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Abstract: Food enzymes have an important role in the improvement of certain food characteristics,
such as texture improvement, elimination of toxins and allergens, production of carbohydrates,
enhancing flavor/appearance characteristics. Recently, along with the development of artificial
meats, food enzymes have been employed to achieve more diverse functions, especially in converting
non-edible biomass to delicious foods. Reported food enzyme modifications for specific applications
have highlighted the significance of enzyme engineering. However, using direct evolution or rational
design showed inherent limitations due to the mutation rates, which made it difficult to satisfy the
stability or specific activity needs for certain applications. Generating functional enzymes using de
novo design, which highly assembles naturally existing enzymes, provides potential solutions for
screening desired enzymes. Here, we describe the functions and applications of food enzymes to
introduce the need for food enzymes engineering. To illustrate the possibilities of using de novo
design for generating diverse functional proteins, we reviewed protein modelling and de novo design
methods and their implementations. The future directions for adding structural data for de novo
design model training, acquiring diversified training data, and investigating the relationship between
enzyme–substrate binding and activity were highlighted as challenges to overcome for the de novo
design of food enzymes.

Keywords: food enzyme engineering; artificial intelligence; enzyme engineering; de novo design

1. Introduction

Proteins are widely distributed in all living organisms, and are natural biocatalysts that
participate in biological reactions [1–4]. Proteins are widely applied in various industries.
They are used for generating food appearance and flavor [5], participating in (bio)-material
processing [6], or used as drugs [7] or bio-materials [8]. Food enzymes are a group of
proteins that are emerging as additives used for food processing [9]. In recent years,
studies have shown that food enzymes not only play a role in traditional food industrial
processing, such as in baking, dairy, bean and meat products [10], but have also been
advantageous to novel food products processing, such as artificial meat [11]. In addition,
several food enzymes show capabilities for degrading allergens [12] or bitter peptides [13],
providing food processing convenience. Since the sophisticated performance of food
enzymes was approved, the US Food and Drug Administration (FDA) and European
Food Safety Authority (EFSA) have issued several statements to standardize the uses
of food enzymes, in order to ensure food safety [14]. With the permission for use, the
applications of enzymes in food processing continuously increased over the past few
years; the reported market size for enzymes (mainly food enzymes) exceeded 17 billion in
2020 [15,16]. However, not all food enzymes can meet their industrial application needs,
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partly due to their insufficient stability or low activity, and partly due to adverse processing
conditions [17].

Enzyme engineering aims to resolve weak enzyme stability and low activity issues.
The enzyme engineering technique can be mainly divided into direct-evolution, rational
design, and semi-rational design [18]. Although enzyme engineering still massively relies
on high-throughput screening supported by direct evolution and semi-rational design, re-
ports on rational design-based enzyme modification are displaying an increasing trend [19].
One reason is the high labor and experimental cost of high-throughput screening, and it
is always hard to find a screening method [20]. Another reason is that the rise in accurate
protein modeling and energy computing techniques in recent years has dramatically re-
duced the difficulty of rational design [21,22]. Therefore, a growing number of researchers
are adopting rational design for enzyme evolution. Developing protein design methods
has served the need for screening functionalized therapeutic proteins or high-efficiency
enzymes [23,24], which aim at satisfying the grand market of commercialized therapeutic
proteins [25]. Rational design methods successfully assisted protein evolution [21,26–28].
However, it is difficult to substantially improve a certain function of a given protein by
conducting single or several point mutations, or by bringing in highly diversified changes
to protein functions.

A breakthrough in the field of rational design is de novo design. De novo design learns
features from existing sequences and structures, which can be used to create diversified
novel proteins to reinforce the functionality of natural proteins [29,30]. The progression of
AI technology and the development of bioinformatics have pushed the rapid development
of de novo design techniques to increase the number of proteins that were designed from
scratch displaying diverse functions [31–34]. Advances in protein de novo design have
provided opportunities for the direct evolution of enzymes. The implementation of de
novo design for generating functional proteins, protein binders or industrial enzymes has
achieved great success [31–35]. In this review, by describing the function and challenges
of food enzymes, the potential and opportunities of using de novo design techniques for
functional food enzymes engineering were highlighted. The AI-based protein modeling
and de novo design tools, as well as their utility for protein engineering, were reviewed to
gain insight into the potential of using these tools for food enzymes engineering.

2. Diverse Functions of Food Enzymes

Food enzymes are widely used in various food processing [19], and are mostly derived
from microorganisms. According to enzyme classification, commercial food enzymes can
be classified into oxidoreductases, transferases, hydrolases, isomerases and ligases, while
proteases take the principal portion (Table 1). In practical uses, food enzymes are mainly
used to improve food taste and appearance, or to convert sugar-related reactions [36–38]
(Figure 1). For example, in meat product processing, proteases (such as papain) and transg-
lutaminases are used for meat tenderization [39] and improving texture [36], respectively.
In dairy products processing, proteases such as lactase can be used for hydrolyzing lactose
into galactose and glucose, in order to assist human absorbance [40]; lipase can assist in oil
hydrolysis [41]; and esterase can improve the flavor by hydrolyzing esters into acids and
alcohol [42]. For winemaking, pectinase can hydrolyze pectin to improve the flavor and
color of wine [43], and glucose oxidase can oxidize glucose into gluconic acid and generate
hydrogen peroxide, which can improve product quality and enhance the storage period
during beer production [44].
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Figure 1. Sample applications of food enzymes. This figure lists six commonly used food enzymes. 
Transglutaminase (structure obtained from Protein Data Bank, ID: 1IU4, generated by PyMol) cata-
lyzes the formation of heteropeptide bonds between the γ-amide group of the glutamine residue in 
the protein and the ε-amino group of Lys. Cellulase hydrolyzes cellulose to produce glucose and 
oligomeric fiber. Amylase hydrolyzes the glycosidic bonds inside starch. Lipase hydrolyzes triglyc-
erides to glycerol and fatty acids. Lactase catalyzes the hydrolysis of β-D-galactoside and α-L-arab-
inoside. Protein-glutaminase catalyzes the deamidation of Glu residues in proteins. Protein struc-
ture generated using PyMol (Schrödinger, New York, NY, USA). 

