.082–530.160) 0.400
Shannon entropy.m 1.727 (0.116–25.830) 0.692
SUVmax (256 × 256) 1.502 (1.172–1.923) 0.001
SUVmax (128 × 128) 1.178 (1.066–1.301) 0.001

MTV (256 × 256) 1.003 (0.996–1.010) 0.400
MTV (128 × 128) 1.003 (0.996–1.010) 0.387
TLG (256 × 256) 1.000 (1.000–1.001) 0.339
TLG (128 × 128) 1.000 (1.000–1.001) 0.267

Entropy (256 × 256) 2.981 (0.927–9.590) 0.067
Entropy (128 × 128) 3.076 (1.019–9.286) 0.046

HR, hazard ratio; CI, confidence interval; TMB, tumor mutation burden; MATH, mutant-allele tumor heterogene-
ity; SUV, standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis.

3. Discussion

With increasing knowledge on the molecular and genetic backgrounds of NSCLC,
radiogenomics has become more important in the research and clinical applications of this
disease [7]. Many quantitative radiogenomic features have emerged as cancer outcome
biomarkers [7,12,13]. However, ensuring feature reliability is a major consideration in
generalizing radiogenomic research and clinical implementation [7,18,21,22]. Our study
found that MATH is not a reliable genomic heterogeneity feature, whereas Shannon entropy
showed moderate reliability. Additionally, the glycolytic heterogeneity feature, entropy,
along with the intensity (SUVmax) and volumetric (MTV and TLG) PET-derived features,
showed excellent reliability in terms of image matrix size change.

In our study, TMB and genomic heterogeneity features were derived from tumor-
only gene sequencing data. The traditional methods of somatic mutation calling were
performed on tumors and matching normal DNA [23]. However, this method requires
sequencing matching normal tissue, and thus doubles the cost. The modern tumor-only
methodology is also feasible and has been adopted in commercialized clinical sequencing
services [15]. Instead of subtracting germline mutations by matching the sequencing
data from normal tissue, the tumor-only method requires the PAF database to subtract
germline mutation. Different PAF cutoffs have been proposed for synthesizing genomic
features [14,15]. Gene sequencing-derived features are mainly used as biomarkers for
clinical outcomes; therefore, the features should remain reliable when applying different
PAF cutoffs, or the functional relationship between the features and clinical information may
be lost. We found MATH to be an unreliable genomic heterogeneity feature according to our
study results (ICC = −0.416). The MATH calculation is based on the median and median
absolute deviation (MAD) of the mutant allele fraction (MAF). In patients with bimodally
distributed MAF, the median value may show a more apparent shift when applying
different PAF cutoffs than in patients with a single-peaked MAF distribution pattern
(Supplementary Figure S1). Therefore, MATH may vary substantially between the two
PAF cutoffs. In contrast, entropy-based genomic features measure the general uncertainty
distribution of MAF. Therefore, as long as the general distribution pattern of MAF remains
unchanged, Shannon entropy would not shift drastically (Supplementary Figure S1).

We also analyzed driver gene mutations in our study population. Actionable EGFR
mutations were detected in 34.8% of our cohort, which is slightly lower than the reported
prevalence of EGFR mutation in the Asian population [3], which may be explained by
the male predominance (67.4%) in our cohort. Besides the EGFR mutation, two ALK
overexpressions, two KRAS mutations and one BRAF mutation were detected. Apart from
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the EGFR mutation, the other driver gene mutations are less prevalent [2,3]; thus, the
prevalence of actionable gene mutations is compatible with the literature.

