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Abstract: Pluripotency describes the ability of stem cells to differentiate into derivatives of the three
germ layers. In reporting new human pluripotent stem cell lines, their clonal derivatives or the safety
of differentiated derivatives for transplantation, assessment of pluripotency is essential. Historically,
the ability to form teratomas in vivo containing different somatic cell types following injection into
immunodeficient mice has been regarded as functional evidence of pluripotency. In addition, the
teratomas formed can be analyzed for the presence of malignant cells. However, use of this assay has
been subject to scrutiny for ethical reasons on animal use and due to the lack of standardization in
how it is used, therefore questioning its accuracy. In vitro alternatives for assessing pluripotency have
been developed such as ScoreCard and PluriTest. However, it is unknown whether this has resulted
in reduced use of the teratoma assay. Here, we systematically reviewed how the teratoma assay was
reported in publications between 1998 (when the first human embryonic stem cell line was described)
and 2021. Our analysis of >400 publications showed that in contrast to expectations, reporting of the
teratoma assay has not improved: methods are not yet standardized, and malignancy was examined
in only a relatively small percentage of assays. In addition, its use has not decreased since the
implementation of the ARRIVE guidelines on reduction of animal use (2010) or the introduction of
ScoreCard (2015) and PluriTest (2011). The teratoma assay is still the preferred method to assess the
presence of undifferentiated cells in a differentiated cell product for transplantation since the in vitro
assays alone are not generally accepted by the regulatory authorities for safety assessment. This
highlights the remaining need for an in vitro assay to test malignancy of stem cells.

Keywords: teratoma assay; hPSCs; pluripotency; malignancy

1. Introduction

Human pluripotent stem cells (hPSCs) self-renew indefinitely and can differentiate
into all cell types of the three germ layers that make up the human body. They may be
derived as human embryonic stem cells (hESCs) from blastocyst-stage embryos [1] or by
reprogramming somatic cells of the body to induced pluripotent stem cells (hiPSCs) [2].
Recent recommendations from the International Stem Cell Initiative (ISCI) require that all
new hPSC lines (as well as any clonal derivatives) are assessed for pluripotency (by assays
that depend on the ultimate applications of the cell line) [3,4].

First assessment of pluripotency often examines the expression of pluripotency-
associated genes or proteins, such as OCT3/4, SOX2, TRA-1-60, and SSEA3 and their
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comparison to reference expression profiles of validated pluripotent cell lines [5–7]. There
are also bioinformatic tools, such as PluriTest, which are based on two decades of transcrip-
tomic analyses on pluripotent cell lines. PluriTest compares the transcriptome of a test line
with a large number of reference lines [8].

To confirm developmental pluripotency, differentiation towards derivatives of the
three germ layers can be assessed either in vitro or in vivo. In vitro, the differentiation
capacity can be demonstrated by culturing the cells as aggregates, called embryoid bodies
(EBs), where they can undergo spontaneous multi lineage differentiation. Conversely, it
can be assessed by inducing lineage-specific differentiation in monolayer culture through
exposure to different growth factors or small molecules [9]. An alternative bioinformatic
tool is ScoreCard, which can provide quantitative information of the differentiation poten-
tial of the lines by reporting the expression of germ layer-specific genes upon their directed
or spontaneous differentiation [10,11].

In vivo, pluripotency can be assessed as the capacity to differentiate to mature tissues
in what is referred to as a teratoma assay. This entails the injection of (pluripotent) stem cells
into immunodeficient mice, where they develop tumor cell masses composed of multiple
tissue types derived from the three germ layers of the embryo. These tumors are called
teratomas and only form if the transplanted cells are pluripotent. However, in some cases
the tumors can also contain what pathologists refer to as “embryonal carcinoma elements”
and/or undifferentiated cells [12]. If these types of structure are present, the tumor has been
referred to historically as a “teratocarcinoma” and the injected stem cells are considered
potentially malignant [3,12].