Table 1. Typical functions of food enzymes. 

Enzyme  
(EC Number) 

Catalytic Reaction Commercial Source 

Transglutaminase  
(EC 2.3.2.13) 

Catalyzing the formation of heteropeptide bonds be-
tween the γ-amide group of the glutamine residue in 

the protein and the ε-amino group of Lys [36]. 
Streptomyces mobaraense 

Laccase  
(EC 1.10.3.2) 

Catalyzing single-electron oxidation of phenols, aro-
matic amines, and other electron-rich substrates [45]. 

Aspergillus oryzae, Mycyceliophora 
thermophila 

Protein-glutaminase  
(EC 3.5.1.44) 

Catalyzing the deamidation of Glu residues of pro-
teins [46]. Chryseobacterium proteolyticum 

Figure 1. Sample applications of food enzymes. This figure lists six commonly used food enzymes.
Transglutaminase (structure obtained from Protein Data Bank, ID: 1IU4, generated by PyMol) cat-
alyzes the formation of heteropeptide bonds between the γ-amide group of the glutamine residue
in the protein and the ε-amino group of Lys. Cellulase hydrolyzes cellulose to produce glucose
and oligomeric fiber. Amylase hydrolyzes the glycosidic bonds inside starch. Lipase hydrolyzes
triglycerides to glycerol and fatty acids. Lactase catalyzes the hydrolysis of β-D-galactoside and
α-L-arabinoside. Protein-glutaminase catalyzes the deamidation of Glu residues in proteins. Protein
structure generated using PyMol (Schrödinger, New York, NY, USA).

Table 1. Typical functions of food enzymes.

Enzyme
(EC Number) Catalytic Reaction Commercial Source

Transglutaminase
(EC 2.3.2.13)

Catalyzing the formation of heteropeptide bonds
between the γ-amide group of the glutamine residue in

the protein and the ε-amino group of Lys [36].
Streptomyces mobaraense

Laccase
(EC 1.10.3.2)

Catalyzing single-electron oxidation of phenols,
aromatic amines, and other electron-rich substrates [45].

Aspergillus oryzae, Mycyceliophora
thermophila
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Table 1. Cont.

Enzyme
(EC Number) Catalytic Reaction Commercial Source

Protein-glutaminase
(EC 3.5.1.44)

Catalyzing the deamidation of Glu residues of proteins
[46]. Chryseobacterium proteolyticum

α-Amylase
(EC 3.2.1.1) Hydrolyzing α-1,4-glycosidic bonds inside starch [38]. Bacillus licheniformis, Thermus

Aquaticus
Lactase

(EC 3.2.1.108)
Catalyzing the hydrolysis of β-D-galactoside and

α-L-arabinoside [40].
Bacillus subtilis, Bifidobacterium

bifidum
α-Glucanase
(EC 3.2.1.59);
β-Glucanase
(EC 3.2.1.73)

Hydrolyzing α/β-glucans [47]. Bacillus subtilis, Bacillus
amyloliquefaciens

Phosphatidylinositol-specific
phospholipase C

(EC 3.1.4.11)

Hydrolyzing the phosphodiester bond of
phosphatidylinositol to diacylglycerol and water-soluble

phosphoinositol [48].
Pseudomonas fluorescens

Polygalacturonase
(EC 3.2.1.15)

Catalyzing pectin molecule α-(1,4)-polygalacturonic
acid cleavage [49].

Trichoderma reesei, Aspergillus
tubingensis

Pectinesterase
(EC 3.1.1.11)

Hydrolyzing pectin to produce pectinic acid and
methanol [43].

Trichoderma reesei, Aspergillus
tubingensis

endo-β-1,4-xylanase
(EC 3.2.1.8) Hydrolyzing xylan molecule β-1,4-glycosidic bonds [50]. Trichoderma reesei, Thermopolyspora

flexuosa
Lipases

(EC 3.1.1.3)
Hydrolyzing triglycerides to glycerol and fatty acids

[41].
Trichoderma reesei, Fusarium

oxysporum

4-α-glucanotransferase
(EC 2.4.1.25)

Catalyzing the breaking of α-1,4-glycosidic bonds and
the transfer of α-glucan residues within or between

molecules [51].
Aeribacillus pallidus

Rennin
(EC 3.4.4.3)

Hydrolyzing the peptide bond between Phe105-Met106
of κ-casein in milk [52]. Kluyveromyces lactis

Cellulase
(EC 3.2.1.4)

Hydrolyzing cellulose to produce glucose and
oligomeric fiber [37]. Trichoderma reesei

Glucose isomerase
(EC 5.3.1.18) Catalyzing isomerization of glucose to fructose [53]. Streptomyces, Bacillus subtilis

α-glucosidase
(EC 3.2.1.20)

Hydrolyzing the glycosidic bond of the non-reducing
end of polysaccharides or converting the

α-1,4-glycosidic bond of oligosaccharides into
α-1,6-glycosidic bonds [53].

