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Abstract: Isoflavones are plant-derived natural products commonly found in legumes that show
a large spectrum of biomedical activities. A common antidiabetic remedy in traditional Chinese
medicine, Astragalus trimestris L. contains the isoflavone formononetin (FMNT). Literature reports
show that FMNT can increase insulin sensitivity and potentially target the peroxisome proliferator-
activated receptor gamma, PPARγ, as a partial agonist. PPARγ is highly relevant for diabetes control
and plays a major role in Type 2 diabetes mellitus development. In this study, we evaluate the
biological role of FMNT, and three related isoflavones, genistein, daidzein and biochanin A, using
several computational and experimental procedures. Our results reveal the FMNT X-ray crystal
structure has strong intermolecular hydrogen bonding and stacking interactions which are useful
for antioxidant action. Cyclovoltammetry rotating ring disk electrode (RRDE) measurements show
that all four isoflavones behave in a similar manner when scavenging the superoxide radical. DFT
calculations conclude that antioxidant activity is based on the familiar superoxide σ-scavenging mode
involving hydrogen capture of ring-A H7(hydroxyl) as well as the π–π (polyphenol–superoxide)
scavenging activity. These results suggest the possibility of their mimicking superoxide dismutase
(SOD) action and help explain the ability of natural polyphenols to assist in lowering superoxide
concentrations. The SOD metalloenzymes all dismutate O2

•− to H2O2 plus O2 through metal ion
redox chemistry whereas these polyphenolic compounds do so through suitable hydrogen bonding
and stacking intermolecular interactions. Additionally, docking calculations suggest FMNT can
be a partial agonist of the PPARγ domain. Overall, our work confirms the efficacy in combining
multidisciplinary approaches to provide insight into the mechanism of action of small molecule
polyphenol antioxidants. Our findings promote the further exploration of other natural products,
including those known to be effective in traditional Chinese medicine for potential drug design in
diabetes research.

Keywords: superoxide; free radicals; superoxide dismutase; diabetes; cyclovoltammetry;
formononetin; isoflavones

1. Introduction

Isoflavones, including formononetin (FMNT, 7-hydroxy-3-(4-methoxyphenyl)chromen-
4-one), are bioactive phytochemicals that are abundant in legumes such as chickpeas, soy,
beans and red clover [1]. These compounds are of nutritional and medicinal interest and
are known as phytoestrogens because they bind with the β-estrogen receptor, a member
of the nuclear hormone receptor (NHR) superfamily [2]. Additionally, FMNT is reported
to have multiple biological activities, including neuroprotective, antitumor, antioxidant and
anti-inflammatory effects in various in vitro and animal models [3–5]. Since literature reports
show FMNT has moderate bioavailability, it is interesting to study for in vivo trials [6].

FMNT is also found in Astragalus trimestris L. (Astragalus membranaceus Moench)
(Fabaceae), a common antidiabetic herbal remedy in traditional Chinese medicine [7]. Diabetes
Mellitus is a serious global health issue, reaching a global prevalence of 10.5% across all adults
aged 20–79 [8]. Insulin sensitivity is also promoted by the peroxisome proliferator-activated
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receptor gamma (PPARγ), a member of the NHR superfamily, and a ligand-activated tran-
scription factor that also regulates adipogenesis. It is highly relevant for diabetes control and
plays a major role in Type 2 diabetes mellitus development [9–11]. Current PPARγ-specific
antidiabetics, the thiazolidinedione class of drugs such as rosiglitazone and pioglitazone,
are full agonists and commonly increase insulin sensitivity. However, they have significant
negative side effects, that limit their clinical indications and use [12]. In vitro and in vivo
studies both show that FMNT can increase insulin sensitivity and potentially target PPARγ
as a partial agonist [13–16]. FMNT is, therefore, a possible drug candidate that retains
insulin sensitization ability without the unwanted side effects associated with full agonism,
such as edema and weight gain.