In the era of digitalized PET systems, improved hardware and software now allow
a larger image matrix size for PET image quantification [19]. However, most PET ra-
diomic studies were derived from traditional analog PET units, which used smaller matrix
sizes [5,22,24,25]. The radiomic features should be insensitive to matrix size changes, or
the study results derived from the analog PET system cannot be generalized to the novel
digitalized system. We found three popular 18F-FDG PET-derived features—SUVmax (a
biomarker of glycolytic activity) and two volumetric features (MTV and TLG)—that are
insensitive to matrix size changes. For glycolytic heterogeneity, we selected first-order
entropy, which is one of the most robust features in respiratory motion, segmentation and
reconstruction methods [16–18] for analysis. We found that the entropy was also robust
for different matrix sizes. Our data provide evidence for the generalizability of entropy
between traditional analog and novel digitalized PET systems. Additionally, because
of the inherited lower image resolution of analog PET, the analyzable voxel number for
small tumors (<10 mL) is limited. The lower number of analyzable voxels poses a concern
for heterogeneity estimation in small tumors [26,27]. Nevertheless, we found that the
first-order entropy of lower matrix-size images showed good consistency with that of
higher matrix-size PET in small tumors (ICC = 0.894), indicating that the calculation of
first-order entropy is not adversely affected by a low voxel number. Riegler et al. compared
the quantitative 18F-FDG PET features between different matrix sizes. They reported a
significantly higher SUVmax for images with higher matrices [20]. In our study, the SUVmax
was also higher in the images of the standard matrix compared to the reduced matrix
(12.1 ± 7.03 vs. 11.8 ± 7.00, p = 0.015). The lower SUVmax in the reduced matrix size image
may result from partial volume averaging. Therefore, although the 18F-FDG PET-derived
features may show excellent correlation between different image matrix sizes (high ICC),
differences in the absolute value may still exist. We also analyzed the reliability of several
other radiomic features and found that the higher-order features are more likely to be
sensitive to image matrix size changes (Supplementary Figure S2). Therefore, although
changing the matrix size may not affect our study’s four reliable image features (SUVmax,
MTV, TLG and entropy), it may affect the measurement of some higher-order features.

The image-based glycolytic entropy exhibited a weak but significant positive corre-
lation with Shannon entropy. As phenotypes are derived from genotypes, higher clonal
heterogeneity may express a more heterogeneous phenotype. However, glycolysis is one
of the many phenotypes expressed in the genome. Additionally, we could not determine
the level of gene expression based on the gene mutation status. Additionally, the specimen
for gene sequencing is only a part of the primary tumor, unlike the whole tumor featured
in the image-based method. Therefore, although glycolytic entropy was positively and
significantly correlated with Shannon entropy, the correlation was not strong. We also
found that glycolytic entropy was significantly higher in patients with an advanced stag-
ing status, whereas genomic heterogeneity showed no significant difference. As tumor
glycolysis is associated with oncogenic signaling pathway alterations [8,28], glycolytic fea-
tures are associated with more aggressive behavior and metastatic potential [5,28]. Herein,
the intensity, volumetric and heterogeneity glycolytic features were positively linked to
higher cancer staging, suggesting that glycolysis is a biomarker of tumor aggressiveness.
In contrast, Shannon entropy features the heterogeneity of the whole exome, which may
include many other genes unrelated to oncogenesis. Therefore, a larger cohort may be
required to demonstrate the association between Shannon entropy and cancer staging.
Our preliminary survival analysis also showed that a higher TMB, SUVmax and entropy
were associated with an unfavorable OS. Our results are compatible with the literature,
where TMB and 18F-FDG PET-derived features were found to be predictive of survival
outcomes in patients with lung cancer [5,29,30]. However, the follow-up period of our
cohort was short and the patient characteristics were heterogeneous. Therefore, a study
with a longer follow-up period and a uniform patient cohort is required to confirm our
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findings. Finally, Shannon entropy exhibited a significant negative correlation with TMB (r
of approximately −0.55). Other studies have reported contradictory results regarding the
association between tumor genomic heterogeneity and TMB, and no consensus has been
reached [31,32]. The pathophysiology of tumor genomic heterogeneity and TMB is complex
and the method for calculating the two biomarkers remains diverse [15,33]; therefore, the
exact mechanism of the negative association between Shannon entropy and TMB is beyond
the scope of this study and thus requires further research to unravel.

Although we found a weak and significant correlation between Shannon entropy
and image-based entropy, the results were not corrected for multiple testing. When using
the Bonferroni correction, the correlation was statistically insignificant (p-value should be
<0.001 to be statistically significant after Bonferroni correction). As our preliminary results
showed that the correlation between Shannon entropy and image-based entropy might be
weak, our study cohort may be too small to show statistical significance after the Bonferroni
correction. Therefore, this finding should be tested in a larger cohort.

We also found a significantly higher TMB in ever-smokers, which is consistent with the
literature [34,35]. Another study suggested that cancers directly exposed to tobacco smoke
(such as lung and laryngeal cancers) exhibit hypermutation, possibly attributed to DNA
damage elicited by tobacco carcinogens [34]. In contrast, although TMB and PD-L1 im-
munohistochemistry are predictors of immunotherapy outcomes in NSCLC [36], these two
biomarkers do not correlate with each other (r of approximately 0 in our study) [37]. PD-L1
is involved in the immune checkpoint pathway, the target of many immunotherapies [38],
whereas the predictive value of TMB has been proposed to be established based on its
relationship to neoantigens [15]. Therefore, the different mechanisms of PD-L1 expression
and TMB may explain the poor correlation between these two biomarkers. Squamous cell
lung cancer reportedly shows higher SUVmax on 18F-FDG PET compared with adenocarci-
noma [25]. In our study, the mean SUVmax of squamous cell carcinoma was higher than that
of adenocarcinoma, though no statistical significance was found (Supplementary Table S1;
14.1 ± 9.99 vs. 11.3 ± 5.81; p = 0.397). Our study population was not large; therefore, the
difference in radiomic features between different histological types should be clarified
further in a larger cohort.