Saccharomycetes, Aspergilusniger

Glucose oxidase
(EC 1.1.3.4)

Oxidizing β-D-glucose to become gluconic acid and
hydrogen peroxide [44]. Aspergillus niger

Subtilisin
(EC 3.4.21.62) Hydrolyzing proteins into amino acids [54]. Bacillus subtilis

Phytase
(EC 3.1.3.8)

Catalyzing the removal of phosphate groups by inositol
hexaphosphate [55]. Natuphos

The application of food enzymes in food processing has gradually been recognized
with the growing attempts to use food enzymes. Several food enzymes, such as trans-
glutaminases, laccases and lactases, can be used in processing meat, dairy, and bean
products [36,40,45]. Traditional food enzymes such as peroxidase, transglutaminases and
laccases are well suited for improving meat texture and flavor for novel products such as
artificial meat. Recent studies showed that some food and several potential food enzymes
(not commercialized) are essential in desensitization and flavoring. There has been research
on using aldehyde dehydrogenase [56] and aldehyde oxidase [57] to remove the beany
flavor and foul smell of soybean-based artificial meat. Studies on enzymatic degradation
of soybean protein allergens have illustrated the critical effect of papain, pepsin, alkaline
protease and other commercial proteases for degrading several key protein allergens such
as 7S protein α subunits and 11S soybean globulin [12]. However, these proteases showed
low degradation efficiency due to their specificity against these protein allergens. The
diverse functions of food enzymes support their uses in food processing; however, their
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insufficient stability, substrate specificity and activity can directly influence their involved
applications, or result in unsatisfactory products after food processing.

3. Challenges for Food Enzyme Engineering

Naturally existing proteins usually show limitations during practical uses as a result
of unsatisfactory activity or stability [58,59], which has motivated researchers to find
solutions. During food processing, the conditions of high salt, high concentrations of
organic solvents or high temperatures can be harsh for food enzymes. These adverse
conditions mainly affect the half-life and activity of enzymes. Enzyme engineering aims to
provide solutions for insufficient enzyme stability, unsatisfactory specific activity and weak
solvent tolerance. Food enzyme dosages have strict standards set by organizations such
as the EFSA and FDA [14]. Therefore, strengthening enzyme performance is necessary. In
addition, modified enzymes with better environmental tolerance or activity can optimize
the processing protocol, and reduce energy consumption by rapidly accomplishing the
processing task or avoiding bacterial contamination.

Many studies have attempted to engineer food enzymes using direct evolution or
rational design (Table 2) to overcome enzyme property limitations and expand their applica-
tions. The initial motivation for food enzyme modification was to meet specific applications,
such as engineering the thermostability of microbial transglutaminase to satisfy its applica-
tion for tofu and fish ball processing, since this processing involves a cool-down process
prioritized to enzyme addition [27]. Meanwhile, previous reports suggested that protein
thermostability is correlated with various harsh environmental tolerances [60]. Hence,
improving enzyme thermostability may positively affect its overall stability under different
conditions. More importantly, reinforcing an enzyme’s thermostability and activity can
extend its potential utilities. For example, modification of substrate specificity can make mi-
crobial transglutaminase specifically label one site of human hormone, which supports its
potential industrial application for polymer–drug conjugation [61]. The great effort being
paid for food enzyme engineering has benefited their applications, such as in engineering
the thermostability of phytase that improved its use as an animal feed supplement (usually
pre-mixed at 75–95 ◦C) [55].

Table 2. Enzyme modification and the modification aims.

Enzyme and Source Effect of Best Variant Aims and Reference

Transglutaminase (Streptomyces
mobaraenesis)

Tm and specific activity increased by 3.4
◦C and 67.8%.

Processing tofu and fish balls at high
temperatures. [27]

Glucoamylase (Talaromyces leycettanus) Tm and specific activity increased by 9 ◦C
and 305.4%.

Inducing the conversion of starch to
glucose at high temperatures. [62]

Alpha-amylase (Rhizopus oryzae) t1/2 (55 ◦C) increased by 2.55-fold. Optimizing winemaking protocol. [63]

Cellulase (Penicillium canescens) t1/2 (60 ◦C) increased by 3.4-fold.
Catalyzing the formation of
gentiooligsaccharide at high

temperatures. [64]

Serine protease (Pseudomonas aeruginosa) Tm and specific activity increased by 5 ◦C
and 1.4-fold.