Not all downstream applications require the evaluation of pluripotency and malig-
nancy in vivo. To register an hPSC line in a stem cell bank such as the European Bank of
Induced Stem Cells (EBiSC) or the Human Pluripotent Stem Cell Registry (hPSCreg), for
example, it is sufficient to verify pluripotency based on the expression of OCT3/4, SOX2,
NANOG, KLF4, TRA1-60, TRA1-81, and SSEA4 genes or proteins [9,13]. However, the
teratoma assay is still required for the assessment of the safety of hPSCs and hPSC-derived
medicinal products for clinical application by the regulatory authorities. This is despite
it being time-consuming, costly, and ethically questionable (due to the use of laboratory
animals), as it is the only test that can be used to simultaneously evaluate both pluripotency
and malignancy [3].

In view of this strong reliance on the teratoma assay, it is essential that the outcome is
reliable and reproducible between laboratories and between operators and mouse strains.
Proper standardization of the teratoma assay has been called for [14,15]. This systematic
review therefore examined reported use of the teratoma assay in the scientific literature over
the last two decades and aimed to explore (1) how teratoma assays have been conducted for
the assessment of pluripotency and malignancy potential; (2) whether variables potentially
influencing the reliability of the results have been standardized; and (3) if the Animal
Research: Reporting of In vivo Experiments (ARRIVE) guidelines were followed [16]. The
ARRIVE guidelines specify the 10 essential requirements regarding animal experiments
that must be included in any manuscript to ensure the reliability of the findings, among
which are details regarding the animal strain, sex, age, and number, as well as details
regarding the experimental procedures such as “what”, “when”, “where”, and “why”.

2. Methods
2.1. Registration of the Study

The design and eligibility criteria were registered in the PROSPERO database (In-
ternational prospective register of systematic reviews) for systematic review [17] under
registration number CRD42021237843. The protocol for this systematic review was con-
structed according to the Systematic Review Centre for Laboratory Animal Experimentation
(SYRCLE) protocol format [18] and was reviewed and approved by all authors. No devia-
tions from the protocol occurred.
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2.2. Search Strategy

The Patient, Intervention, Comparison, and Outcome (PICO) strategy was used as the
basis to conduct a search of three scientific journal databases: PubMed, Web of Science, and
Embase (Ovid), for articles where teratoma assays had been performed to assess human
pluripotent stem cells, on 13 October 2020. The search covered the period from 1998, i.e.,
when the first hESC line was generated, until 2020 [1]. For each database, a separate search
string was designed considering different operators used for combining search terms. Each
string contained key words with their variations or abbreviations used in the field and
thesaurus terms were used when available. The exact combinations for each database
are documented in the supplementary file (Table S1). The design of the search string was
developed in collaboration with experts from the Waleus library at Leiden University
Medical Center (LUMC).

A supplementary search was then performed in PubMed on 15 January 2021. Addi-
tionally, references of retrieved publications were screened for any relevant publications
that might have been missed by the electronic search.

2.3. Study Selection

Study selection was performed and reported according to Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) [19], and performed in two stages
with initial selection based on the title and abstract, followed by full text assessment for
eligibility criteria performed by J.M.-R., M.B., and B.A.J.R.

Abstracts found after search procedures and screened publications, based on the
title and abstract, were uploaded to an online database, Rayyan [20]. All records were
independently screened by two reviewers, J.M.-R, M.B., B.A.J.R., or D.C.F.S., blinded for
the assessment of the first reviewer. Any conflicts were discussed and, if required, resolved
by a third reviewer. Publications included for full text review were exported to Endnote X7
software (Clarivate Analytics, Philadelphia, PA, USA).

Study selection was performed in two stages with initial selection based on the ti-
tle and abstract, followed by full text assessment for eligibility criteria performed by
J.M.-R., B.A.J.R., and M.B. The flow diagram in Figure 1 presents the procedure for
literature selection.
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2.3.1. Inclusion Criteria

Initially, studies were included that reported in the title or abstract: (1) injection of
undifferentiated human pluripotent stem cells (hPSC), (2) into any strain of immunode-
ficient mice, and (3) showed the results of the teratoma assay. Publications that included
this information were screened in full and included for further analysis if they additionally
reported the following characteristics of the assay: (4) cell type used, (5) number of cells
per injection, (6) site of injection, and (7) duration of the teratoma assay.