Finally, low tumor purity results in a lower MAF of WES sequencing data, and the
gene mutations for less populated clones may not be detected. Therefore, low tumor purity
may affect the measurement of TMB and genomic heterogeneity features. Anagnostou KJ
et al. showed that when the purity is less than 50%, TMB correlates with tumor purity,
and they recommend correction of the TMB in cases where the tumor purity is less than
50% [39]. Other studies have suggested gene sequencing is able to detect mutations in
samples with a purity of at least 20% [40,41]. In our study, we only included samples with
at least 20% tumor purity, with a median of 50% (20–100%). Furthermore, in specimens with
purities of <50%, the tumor purity did not correlate with TMB (r = −0.272 and −0.287 for
TMBc and TMBm, respectively; p = 0.275 and 0.248, respectively) or genomic heterogeneity
features (r = 0.207, 0.101, 0.277 and 0.156 for MATHc, MATHm, Shannon entropy.c and
Shannon entropy.m, respectively; p = 0.409, 0.690, 0.266, and 0.537, respectively). The
poor correlation between genomic features and tumor purity may suggest that lower
purity has little effect on our genomic feature calculation. Additionally, not all studies
on genomic features (including TMB, MATH and Shannon entropy) were corrected for
tumor purity [13,42]. Therefore, the effect of tumor purity on the measurement of TMB and
genomic heterogeneity needs further study to elucidate.

Our study had several limitations. First, the patient cohort was small. Second, al-
though most clinical sequencing services adopt tumor-only algorithms for somatic muta-
tion calls, the traditional filtering method is performed on tumors and matched normal
DNA [15]. Thus, the reliability of the genomic features is ideal to be tested with matched
normal samples. Third, the study population was heterogeneous and the follow-up period
was short. Therefore, a more uniform cohort with a longer follow-up period is needed to
confirm the association between radiogenomics and survival outcomes. Further studies
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with more uniform patient characteristics and a long-term follow-up to test the prog-
nostic value of radiogenomic features would confirm and expand the clinical utility of
radiogenomics in NSCLC.

4. Materials and Methods
4.1. Patients

Our prospective study was approved by the local institutions’ review council and the
Ethics Committee (IRB108-249-A) and carried out under the Helsinki Declaration. This
study was registered on ClinicalTrials.gov (identifier: NCT04314349). Our study data were
collected between August 2020 and October 2022, and all the patients provided written
informed consent. We included patients with a pathological diagnosis of NSCLC without
prior cancer treatment. All participants underwent pre-treatment examinations, including
contrast-enhanced computed tomography (CT) of the chest to the upper abdomen, 18F-
FDG PET/CT and gadolinium-enhanced magnetic resonance imaging (MRI) of the brain.
Our study included 46 patients and we have summarized their characteristics in Table 2.
Pre-treatment evaluation and final cancer stage were discussed and determined at the
Multidisciplinary Lung Cancer Conference directed by our thoracic oncology research team.
We determined the stage according to the 8th edition of the American Joint Committee
on Cancer (AJCC) manual [43]. The expressions of ALK and ROS-1 were assessed by
immunohistochemistry (IHC) using Ventana D5F3 CDx and SP384 assays (Roche Diagnos-
tics, Mannheim, Germany), respectively. The IHC of ALK is highly accurate in predicting
the rearrangement of ALK on fluorescent in situ hybridization (pooled sensitivity and
specificity of 0.97 and 0.99, respectively) [44]; therefore, we used the ALK IHC results to
represent the status of ALK rearrangement. Positive ROS-1 IHC results were further tested
with fluorescent in situ hybridization using a Vysis ROS1 Break Apart FISH Probe Kit
(Abbott, Abbott Park, IL, USA) to confirm the presence of rearrangement. We also assessed
the IHC of programmed cell death ligand 1 (PD-L1) using a Ventana SP263 assay (Roche
Diagnostics, Mannheim, Germany) for every patient. PD-L1 expression TC was recorded
in every patient [37,45].

Table 2. Patient characteristics in this study (n = 46).