Protease treatment at high temperatures
enables fast processing and avoids

bacterial contamination. [65]

Lipase (Yarrowia lipolytica) t1/2 (50 ◦C) increased by 70%. Optimizing grain and oil-processing
protocol. [66]

Endoglucanase (Bipolaris sorokiniana) Specific activity increased by 1.5-fold. Enabling rapid food processing. [67]

Phytase (Escherichia coli) Residual activity improved by 78.4% at
90 ◦C. Used as animal feed supplement. [68]

Glucose isomerase (Thermoanaerobacter
ethanolicus) Specific activity increased by 2-fold. High-fructose corn syrup one-step

biosynthesis. [69]

β-glucanases (Bacillus terquilensis) Improved acidic tolerance, and increased
specific activity by 45%. Serving food mashing process. [70]

Tm: Melting temperature, a temperature point at which protein undergoes a reversible folding or unfolding
transition. t1/2: Half-life (t1/2) for proteins at a specific temperature.
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Whether using directed evolution or rational design for enzyme engineering, the
resulting mutation sites are limited. Therefore, it is relatively difficult to obtain dramatic
reinforcement of the target property using conventional engineering methods compared
with screening enzymes from novel organisms, such as finding thermostable enzyme
variants from thermophilic bacteria [71], or finding cold adaptive enzymes from deep-
sea creatures [72]. In the past five years, achievements in using protein modeling and
AI-based energy calculation for the rational design or de novo generation of functional
proteins was conspicuous [22,33], especially for using de novo design to screen high-
affinity protein binders, including drug proteins and antibodies [31,33]. De novo-designed
proteins usually have high thermostability, since they always pursue the lowest energy
structures. Meanwhile, de novo design-based novel enzyme screening dramatically reduces
the difficulty of searching for potential functional enzymes from the gene library. However,
de novo techniques assisting food enzymes engineering have been reported relatively less.
De novo design using AI technology may provide more possibilities for expanding enzyme
functions (including specific catalytic ability and stability) by generating non-existent
proteins naturally. Moreover, recent progress for de novo design protein binders have
highlighted the potential of directly generated enzymes with target functions.

4. De Novo Design Inspired by Highly Accurate Protein Modeling

Acknowledging the basis for protein modeling is the key to understanding protein
de novo design. The protein evolution reinforced by AI has achieved great success, and
led to the protein-based industry entering a new era [58,73]. Currently, AI-based tools
have shown a significant impact on proteomics and structural biology, such as annotating
proteins [2], searching functional proteins from the bacterial genome [74], predicting en-
zyme activity [75], modeling protein structures [22] and designing proteins [32]. Protein
evolution reinforced by AI has contributed to the protein-based industry, which is entering
a new era [58,73]. The pre-trained AI models used for predictions can save computational
time and the required computing resources, which have benefited from their efficiency [76].
Machine learning (ML) and deep learning (DL) are critical subfields of AI, while the revolu-
tion of DL-based techniques dramatically benefited protein modeling and design in the
past five years [22,32,77].

Most of the currently available protein design methods have adopted approaches used
for protein modeling [21,26,78]. For instance, one of the examples involves treating the
residue–residue contact map of the target protein as an image segmentation task, inspired
using Convolutional Neural Network (CNN) [79] for protein folding prediction [80]. This
method is commonly used for protein modeling and de novo design by extracting protein
features [22,32,77]. Protein sequential arrangement or functional motif decomposition
was thought to be like human language, which can be organized to represent certain
meanings [81]. Accordingly, Natural Language Processing (NLP) methods originally used
for human language translation were applied to resolving protein folding and de novo
design tasks, by extracting features from protein sequences [22,82].

Accurate protein structural modeling is a complex task. A protein consists of amino
acids which form its primary structure, and the residue–residue interactions within protein
chains drive the formation of its secondary structure, including alpha helixes and beta-
strands. A protein’s tertiary structure is ultimately formed due to the spatial arrangement
of its secondary structures. Experimental techniques such as crystallography [83], nuclear
magnetic resonance (NMR) [84] and Cryo-EM [85] have contributed to the Protein Data
Bank (PDB) [86] dataset. However, due to the high cost of resolving protein structures, the
currently available data comprise less than 200 thousand natural proteins, less than UniProt-
deposited (more than 230,000 thousand) natural proteins [1]. In this context, the need for
acquiring protein structures has promoted the progress of protein modeling methods.
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4.1. Template-Based Protein Modeling

Protein modeling can be either template- or non-template-based. MSA is a well-
employed template-based method for structural modeling [87,88]. The use of MSA aims to
count the matches, mismatches and gaps of aligned protein sequences for uncovering the
coevolutionary features of the target sequence [89] (Figure 2). For template-based protein
modeling, the conserved areas revealed by MSA show that the target sequence is aligned to
available structural data, and guides local folding to prioritize the whole structural folding.
MSA was used very early by MODELLER [88] and SWISS-MODEL [90] to guide structural
modeling, and has subsequently been adopted by AI-based tools. AI techniques show
significant advantages in extracting protein features and performing predictions (Figure 3).
Protein modeling protocols have been optimized using AI-based techniques, such as
conducting MSA [91] and generating residue–residue interaction (RRI) [92] networks.
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Figure 2. Using MSA for structural modeling. Multiple sequences alignment (MSA) describes aligning
protein sequences to highlight the conserved region. For protein modeling, MSA information is
used to guide searching of structural fragment templates prior to whole structure folding. Protein
sequence alignment was generated using Jalview (Andrew Waterhouse and Geoff Barton’s group,
Dundee, Scotland). Protein structure generated using PyMol (Schrödinger, New York, NY, USA).