2.3.2. Exclusion Criteria

Complete publications not written in English (n = 4 written in Chinese; n = 1 written
in Portuguese; n = 1 written in Bulgarian) or not presenting original findings as a full article
(e.g., conference abstracts, book chapters, and protocols) and articles published before 1998
(i.e., the year of the derivation of the first reported hPSC line as hESC) were excluded from
the analysis. Additional exclusion criteria were: studies that reported injection of cells
differentiated from hPSCs or cells other than hPSCs, teratoma assay performed in a model
organism other than immunodeficient mice, no assessment of pluripotency, studies that
did not report (the results of) a teratoma assay or provided insufficient information about
the assay characteristics mentioned above.

2.4. Data Extraction

Data regarding study characteristics and experimental set-up were extracted from
the main text, figures and their legends, and supplementary files, and recorded in Excel
worksheets. The data were extracted by J.M.-R., M.B. and B.A.J.R. For at least 25% of the
articles, the data extracted were checked for errors by a second reviewer. Any discrepancies
were discussed, if required, and resolved by a third reviewer. In accordance with our
PROSPERO protocol, the following data were extracted: author, title and year of publication;
cell type and passage number used, karyotyping (and method if provided), differentiation
assay and additional pluripotency tests, cell number injected and pre-treatment (which
might affect cell lines properties, thus assay outcome) prior to injection into the animal.
In addition, cell carrier (vehicle used for cell injection) and volume injected, number of
injections per mouse; mouse strain, number, sex and age of the animals used; duration of the
experiment and any additional treatment of the mice, which was a part of the initial study
design. The following assay outcomes were included: tumor size and tumor growth time,
methodology for tumor sampling for the analysis, techniques used to assess presence of
derivatives of the three germ layers. In addition, whether the histopathology analysis was
performed by a pathologist, techniques and criteria used for the assessment of malignancy,
and the author’s conclusion regarding the final diagnosis. In addition, experimental set-ups
and methods of data analysis were compared in order to determine the impact of variability
on conclusions and outcome.

2.5. Quality Assessment

To assess the quality of the studies included, the following indicators were examined:

(1) Number of animals used per cell line;
(2) Malignancy assessment; whether the histopathology reports focused on the presence

of tissues derived from the three germ layers. It would be important at this point to
also evaluate if the teratoma contained malignancy-related elements;

(3) Additional evaluation of the haematoxylin and eosin (H&E) presented results (for
example, immunohistochemistry (IHC) confirmation of the three germ layers by
specific antibodies);

(4) Evaluation by a pathologist; whether the histology of the teratomas required specific
pathology training since these tumors are rather complex;

(5) Representative histological (H&E) pictures, able to give a clear account of the tissues
derived from the three germ layers;

(6) Cell passage number;
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(7) Additional in vitro experiments for confirmation of pluripotency (for example, Plu-
riTest/ScoreCard, additional evaluation by messenger RNA (mRNA) or transcriptome
analysis, or by other means);

(8) Tumor progression assessment throughout the experiment; this point is related to
measurement of the tumor size, how this was approached, and planned;

(9) Was animal mortality during the experiment reported, and if so, was the cause
investigated and reported? If animal mortality was reported, was it related to the
experiment or to other intercurrent conditions? Was the experiment shortened as
a result of unexpected mortality? This information could affect the maturity of the
collected tumor but also relate to monitoring of animal welfare;

(10) Were there unexpected interventions related to animal welfare?
(11) Was there an unexpected intervention not connected to experimental design? For

example, interventions linked to administration of drugs such as painkillers or
other drugs.