To elucidate the biological role of FMNT, we performed several computational and
experimental procedures: (1) single crystal X-ray crystallography to obtain FMNT’s molec-
ular structure and information about its intermolecular interactions; (2) determination of
FMNT antioxidant activity by measuring its scavenging ability of the superoxide radical;
(3) use of computational DFT methods to understand the mechanism of FMNT scavenging
of superoxide; (4) characterization of the docking interactions between PPARγ and FMNT
using crystal-structure-obtained FMNT atomic coordinates. Upon observing our FMNT
encouraging results, an equivalent analysis of superoxide activity was also performed for
three related isoflavones: genistein, daidzein and biochanin A. FMNT and biochanin A
are converted by 4′-O-demethylation through cytochrome P-450 enzymes to daidzein and
genistein, respectively [17].

2. Results and Discussion
2.1. X-ray Diffraction

Single crystal X-ray diffraction data obtained on a suitable crystal of FMNT are re-
ported in Table 1. The crystal structure shows hydrogen bonding and stacking interactions
intermolecular interactions typical of polyphenolic compounds. Torsion angles show the
chromone moiety rings, A and C, are in the same plane, while the exocyclic phenyl ring,
designated B, is rotated −44.3(2)◦ from that plane as seen in Figure 1.

Table 1. Crystal Data for FMNT.

Chemical Formula C16H12O4

Formula weight 268.26 g/mol

Crystal size 0.020 × 0.110 × 0.220 mm

Crystal color/habit Yellow/long thin plate

Crystal system monoclinic

Space group P21

Unit cell dimensions
a = 3.7899(5) Å α = 90◦

b = 13.7156(18) Å β = 96.680(2)◦

c = 11.9610(16) Å γ = 90◦

Volume 617.52(14) Å3

Z 2

Density (calculated) 1.443 g/cm3

Absorption coefficient 0.104 mm−1

F(000) 280

Theta range for data collection 2.27 to 29.06◦

Index ranges −5 ≤ h ≤ 5, −18 ≤ k ≤ 18, −16 ≤ l ≤ 16

Reflections collected 14,183

Independent reflections 3307 [R(int) = 0.0557]
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Table 1. Cont.

Chemical Formula C16H12O4

Coverage of independent reflections 99.9%

Absorption correction Multi-Scan

Max. and min. transmission 0.9980 and 0.9770

Data/restraints/parameters 3307/1/230

Goodness-of-fit on F2 1.036

Final R indices

2484 data; I > 2σ(I)
R1 = 0.0507, wR2 = 0.1038
all data
R1 = 0.0779, wR2 = 0.1167

Weighting scheme w = 1/[σ2(Fo
2) + (0.0583P)2 + 0.0556P],

where P = (Fo2 + 2Fc2)/3

Extinction coefficient 0.0050(50)

Largest diff. peak and hole 0.288 and −0.245 eÅ−3

R.M.S. deviation from mean 0.055 eÅ−3
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Figure 1. Single FMNT molecule with atom labeling scheme and showing the −44.3° torsion angle 
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hydrogen bond (2.649 Å) between carbonyl O1 and hydroxyl group on C7 (Figure 2A). 
Other interactions listed in Table 2 include CH⋯O hydrogen bonds, as well as offset 
stacking interactions of 3.459 Å (Figure 2B). 

Figure 1. Single FMNT molecule with atom labeling scheme and showing the −44.3◦ torsion angle of
the twisted (B) phenyl ring.

The FMNT crystal structure shows intermolecular interactions including a strong
hydrogen bond (2.649 Å) between carbonyl O1 and hydroxyl group on C7 (Figure 2A).
Other interactions listed in Table 2 include CH· · ·O hydrogen bonds, as well as offset
stacking interactions of 3.459 Å (Figure 2B).

Table 2. Hydrogen bond distances (Å) and angles (◦) for the crystal structure of FMNT, described in
Figure 2.

Donor-H Acceptor-H Donor-Acceptor Angle

C1-H1· · ·O3#3 0.97(4) 2.39(4) 3.282(5) 152.(3)
C6-H6· · ·O1#2 1.01(4) 2.38(4) 3.158(4) 133.(3)

C12-H12· · ·O4#1 0.94(4) 2.57(4) 3.472(4) 161.(3)
O2-H7· · ·O1#2 0.86(6) 1.80(6) 2.649(4) 169.(5)

Symmetry transformations used to generate equivalent atoms:

#1 −x, y − 1/2, −z
#2 −x, y + 1/2, −z + 1
#3 −x + 1, y + 1/2, −z
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Figure 2. (A) FMNT strong hydrogen bond chain throughout the crystal structure. (B) Intermolecular
interactions of offset stacking among FMNT molecules.