AlphaFold-2 (AF-2) highlights that the DL model can assist protein modeling as
experimentally resolved, with an average error of 1 Å [22]. Protein modeling using MSA
is a key to providing better accuracy [93]. Most AI-based protein modeling tools adopted
MSA as an initial step, including AF-2 [22], RF [77,87], and I-TASSER. AF-2 learned features
from the combination of MSA and RRI networks to guide the structure modeling. AF-2
developed a variant of Transformer [94] named Evoformer, which mainly uses “Attention”
mechanism for feature extraction and progression. “Attention” mechanism was developed
for language (sequence) translation (from encoder to decoder). It has been used to recognize
conserved regions of the input sequence, and to guide the template selection in protein
modeling [95]. On the other side, the features of RRI maps that were built depending
on amino acids distribution and their steric interaction information (represented by a
2-dimensional distance map) were also extracted using “Attention” mechanism. Solely
depending on RRI maps (trained networks), guided protein folding enabled AF-2 to
perform non-template-based structure modeling. Generally, AF-2 adopts a combined
search function that relies on MSA and RRI information to guide the template matches,
followed by the “recycling step” that uses the output structure predicted by the network
to match the structural labels, in order to guide model training. The protocol of AF-2 has
inspired the invention of RF [77], which focuses on speeding up the prediction time by
developing a concise MSA feature extraction step.



Int. J. Mol. Sci. 2023, 24, 3827 8 of 19

Another classic method, “multiple threading alignments” was adopted by I-TASSER [87],
although I-TASSER adopted MSA as an initial modeling step. The “threading” method
was used to evaluate the fitness of smaller sequential and structural fragments with the
template protein backbone. The “threading”-based template search has also been widely
used for protein de novo design for accommodating structural fragments, including the
methods such as Rosetta match [26] and FixBB [96]. The key for template-based protein
modeling is to find reliable local compartments, since fragment assembly is thought of as
an early stage of whole protein folding [97].
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Figure 3. Deep learning used for structural modeling and design. For protein modeling, deep learning
(DL) is used to learn sequence information (or MSA features) from the 1-dimensional sequences,
residue–residue interaction information from the 2-dimensional contact map, or 3-dimensional
structural information based on input structures, through aligning with the target structure (DL
labels) to train the model. Protein de novo design takes advantage of protein modeling models by
finding the compatible structure (and sequences) of the target block within a given protein to design
novel proteins. Protein sequence alignment generated using Jalview. Protein 2-dimensional contact
map generated using Discovery Studio 2019. Protein structure generated using PyMol.

4.2. Non-Template-Based Protein Modeling

In classic protein modeling methods, the non-template-based method was mainly
stochastic sampling-based. Protein was thought to fold into its energy-minimized state in
solution [98]. Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC) simulations
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were commonly used to simulate atom movements and interactions, which were used
for protein ab initio folding [99–101]. Currently, MC and MCMC methods are commonly
used for whole structural optimization, rather than for performing protein folding or for
modeling protein regions that are highly disordered [102]. The main drawback of non-
template-based protein modeling is the computing speed, since both MC and MCMC
use extensive computing resources [76]. In addition, ab initio folding cannot guarantee
modeling accuracy either. Therefore, non-template-based protein modeling methods purely
relied on MC, and MCMC was gradually abandoned.

For AI-based non-template-based protein modeling, RRI information used to train
protein modeling networks brought out the possibility of training non-template-based
models. RRI information used for training integrated the model, including AF-2 [22],
RF [77], trRosetta [103] and I-TASSER [87]. A dramatic limitation of training networks
solely depending on RRI information is the requirement of massive available structural
data. However, currently available structural data may not be sufficient for training a
solely RRI-based model, due to PDB having many reductant structures or proteins with
high identities. Meanwhile, proteins such as membrane proteins only comprise a minor
portion of the whole dataset, which can result in biased predictions after training [104].
Therefore, MSA-guided fragments assembly is still necessary for protein modeling, such as
for membrane proteins, despite generating MSA in computational resources consumption.

Meta AI developed ESMFold without requiring the MSA step [105]. This model
was trained with protein sequential and structural information using the “Attention”
mechanism, and passes the input sequence directly to the DL block during prediction
progression without an MSA session. This non-template search prediction has enabled
fast computing of ESMFold, approximately 60 times faster than AF-2, despite its lower
accuracy than AF-2 [105]. Until this review was organized, Meta AI announced that
617 million structures were modeled, and provided public access; meanwhile, the AF-2
database currently provides over 200 million structures. High modeling accuracy can be
supportive for subsequent protein design. Meanwhile, building a DL model for protein
modeling has inspired the construction of AI-based protein de novo design protocols such
as RFdesign [31] and Hallucination [32]. We collectively listed AI-based protein modeling
methods by describing their architecture and utilities in Table 3.

Table 3. AI-based protein modeling tools.

Name Description Ref

AlphaFold-2

Accurate, structures can be directly downloaded from a public dataset. Slow for protein
modeling using source code.

Database accessed from:
https://alphafold.com/ (accessed on 5 February 2020)

https://www.uniprot.org/ (accessed on 5 February 2020)

[22]

ESMFold
Accurate, structures can be directly downloaded from a public dataset.