3. Results
3.1. Search Results

The publications included in our analysis described the use of a teratoma assay to
assess pluripotency and malignancy of human stem cells over the course of just over two
decades, November 1998–15 January 2021. Only references concerning hESCs and hiPSCs
were included. After duplicate removal, 2193 abstracts were screened, of which 1414 (64%)
were excluded based on title and abstract (Figure 1). In addition, publications that were not
full-length articles or did not present original data, such as conference abstracts, reviews, or
protocols, and studies that did not present any results on the teratomas were also excluded
(Figures 1 and S1). For the final analysis, publications were included if they stated cell
type used (undifferentiated hESC, hiPSC, or both) (Figure 2A), cell number injected, site of
injection, duration of the assay, and if experimental results related to the teratoma assay
were reported. As a result, 492 full-text publications in total were included that met the
criteria (Figure 1). Overall, in 90.0% of the publications evaluated, the teratoma assay was
used to assess only pluripotency, whilst in 10.0% of the publications, the assay was used
to also test malignancy (8.7% and 13.6%, respectively, for hiPSC and hESC publications)
(Figure 2).
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Figure 2. Cell types used and the primary goal of the teratoma assay. (A) Number of hiPSC and/or
hESC cell lines used in the teratoma assay between (2000–2020). (B) The teratoma assay is mostly
used for assessing pluripotency, and in a limited number of cases, for assessing malignancy.

3.2. Differences in Experimental Set-Up of the Teratoma Assay

In the teratoma assay, a specified number of cells are injected into an immunodeficient
mouse; growth of tumors is usually monitored over a period of weeks or months, and
at certain time points (usually determined by tumor size), the tumor is removed and
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examined for the presence of germ layer derivatives and/or malignant components [21,22].
The duration of the experiment, i.e., the time teratomas were allowed to grow, varied from
one week to one year. On average, tumors grown in the subcutis (under the skin) were
removed after 4–32 weeks, intramuscular tumors after 1–26 weeks, and tumors grown in
other organs after 1–18 weeks.

In the included studies, a relatively large variation in the numbers of injected cells,
ranging from 800 to over 10 million cells per injection was observed (Figure 3A). Most
studies (78%) reported the injection of around one million cells per animal (Figure 3A).
Despite the number of transplanted cells being crucial to determining pluripotency, our
analysis showed that the exact number was not always reported. Instead, the information
was, in some cases (8.7%, n = 43), limited to the number of cells from a surface area of the
culture dish with a certain (percentage of) confluency; we recalculated this to cell numbers,
estimating 132.000 cells per confluent square centimetre. In other studies evaluated, only
a range of cell numbers was provided without exact specification (Figure 3A). When cell
numbers were not provided or could not be recalculated, for instance ,when only num-
bers of cell colonies were mentioned, the publication was excluded from further analysis
(n = 2, 0.4%). The vehicle (medium and/or extracellular matrix) in which cells were in-
jected, which can affect their engraftment [23] was specifically mentioned in 56.3% (n = 277)
of publications. The composition of the vehicle varied depending on the publication, from
a neutral buffer such as Hanks’ Balanced Salt Solution (HBSS) or Phosphate-buffered Saline
(PBS), extracellular matrix (ECM) such as Matrigel®, or collagen injected alone or mixed
with buffer or media in varying proportions (Figure S2A).
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injected cell numbers. In case surface area and confluency were reported rather than cell number,
cell number was recalculated; 1 × 106 represent the most frequent number of injected cells (25.2%,
n = 124). The red box includes all cell numbers within the 1 × 106 range. (B) Most commonly used
anatomic areas for cell injection (subcutaneous, intramuscular, organs, other). Note that percentages
do not sum up to 100% due to various reports where the assay was performed in multiple injection
sites. (C–F) Reported and described anatomical sites for injection.
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The site of injection in the mouse body can affect the efficiency of tumor development
and even its composition, due to the niche-specific biochemical and cellular cues [23,24].
Despite this, different mouse injection sites have traditionally been used in teratoma assays.
The most common reported sites were subcutaneous (41.7%), intramuscular (23.4%), or into
an organ (28.7%) (Figure 3B). In most of the reports of subcutaneous injections, the exact
body location was also not defined, whilst others reported locations with variable accuracy
such as “between the scapulae” or simply “the back” (Figure 3C). A similar lack of detail
regarding the injection site was observed in the group where the injection was intramuscular.
The majority of these publications reported the injection site simply as “intramuscular” or
“rear leg muscle”, while only 5.4% of the publications with intramuscular injection reported
the specific location such as “Tibialis anterior” (Figure 3D). Testis (66.7%) and kidney (34.8%)
were the most frequently reported organs used as injection sites (19.1% and 10.0% of the
total number of analyzed studies, respectively), whilst only a few publications used liver
or heart for cell injection (Figure 3E). In most cases when the cells were transplanted into
testis or kidney, it was not clear whether cells were injected directly into the organ or under
the capsule of the organ. In the category “other”, we placed anatomical locations which
did not fit in any of the categories described above. “Hindleg” was often (5.6%) reported as
injection site without specifying whether the cells were transplanted subcutaneously or
intramuscularly, and were thus included in the “other” category (Figure 3F). In addition, in
5.5% of the publications analyzed, cells were injected into multiple sites in the same mouse.