In the Cambridge Structural Database (CSD) [18], there are crystallographic coordi-
nates deposited for genistein (GENIST02), daidzein (XEKCUO) and biochanin A (IHAHIL).
Investigation of these related structures shows that all of them have similar torsion an-
gle twists of the exocyclic phenyl ring B with values of 47.71◦ and −45.92◦ for the two
molecules in the asymmetric unit of biochanin A; 45.06◦ for daidzein; 54.97◦ for genistein.
All three isoflavones also show offset stacking interactions at distances close to that seen in
FMNT (3.453–3.485 Å).

2.2. Computational Antioxidant Activity
2.2.1. FMNT Scavenging

Scavenging of superoxide was analyzed with DFT methods. In a recent review we
described two ways of scavenging this radical by polyphenols: (1) superoxide interaction
with an aromatic H(hydroxyl) (conventional polyphenol scavenging, that we call σ) and
(2) interaction through the π–π approach [19], see Scheme 1.

Scheme 1 shows both scavenging modes for FMNT, which has only one H(hydroxyl)
available for σ interaction, at position 7. The initial approach consists of posing one
O(superoxide) atom at a van der Waals separation of 2.60 Å from H7, Figure 3A. After
DFT geometry minimization, this H atom is captured by the radical to form the anion
HO2

−, while the remaining FMNT polyphenol comprises the unpaired electron located
at ring A, Figure 3B. There are three options for π–π interaction, one for each of the A,
B and C (pyrone) aromatic rings. The superoxide radical was posed over each ring at a
van der Waals separation of 3.50 Å, between superoxide and ring centroids. Upon DFT
optimization, the superoxide approaching ring A was directed towards H7, i.e., forming
the same pattern shown in the σ attack. This is seen in the deposited Video S1. When acting
above rings B and C, the superoxide radical was rejected, as evidenced by final distances of
3.707 Å and 3.563 Å, respectively.
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Scheme 1. Formononetin (FMNT) interactions with superoxide. Bottom (σ attack): H(hydroxyl) in
position 7 is captured (green arrow). Top (π attack towards the three ring centers): only ring A is
effective (turquoise arrow), and the superoxide radical is directed towards H7, i.e., as when originated
from σ scavenging. Interactions with rings B and C result in superoxide rejection.
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the configuration shown in Figure 3C, a second superoxide was placed over of ring A for 
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Figure 3. Molecules are truncated to allow larger views, only (A) is complete. (A) DFT minimized
molecule of FMNT after the input of X-ray coordinates, a slight variation of the torsion angle, −34.8◦,
is seen when compared with the X-ray structure, −44.7◦. H atoms belonging to ring A are blue.
(B) A superoxide was posed 2.60 Å near FMNT H7 and upon DFT minimization H7, it was captured by
superoxide, H7-O(superoxide) = 1.103 Å following H atom transfer (HAT). (C) A proton was van der
Waals posed near the most exposed O(superoxide) and captured, 0.983 Å. However, O7-H7 is reformed.
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1.044 Å. (D) A second superoxide is π–π posed over ring A, and upon DFT this becomes bound to
the ring, 3.038 Å, while H2O2 is formed and well separated, 1.636 Å, from the remaining polyphenol.
Calculation in DMSO solvent shows a slightly longer separation between centroids, 3.043 Å. The
difference of energy between the reagent and product in the gas phase is −41.9 Kcal/mol. (E) After
H2O2 is eliminated, DFT shows still the second superoxide trapped by ring A, with a distance of
3.055 Å between both centroids, shorter than the 3.50 van der Waals separation. (F) A proton is posed
by O7, and upon DFT minimization O7-H7 is formed, 0.975 Å. This is a neutral molecule that still
comprises the π–π bound second superoxide.