Database accessed from:
https://esmatlas.com/about#download_dataset (accessed on 5 February 2020)

[106]

RoseTTAFold
Accurate, support for uploading up to 20 sequences for modeling. Relatively fast for protein

modeling using source code.
Webserver: https://robetta.bakerlab.org/ (accessed on 5 February 2020)

[77]

I-TASSER Accurate, support for online uploading modeling tasks and using source code.
Webserver: https://zhanggroup.org/I-TASSER/ (accessed on 5 February 2020) [107]

trRosetta Accurate, support for online uploading modeling tasks and using source code.
Webserver: https://yanglab.nankai.edu.cn/trRosetta/help/ (accessed on 5 February 2020) [103]

A-Prot Only support for source code modeling.
Source code: https://github.com/arontier/A_Prot_Paper (accessed on 5 February 2020) [108]

Colossal-AI Only support for source code modeling.
Source code: https://github.com/hpcaitech/ColossalAI (accessed on 5 February 2020) [109]

https://alphafold.com/
https://www.uniprot.org/
https://esmatlas.com/about#download_dataset
https://robetta.bakerlab.org/
https://zhanggroup.org/I-TASSER/
https://yanglab.nankai.edu.cn/trRosetta/help/
https://github.com/arontier/A_Prot_Paper
https://github.com/hpcaitech/ColossalAI
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5. De Novo Design of Food Enzymes

Protein de novo design refers to the use of rational ways to design novel proteins
that do not exist naturally. It is described as solving the inverse problem of protein
modeling [110]. De novo design can be used to design sequences compatible with the given
structural backbone [111,112], generate a missing block within a given structure [30,31],
or “hallucinate” de novo structures with sequences [32] (Figure 4). Previously, physics-
based modules such as Rosetta Match [26], Fixbb [96] and Remodel [113] (Table 4) have
been successfully implemented to search optimized sequences based on a given structure
(Table 4). These physics-based methods adopt structural fragments replacement or insertion.
They can also be used for large secondary structure replacement, using Rosetta-based
modules such as FunFolDes [114] and LUCS [115]. Physics-based methods have mainly
been applied in the past ten years. Users can design blueprints and assemble protein
by fragment accommodation attempts using TopoBuilder [34]. However, physics-based
de novo design methods require large sampling sizes, which is time-consuming. AI-
based methods emerged to enable fast computing, highly accurate structural modeling,
and the design of functional enzymes. The successful implementation of AF-2 brought
out possibilities for DL to resolve de novo design tasks. Currently, AI-methods such
as Recurrent Neural Network (RNN) [116], CNN, Graph Neural Networks (GNN) [117]
and Generative Adversarial Nets (GAN) [118] have highly participated in integrating de
novo design models (Table 4). Using AI-based techniques for de novo design functional
proteins is showing an apparent upward trend [119]. In the following section, we review
the progression of de novo designs for food enzyme engineering, and introduce AI-based
de novo design methods available for further uses.

Table 4. De novo design methods.

Name Description Ref

Match Physics-based, structural-based, aims at designing de novo functional enzymes using
fragment attempts. [26]

Fixbb Physics-based, structural-based, fit for short area design. [96]

Remodel Physics-based, structural-based, fit for short area design, can be used for protein
reassembling. [113]

FunFolDes Physics-based, structural-based, blueprint-based whole protein de novo design. [114]
LUCS Physics-based, structural-based, fit for designing loop-helix-loop, loop-strand-loop. [115]

TopoBuilder Physics-based, structural-based, blueprint-based whole protein de novo design. [34]

Protein Hallucination AI-based, de novo design of whole protein structures with compatible sequences based
on input sequence. [32]

RFDesign
AI-based, “inpainting” module: designing short blocks based on given structure;

“hallucination” module: designing short blocks based on a given structure, can be used
for designing functional motifs, supporting receptor and donor structure.

[31]

ProteinMPNN AI-based, fast designing compatible sequences using an input structure. [33]

DenseCPD AI-based, only supports uploaded tasks online, online server:
http://protein.org.cn/densecpd.html [120]

ProteinGAN AI-based, GAN model for real-time generating sequences based on a set of input protein
sequences (within the same protein family). [35]

ProtGPT2 AI-based, pre-trained model for generating sequences based on input sequence. [121]
Diffusion model-based AI-based, pre-trained model generating protein structures. [122]

http://protein.org.cn/densecpd.html
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sequences of target areas (ProteinMPNN), generating novel sequences based on input sequences (Pro-
teinGAN), or fixing missing blocks of given structures (Hallucination). Protein sequence alignment
was generated using Jalview. Protein structure generated using PyMol.

5.1. Current Solutions

Generating functional food enzymes using de novo design has been successfully
implemented. Note that de novo design food enzymes can be traced to 20–30 years ago,
such as de novo designs of superoxide dismutase-like enzyme [123] and esterase [124].
The initial challenge for enzyme de novo design is to sustain its activity, whereas earlier
algorithms showed that accommodating catalytic residues in the pocket was difficult and
uncontrollable [123,124]. As a result, the functions of de novo-designed food enzymes
were not satisfactory. Novel algorithms were brought out to overcome this limitation,
by focusing on the accommodation of enzyme active sites. The standout algorithm was
Rosetta Match, which takes advantage of the structural fragments dataset and fragments’
replacement strategy for designing protein functional motifs [78,125]. This algorithm has
been used for the de novo design of pullulanase [126] and esterase [127]. It should be
noted that the combined use of several techniques such as consensus design, MSA and
fragments’ replacement contributed to the high success rate for designing novel enzymes.
Several reports showed that the designed food enzymes notably outperformed native
enzymes in terms of their catalytic activity [127] or stability [126]. However, it was reported
that de novo designs of food enzymes were mostly physics-based, which highly relies on
computational resources and empirical factors.