In the majority of the publications evaluated (63.2%, n = 311), the sex of the injected
mice was not mentioned. When this information was provided, male mice were preferen-
tially used (82.9%, n = 150) compared to females (17.1%, n = 31). For both sexes, age of mice
used for injection was similarly poorly described, since in most reports this information
was missing (59.6%, n = 293). When this information was provided, young adults (aged
4–8 weeks; 34.3%, n = 169) were most frequently used.

Over the last few decades, many strains of immunodeficient mice have been developed,
allowing researchers to tailor the mouse model used to their experiments. However, this
has also generated confusion when reporting the mouse strain used to make teratomas.
Our analyses found that relatively few publications presented full strain details, with the
majority using collective terminology such as SCID, NOD/SCID, CB17/SCID, NSG, or
Nude (Table S2). Since complete strain nomenclature was rarely used, we were not able to
assess differences in results between specific mouse strains.

3.3. Tumor Evaluation

As expected, histology and the specific use of H&E staining of paraffin-embedded
sections was the most widely used method (96.7%, n = 477) to evaluate the composition of
tumors. Apart from H&E staining, IHC of tumor sections were frequently used to identify
cells from different germ layers or the presence of undifferentiated cells. In publications
where histological analysis was performed using H&E stainings, representative images
of the sections were shown to demonstrate the presence of tissues originating from the
three germ layers, illustrating pluripotency of the cells tested. In the majority (65%) of
reports, this was the only analysis documented (Figure 4A). On occasion, mRNA expression
measured by (quantitative) reverse transcription-polymerase chain reaction (qRT-PCR) was
used for whole transcriptome analysis on parts of the tumor (Figure 4A).

Since pluripotency can also be demonstrated with in vitro methods, we examined
whether other differentiation experiments were performed besides teratoma assays. Indeed,
60.6% of the analyzed publications also reported results of monolayer or 3D differentiation
in EBs, either spontaneous or directed. In all of these publications, the ability to generate
derivatives of the three germ layers was clearly demonstrated using a variety of markers
by IHC or mRNA levels.
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In 10% of the publications analyzed, malignancy was evaluated based on H&E staining
and cell morphology and/or by examining expression of marker proteins by IHC/IF (im-
munofluorescence) (Figure 4B). Additional tumor components were sometimes identified
and classified as “immature teratoma”, “teratocarcinoma” “dysgerminoma”, or simply,
“malignant tumor”. Malignant cells were detected in 32.6% (n = 16) of the publications
included in our analysis that evaluated malignancy.

3.4. Use of the Teratoma Assay from 2000 to 2020

The problem of large variations in the experimental setup and reporting of the ter-
atoma assay was first raised and discussed many years ago, culminating in several calls
for standardization [14,15,25]. In addition, a number of alternative in vitro and in silico
methods have been developed that could reduce the numbers of experiments performed.
However, the number of publications that include teratoma assays has not decreased in
more than 20 years (Figure 5A), although there have been some moderate changes in
the experimental set-up. From 2005 onwards, cells have largely been injected subcuta-
neously and this has become the most frequently used injection site (40.8%, Figure 5B).
The most commonly used solutions for injection have become ECM (22.4%) or ECM mix
(with buffer or cultured medium, 41.3%) (Figure S2A), but there is still variation in the cell
suspension solution.
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3.5. Quality Assessment

In many of the publications analyzed, the teratoma assay was presented as a ‘check
box’ to demonstrate pluripotency, rather than a critically analyzed experiment. As a result,
important details essential for objective analysis and transparent reporting were lacking.
Only 37.6% (n = 185) of the publications analyzed mentioned the number of animals used to
perform the teratoma assay. Even then, we found that a range rather than an exact number
of animals had been provided; therefore, it was not always clear how many animals were
used per cell line.