Characteristics Value

Age, years, mean (range) 67 (45–89)
Sex, n (%)

Male 31 (67.4)
Female 15 (32.6)

Cigarette smoking status, n (%)
Ever-smoker 27 (58.7)
Never used 19 (41.3)

Histology, n (%)
Adenocarcinoma 35 (76.1)

Squamous cell carcinoma 11 (23.9)
T classification, n (%) a

1b 4 (8.7)
1c 10 (21.7)
2a 8 (17.4)
2b 5 (10.9)
3 7 (15.2)
4 12 (26.1)

N classification, n (%) a

0 23 (50.0)
1 1 (2.2)
2 12 (26.1)
3 10 (21.7)
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Table 2. Cont.

Characteristics Value

M classification, n (%) a

0 26 (56.5)
1a 6 (13.0)
1b 3 (6.5)
1c 11 (23.9)

Overall stage, n (%) a

IA2 3 (6.5)
IA3 8 (17.4)
IB 5 (10.9)

IIA 1 (2.2)
IIB 4 (8.7)

IIIA 4 (8.7)
IIIB 1 (2.2)
IVA 9 (19.6)
IVB 11 (23.9)

EGFR mutation status, n (%)
Wild type 30 (65.2)

Exon 19 deletion 7 (15.2)
L858R missense mutation 9 (19.6)

ALK overexpression, n (%) 2 (4.3)
ROS-1 rearrangement, n (%) 0 (0)

MET mutation, n (%) 0 (0)
BRAF V600E missense mutation, n (%) 1 (2.2)
KRAS G12C missense mutation, n (%) 2 (4.3)

PD-L1 expression, median (range) 1% (0–100%)
Initial treatments, n (%)

Surgery 26 (56.5)
Chemoradiotherapy 2 (4.3)

Chemotherapy 4 (8.7)
Tyrosine kinase inhibitor 8 (17.4)

Immune checkpoint inhibitor 6 (13.1)
EGFR, epidermal growth factor receptor; PD-L1, programmed cell death ligand 1. a, Stage according to the 8th
edition of the American Joint Committee on Cancer manual.

4.2. Technique and Analysis of Whole Exome Sequencing

We selected primary tumor specimens with an at least 20% tumor cell content for
WES [41]. We extracted tumor DNA from paraffin-embedded samples using a QIAamp
DNA FFPE Tissue Kit (QIAGEN GmbH, Hilden, Germany). Tumor DNA started by
shearing at least 300 ng of DNA through enzyme digestion (Illumina® DNA Prep with
Enrichment, San Diego, CA, USA) to obtain 150 base pairs fragments, which were then
ligated to an adaptor for amplification. One hundred nanograms of the prepared library
was hybridized with an illumine exonic probe (45.0 Mb, Illumina® DNA Prep with En-
richment, Illumina, San Diego, CA, USA) for 2 h. After library preparation, all samples
were sequenced using the NovaSeq platform (Illumina, San Diego, CA, USA) with 150 bp
paired-end reads. The average coverage depth was 119×. The quality of read files (fastq)
was assessed using FastQC (v0.11.8, Brabraham Institute, Brabraham, Cambridge, UK) and
then aligned to the human reference UCSC hg19 (NCBI build 37.2) using the BWA software
(v0.7.17, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK) to
generate SAM format alignment files [46]. The files were converted and sorted into BAM
format using SAMtools software version 0.1.19, and duplicate reads were marked using
Picard Tools MarkDuplicates software (v2.20.2, Broad Institute, Cambridge, MA, USA).
The processed BAM files were used as inputs for GATK (version 4.2.6.1, Broad Institute) to
identify germline and somatic mutations. Annotated and filtered variants were manually
checked using the Integrative Genomics Viewer (IGV, v2.8.9, Broad Institute) and then
confirmed by Sanger sequencing [47]. Mutant variants with a depth of less than 20×, an
MAF of less than 5% or those other than protein-coding missense mutations were filtered
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out [14,15,48]. Somatic mutation calls were determined using the PAF cutoff based on
the GnomAD database (v2.1.1) for the general and Eastern Asian populations [49]. We
tested PAF cutoffs of 1% and 0.01% for somatic mutation calls [14]. TMB and genomic
heterogeneities from different PAF cutoff values were calculated.

TMB was defined as the number of somatic mutations per Mb, and TMBc and TMBm
were calculated based on PAF cutoff values of 1% and 0.01%, respectively. The two genomic
heterogeneity features in our study were MATH and Shannon entropy [12,13]. MATH was
calculated as follows:

MATH = 100 × MAD/median

where the median is the center of the distribution of the MAF and the MAD is the median
of the absolute difference of each MAF from the median MAF [12]. MATHc and MATHm
were based on PAF cutoffs of 1% and 0.01%, respectively.