AI-based de novo design techniques merged to address these limitations and enable
fast design. It was recently reported that ProteinGAN [35] adopted GAN to generate de
novo protein sequences. ProteinGAN was trained using protein sequence data through the
“one-hot” method, in order to convert these sequences into a digital array. The network was
built using ResNet [128] (CNN derived) and “Attention” mechanism for extracting features
from input sequences (by discriminator), and generating novel sequences (by generator).
In the case study, the sequences from the malate dehydrogenase family were used, and the
authors showed that 24% of de novo-designed sequences were expressed experimentally
with enzymatic functions. The initial successes of AI-based techniques for enzyme de novo
design successes have triggered the rapid development of algorithms. However, many
novel AI-based de novo design techniques have not been applied to food enzymes, which
still show great potential.
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5.2. AI-Based De Novo Design Techniques
5.2.1. Protein Hallucination

Protein “Hallucination” [32] was inspired by Google DeepDream, and was introduced
in 2020. Hallucination can be used to generate de novo protein structures with compatible
sequences, without requesting the protein backbone. Hallucination generates a stabilized
structure using a random input sequence, and it adopts the method from trRosetta to
describe the 2-dimensional RRI map of the input sequence [103]. An independent test
used MCMC for tracking RRI map changes upon mutations, and revealed a sharpened
RRI map indicating a stabilized structure. Based on the results, Hallucination employed
multiple rounds of iterations by introducing mutations and tracking the RRI map changes
to find the optimized structure with a compatible sequence. The prediction efficiency of
Hallucination was experimentally characterized by circular dichroism (CD) spectroscopy;
there were 62 out of 129 samples solubly expressed that showed the desired 2-dimensional
structures as predicted. The expressed proteins showed high thermostability, with an
average melting temperature above 70 ◦C, and the crystallized structures highly assembled
the predictions. The released code enables users to input a sequence and adjust the length
of the output sequence. However, the limitation is that the user cannot control the motif
insertion position, since the output sequence was randomly mutated based on the input
sequence.

5.2.2. RFDesign

The accuracy of structural modeling was significantly improved using AF-2 and RF
compared with trRosetta. RFDesign took advantage of AF-2 and RF [31], which provided
an updated version of protein Hallucination, as well as an “inpainting” module for re-
building missing sequences and structures by enabling reserved functional regions. The
authors attempted to use RF [77] and AF-2 [22] for generating protein features rather than
trRosetta [103], and it showed significant advantages. RFDesign hallucination adopted a
similar approach as the previous version, to reward those mutations that could stabilize
the structure. For the inpainting design module, an iteration method mimics the “recy-
cled” step of AF-2, and RF (RF-Nov05-2021 version) was brought out to continuously
introduce mutations to the output structure, followed by overall folding refinement and
simultaneously scoring the output structure.

Previously, de novo design proteins were always based on input proteins that could
not design proteins with specific functions. To resolve this challenge, RFDesign hallu-
cination [31] developed a combined training loss that scored the repulsive and binding
forces between the input protein and its binding partner (can be protein or ligand); those
mutations that showed correct binding behavior were retained for iteration. In the case
study, the authors used RFDesign hallucination to successfully design the interactive sur-
face of programmed cell death protein 1 (PD-1), and reinforced its binding affinity against
programmed cell death ligand 1 (PD-L1). In the released package, users can design specific
sites within the input sequence and indicate the receptor file. The protein Hallucination
family solved two major challenges in protein de novo design, including generating de
novo motifs and designing functional protein binders.

5.2.3. ProteinMPNN

ProteinMPNN [33] was used for the de novo design of compatible sequences based on
the input structure backbone. ProteinMPNN was built using a modified Transformer [94]
network, which adopted the encoder block to extract features, and the decoder block to
translate these features to “readable information”. ProteinMPNN was trained using protein
backbone information, including C-alpha atom–atom distance, orientation and backbone
dihedral angles, rather than requesting MSA information. The training method contributed
to the high capacity for modeling single sequences, despite the fact that AF-2 [22] and
RF [77] highly required MSA information for protein folding prediction. ProteinMPNN
showed a sequence recovery rate of 52.4%, and could serve for the the design of protein
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monomers or cyclic oligomers. In a recent report, ProteinMPNN was successfully used for
designing binder protein, highlighting its great potential [129].

5.2.4. DenseCPD

DenseCPD [120] is a sequence design method based on the input structure. This
model is trained using protein atomic information. The training structures are prepared
by splitting the protein box into small voxels containing only 1 atom (1 Å). DenseCPD
learns the atom distribution information from the structures using DenseNet [130] (CNN
derived), and predicts the probability of amino acids that build the input protein backbone.
This approach displayed higher accuracy than the later released ABACUS-R [131], despite
ABACUS-R relying on Transformer to extract more information from both protein sequence
and structure. The aim of using DenseCPD is to find the most suitable sequences for the
protein backbone, and this model is currently supported only for tasks submitted online.

5.2.5. Unsupervised Learning Methods

The large sample size of deposited protein structural and sequential data promoted the
development of unsupervised learning (UL) [132] methods. ProtGPT2 [121] is a pre-trained
language-based UL model which generates protein sequences based on training sequences.
ProtGPT2 employs a modified Transformer by taking advantage of only the decoder side.
This network was trained using UniRef50 [133], which contains approximately 49 million
protein sequences that are highly diverse. Compared with ProteinGAN [35], the trained
ProtGPT2 model is able to generate de novo sequences within a few seconds based on the
user input sequences, which is convenient.

Diffusion model (DM) [134] was recently brought out as a generative network, through
adding noises and iterative denoising to recover the targets. DM previously showed state-
of-art performance for synthesizing images and generating videos. Namrata and Tudor
implemented DM to generate de novo protein design, which aims to build missing areas or
find compatible sequences [122]. This model was trained and adopted protein information,
including protein full-atom coordinates, protein sequences and amino acid side-chain
conformations, and showed reliable performance during the validation tests.