Other variability indicators included professional pathology assessment of the tumor.
The tumors were assessed by a pathologist or “pathology unit” in only 4.7% and 2.2% of
the studies, respectively. In addition, information regarding the methodology for tumor
sampling was lacking.

Similarly, risk of variability derived from animal experiments was evaluated based
on provided information regarding assessment of tumor progression, intervention due
to welfare issues, or interventions that were not related to the experimental design. This
information was consistently absent in the publications, as in all cases these were “Not
reported”, which could lead to variability since these factors can highly influence the
reliability and reproducibility of the procedures and the quality of the outcome (Figure 6).
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4. Discussion

The use of mice as an experimental model for the induction of teratomas has been
undertaken for at least seven decades [26–31]. Whilst the teratoma assay has been subject
to scientific scrutiny and ethical questions over many years [14,26,32], it continues to be
routinely used by researchers for testing pluripotency. This is despite numerous calls for
its standardization, for example, by Müller et al. [14]. Nonetheless, in this study we have
found that the lack of standardized reporting of key quality indicators, as well as lack
of standardization of the procedure itself, continues. During this systematic review, we
found that a total of 172 publications could not be included based on our criteria due to the
absence of crucial details that could influence the reliability of the reported outcomes, such
as number of injected cells, duration of the experiment and place of injection (Figure S1).
In our study, for the initial screening, we included as a search term: “teratoma assay”,
meaning that the title and abstract should include the term “teratoma assay” (See Table S1).
This served as the basis of our search strategy aiming to collect all relevant articles on the
topic. We can however not exclude that there is a possibility of other articles not mentioning
“teratoma assay” in the title or abstract that did perform the assay and thus were left out
of our screening procedure. We believe that despite this potential limitation, the sample
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of articles included is representative of the published papers where the teratoma assay
was used.

Our findings appear to agree with observations made by Percie du Sert et al. [16] on the
lack of consistency in adherence to the ARRIVE guidelines, which set out the requirements
for performing and reporting animal research. Transparent and accurate reporting is crucial
to improve the reproducibility of scientific research. Such reporting facilitates researchers
being able to consider methodological rigor of the studies, assess how reliable the reported
findings are, and be able to reproduce or build upon such work [33]. In turn, such reporting
would increase the scientific validity of the results and maximize the knowledge gained
from each experimental study. The omission of essential information can lead to scientific
and ethical concerns being raised, including those regarding animal welfare [34]. However,
in our analysis, we found a relatively large variation in the numbers of injected cells and the
graft sites chosen, which in many cases used non-specific, generic descriptions of the exact
anatomical site. It is essential that such information is provided, given that any variance
in such factors may influence the development of the resultant teratoma, compromising
objective comparisons between different cell lines [25,35].

Such variance in the reporting and lack of adherence to the ARRIVE guidelines not
only affects the ability of researchers to reproduce such methodologies but is likely also
to lead to detrimental consequences for animal welfare, such as unnecessary pain and
suffering in the mice used. As an example, the choice of the graft site: if the graft site is
an internal organ such as kidney or testicles, it is more challenging to track and assess
the size and growth of the resultant teratoma, leading to animal distress. Similarly, whilst
there is a historical basis for teratomas derived from the testis, due to the discovery of
spontaneous testicular teratomas in the 129 mouse strain [29], the transplantation of cells
into mouse organs is more harmful to the animal than subcutaneous injections, and there is
no indication that injection into an organ is more efficient than subcutaneous injection. It is
therefore surprising that in recent years, cells were reported as having been transplanted
into the mouse testis or under kidney capsule without reporting the humane endpoints or
how tumor growth was assessed.