Shannon entropy was calculated according to the distribution of probabilities (P(f )) of
each MAF with a bin size of 10 [13], as follows:

Shannon entropy = −
10

∑
f=1

P( f ) log2(P( f ))

The Shannon entropy.c and Shannon entropy.m were based on PAF cutoffs of 1% and
0.01%, respectively.

4.3. 18F-FDG PET Imaging and Feature Extraction

Patients fasted for at least 6 h before intravenous injection of 18F-FDG (400 ± 10% MBq),
and the blood glucose level should not have exceeded 200 mg/dL. We acquired the images
60 min after radiotracer injection using a 4-ring GE Discovery MI PET/CT system (GE
Healthcare, Milwaukee, WI, USA). First, a transmission CT was acquired in the helical
mode with a pitch of 0.984, and the slice thickness was 2.79 mm. The tube voltage was
120 kV and an automated tube current (range: 15–180 mA) was used. Then, we acquired
the PET images from the vertex to the mid-thigh using the list three-dimensional mode. The
scanning time was 150 s per table position (20 cm per table position with a 3 cm overlap for
every contiguous frame). The PET was reconstructed using the Q.clear algorithm (β = 550)
with CT-measured attenuation correction. Standard (256 × 256) and reduced (128 × 128)
matrix sizes were used to generate standard (pixel size of 2.7 mm × 2.7 mm) and lower
resolution (pixel size of 5.4 mm × 5.4 mm) image sets. The PET slice thickness was 2.79 mm.

We used PBAS 4.0 (PMOD Technologies Ltd., Zurich, Switzerland) for the segmenta-
tion of PET images. The SUVs of the PET images were normalized to the patient’s body
weight and the administered radioactivity. An experienced nuclear medicine physician
placed a volume of interest large enough to include the primary tumor. We then applied a
41% SUVmax threshold for segmentation [50]. We defined the segmented volume as the
primary tumor MTV. The primary tumor TLG was the product of the MTV and SUVmean
(TLG = MTV × SUVmean). We selected first-order entropy, which is one of the most robust
image features [16–18], to represent tumor glycolytic heterogeneity. The segmented volume
of the primary tumor was used to compute the primary tumor entropy. We performed the
computation on Pyradiomics 2.2.0 (Harvard Medical School, Boston, MA, USA) using a
fixed bin size of 0.25 SUV [51,52]. Features extracted from Pyradiomics complied with the
definition of the Image Biomarker Standardization Initiative [52], and the mathematical
formula of PET-based entropy is as follows:

Entropy = −
Ng

∑
i=1

P(i) log2(P(i) + ε)

where P(i) is the probability of distinct resampled values and Ng is the total number of
discrete intensity levels within the segmented volume. ε is an arbitrarily small positive
number (≈2.2 × 10−16).
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We summarized the procedure of radiogenomic feature extraction in Figure 4.
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4.4. Statistical Analysis

Baseline patient characteristics were presented as proportions, frequencies, means or
medians, as appropriate. We analyzed the reliability of WES-based genomic and 18F-FDG
PET-derived radiomic features using ICC. Our ICC used a two-way random model, a
single measurement type, to report the consistency of each radiogenomic feature. An ICC
value less than 0.5 suggests poor reliability, a value between 0.5 and 0.75 means moderate
reliability, a value between 0.75 and 0.9 indicates good reliability and a value greater than
0.9 indicates excellent reliability [53].

We also assessed the correlation between WES-based genomic features, 18F-FDG PET-
derived radiomic features and clinical characteristics using Pearson’s correlation coefficient
(r), t-tests or Mann–Whitney U tests, as appropriate. Patients were further followed up until
death or November 2022, whichever occurred first. The OS was calculated from the date of
diagnosis to the date of death or censored at the last follow-up for surviving patients. The
association of the study variables with survival data was examined using Cox regression
analysis. Statistical analyses were performed using SPSS software (version 20.0; SPSS Inc.,
Chicago, IL, USA). Statistical significance was set at a two-tailed p-value of <0.05.

5. Conclusions

Shannon entropy is a more reliable genomic heterogeneity feature than MATH. The 18F-
FDG PET-derived first-order entropy was not sensitive to the image matrix size change. This
may reliably bridge the study results from the old analog PET system to the novel digitalized
PET units. Therefore, the entropy-based radiogenomic features are ideal biomarkers for
research and further clinical use for NSCLC.
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