6. Limitations of De Novo Design Techniques and Opportunities for Food
Enzyme Engineering

There are still apparent challenges for the generation of functional enzymes using de
novo design. Successful implementation of de novo design was achieved with high-affinity
protein binders, such as IL-2/IL-15 homologues [135] and ACE2 protein homologues,
within 67 days [136]. This evidence showed that the means for designing desired proteins
was partially addressed. It is easy to de novo generate thermostable variants of target en-
zymes, since AI models were trained to output the lowest energy structures [32]. However,
enzyme-catalyzed reactions require a certain distance between the catalytic residue of an
enzyme, and the residue being catalyzed of a substrate. These distance constraints may not
prioritize generating novel enzymes, although we can still use an additional protocol to
filter binding complexes that satisfy the distance. For protein binder design, the binding or
repulsive forces can be used to indicate the protein–partner binding affinity [137]. However,
in enzyme-triggered catalysis, the relationship between enzyme–substrate binding affinity
(km) and catalytic activity (kcat) are still under debate. Such consequences highlight the fact
that much knowledge remains unknown about enzyme-induced catalysis.

The success rate is also a problem for de novo design. The success rate of designing
malate dehydrogenase using ProteinGAN only achieved 24% [35]. The DL-models, such
as ProteinGAN and DLKcat [75], have mainly been used for extracting information from
protein sequences, which means the enzyme structures are not correlated with prediction;
however, a lack of structural indication may negatively impact prediction accuracy. Note
that DLKcat [75] was specifically used for predicting enzyme kcat (turnover number of an
enzyme), which can predict kcat changes toward specific substrates while enzyme sequences
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change. Nonetheless, whether using physics-based or AI-based methods, de novo-designed
proteins remained with low expression rates, or were difficult to fold [31,138]. Meanwhile,
few studies crystallized their predicted structures, which showed noticeable RMSD varia-
tions [32,139]. To those who are designing binding partner tasks, minor RMSD differences
between designed and actual structures can result in non-binding or bad contacts (such
as strong repulsive forces). De novo designing enzymes with desired functions is a huge
challenge.

Challenges always coexist with opportunities. De novo design have shown great
potential for generating non-naturally existing and diverse functional variants, which pro-
vides possibilities for their currently involved and novel applications. A few factors would
benefit DL-model architecture for generating various functional food enzymes: firstly,
training the model by adding structural information; secondly, collecting more informa-
tion related to enzymes and their kcat against certain substrates; and thirdly, investigating
correlations between complex binding and enzyme activity.

7. Conclusions

This review described the functions and applications of food enzymes, and introduced
the need for engineering enzymes to satisfy their applications or expand their utility
horizon. The limitations of using conventional enzyme engineering methods are evident,
as fewer mutation rates may make it difficult to strengthen the target functions of enzymes.
The advances in AI-based protein modeling and de novo design methods were reviewed.
The successful implementations of de novo design for functional protein binders highlight
the possibilities of using de novo design for functional enzymes. The challenges for the de
novo design of enzymes come from the limited knowledge of enzyme–substrate binding
behaviors and their correlated activities; the architecture of the models; and insufficient
training data. These issues await future investigation.
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40. Sutay Kocabaş, D.; Lyne, J.; Ustunol, Z. Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives.
Trends Food Sci. Technol. 2022, 119, 467–475. [CrossRef]

41. Salgado, C.A.; dos Santos, C.I.A.; Vanetti, M.C.D. Microbial lipases: Propitious biocatalysts for the food industry. Food Biosci.
2022, 45, 101509. [CrossRef]

42. Morata, A.; Vejarano, R.; Ridolfi, G.; Benito, S.; Palomero, F.; Uthurry, C.; Tesfaye, W.; González, C.; Suárez-Lepe, J.A. Reduction of
4-ethylphenol production in red wines using HCDC+ yeasts and cinnamyl esterases. Enzym. Microb. Technol. 2013, 52, 99–104.
[CrossRef]

43. Kyriakidis, N.B. Use of pectinesterase for detection of hydrocolloids addition in natural orange juice. Food Hydrocoll. 1999, 13,
497–500. [CrossRef]

44. Ge, L.; Zhao, Y.-s.; Mo, T.; Li, J.-r.; Li, P. Immobilization of glucose oxidase in electrospun nanofibrous membranes for food
preservation. Food Control 2012, 26, 188–193. [CrossRef]

45. Li, X.; Li, S.; Liang, X.; McClements, D.J.; Liu, X.; Liu, F. Applications of oxidases in modification of food molecules and colloidal
systems: Laccase, peroxidase and tyrosinase. Trends Food Sci. Technol. 2020, 103, 78–93. [CrossRef]

46. Yamaguchi, S.; Jeenes, D.J.; Archer, D.B. Protein-glutaminase from Chryseobacterium proteolyticum, an enzyme that deamidates
glutaminyl residues in proteins. Eur. J. Biochem. 2001, 268, 1410–1421. [CrossRef] [PubMed]

47. Caruso, M.A.; Piermaria, J.A.; Abraham, A.G.; Medrano, M. β-glucans obtained from beer spent yeasts as functional food grade
additive: Focus on biological activity. Food Hydrocoll. 2022, 133, 107963. [CrossRef]
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