We also found that there were variations in the reported cell volumes injected, ranging
from volumes of 600 to 1000 µL in subcutaneous injections, for example, despite evidence
being available that injection of smaller volumes is equally effective [36–38]. Furthermore,
there are published guidelines for injection volumes, where it is claimed that exceeding
ten times the advised volumes causes pain and discomfort in the mouse and it should not
be allowed [39]. Other commonly unreported variables that should always be disclosed
are the cell passage number, as prolonged in vitro culture may lead to genomic or epige-
netic abnormalities [40–42]; and the use of Matrigel® for cell suspension, as it has been
found to increase the efficiency of subcutaneous teratoma formation when co-injected with
hESCs [23].

Laboratory animals used in research and education are protected by legislation. For
example, in the European Union, they are protected under EU Directive 2010/63/EU
following the principles of replacement, reduction, and refinement (3Rs), and highlighting
that the use of animals for research purposes must only be considered when there is no
non-animal method available. As such, this and similar legislation in other countries
places researchers under legal obligations to use an in vitro model, if such models exist. In
this regard, hPSC PluriTest and ScoreCard are validated methods that have been widely
tested by the International Stem Cell Initiative (ISCI) as appropriate alternative methods for
pluripotency evaluation according to the downstream application of the cells [3]. Analysis
of gene expression by PluriTest can be used to rapidly screen and identify cells that also that
meet the criteria of pluripotency as a status [3]; if direct and quantitative confirmation of
differentiation capacity is required, the ISCI recommends in vitro spontaneous and directed
EB differentiation combined with bioinformatic ScoreCard analysis [3].

The use of PluriTest and ScoreCard methods instead of the in vivo teratoma assay for
testing pluripotency would already have a significant impact on the reduction of animal
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use in hPSC research, considering that pluripotency evaluation is the primary goal for the
application of the teratoma assay (Figure 2). It is remarkable how, since the first publications
of use of ScoreCard and PluriTest (2011 and 2015, respectively), only 50–60 articles have
been published reporting their use for pluripotency assessment (numbers extracted from
the same search engines used in our study). This represents an estimated mere 10–20%
compared to the articles that were published since then reporting use of the teratoma assay,
further highlighting the poor adherence to these alternative animal-free approaches.

To date, the teratoma assay is the only assay that provides valuable information on
the malignant potential of cells; this is relevant to the pre-clinical safety assessment of
hPSCs [3,43]. Further research efforts are needed to identify in vitro genetic and epigenetic
biomarkers indicative of malignant potential. In addition, the meaning of histological
features such as yolk sac and immature neural elements present in the teratoma assay
reported as possible malignancy features need further investigations [3].

5. Conclusions

Despite the legislation, the 3R principles, and enforcement of the ARRIVE guidelines,
our systematic review has demonstrated that this has had little to no impact in better
reporting and reduction in the number of teratoma assays being performed.

Although the teratoma assay is still considered by many as the gold standard for
pluripotency and malignancy of hPSCs, the large variability in performing the assay
demonstrates that it is far from standardized. Why, then, is there continued use of the
teratoma assay despite its limitations and animal-free alternatives being available? It
could simply be that it is still perceived by some editors and researchers as the “gold
standard” [44].

Our results also indicate that, although the teratoma assay is the only test able to
assess pluripotency and malignancy potential simultaneously, malignancy assessment is
rarely the primary goal while animal-free methods are available for testing pluripotency of
stem cells.

We hope that this systematic review will raise awareness amongst researchers and
publishers of the clear need for transparent reporting and the use of veterinary guidelines
for the care of laboratory animals to limit the detrimental consequences on their welfare
and to improve experimental reproducibility. In addition, awareness is needed that the
teratoma assay should only be used where in vitro alternatives are not available, such as
for malignancy assessment, and not for pluripotency evaluation, the main pretext for this
assay. Perhaps the most important lesson from this systematic review is the unmet need for
in vitro assay/s which can assess malignancy potential and therefore replace entirely the
need to carry out in vivo teratoma assays.
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