Scavenging details after the capture of H7 by superoxide FMNT are shown in Figure 3.
Figure 3A shows the result after DFT minimization of X-ray FMNT coordinates, and a slight
variation in the torsion angle between rings B and C is observed, −34.8◦ (DFT) and −44.7◦

(X-ray). Figure 3B shows the result of posing a van der Waals separated (2.60 Å) superoxide
radical near H7; upon DFT minimization, H7 is captured with the formation of HO2

−,
separated 1.395 Å from O(7). When a proton is van der Waals posed near the more exposed
O(superoxide) moiety, DFT minimization shows bond formation, O-H distance = 0.983 Å,
while HO2

− is separated by 1.540 Å from the polyphenol. However, H7 results as returning
to FMNT, O7-H7 = 1.044 Å, Figure 3C. This resonance stabilization through the phenolic
ring A allows inclusion of the unpaired superoxide electron. From the configuration shown
in Figure 3C, a second superoxide was placed over of ring A for π–π interaction at a van
der Waals separation of 3.50 Å. At this point, the charge of the whole system is −1, due
to two superoxide anion radicals plus one proton. Upon DFT minimization, H2O2 was
formed and became well separated from ring A, 1.636 Å, while the stacked superoxide
reagent became trapped within the ring, with a separation between centroids of 3.038 Å,
which is shorter than the original van der Waals separation of 3.50 Å, Figure 3D. Hence,
H2O2 was eliminated and upon DFT minimization, Figure 3E shows a partial double bond
formation with a C7-O7 distance of 1.270 Å, which can be compared to the corresponding
initial longer single bond moiety in FMNT, 1.379 Å, Figure 3A. Further comparison of
Figure 3E with Figure 3A indicates that strong localization in ring A took place as C5-C6
(1.376 Å) and C8-C9 (1.382 Å) bonds are shorter than conjugated adjacent bonds, 1.427 Å,
1.421 Å, 1.454 Å and 1.467 Å. This alternating pattern of single–double bonds has been
observed previously in related polyphenols after scavenging superoxide [20]. From the
structure shown in Figure 3E, a proton was van der Waals posed near O7, and upon DFT
optimization, FMNT reformed. However, the π–π interacting O2 molecule (O-O bond
length of 1.258 Å) is still bound to ring A, as shown by a centroid separation of 3.015 Å,
Figure 3F.

Next, we explored if this FMNT-η-O2 complex could behave as a catalyst for super-
oxide scavenging, i.e., beginning a new cycle. Another superoxide radical was σ van der
Waals posed (2.60 Å) near H7, and DFT minimization (stopped after 81 cycles) showed
initial formation of HO2

− ion, separated from FMNT 1.717 Å. More importantly, the π–π
superoxide inserted in Figure 3D was rejected at a distance of 5.729 Å. Indeed, the latter is a
molecule of O2, as shown by its O-O bond distance of 1.289 Å, which is much shorter than
1.373 Å for the superoxide. Thus, Figure 4 is formally equivalent to Figure 3A and confirms
that FMNT can perform cyclic scavenging by consuming two superoxides, Figure 3B,D,
plus two protons, Figure 3C,F, while giving H2O2, Figure 3D, and O2 Figure 4. This reaction
(1) is the same as performed by superoxide dismutases (SOD), a family of metalloenzymes
used to counteract excessive superoxide in cells [21,22]. Scheme 2 shows the whole process
of scavenging superoxide by FMNT.

2 O2
•− + 2H+ → O2 + H2O2 (1)
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2.2.2. Genistein Scavenging

In Scheme 3 we see that the scavenger genistein contains two additional hydroxyl
groups in position 5 and 4′ compared to FMNT. The σ-scavenging of H7 (Scheme 3)
is identical to that shown by FMNT (H7 captured), Figure 5A. Additionally, the π–π
interaction of superoxide with ring A induces a similar σ-scavenging of H7. In contrast
with FMNT, the π–π interaction of superoxide onto pyrone ring C shows a minimum
configuration where the superoxide is trapped, Figure S1, as shown by a centroid separation
of 3.030 Å, i.e., forming a genistein-η-O2 complex. In addition, a H-bond is formed when
superoxide σ approaches H in position 4′ of ring B, Figure S2, 1.625 Å. H in position 5 is
not captured by superoxide, as the radical is rejected.
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captured (green arrow), in contrast with H(hydroxyl) in position 4′ which establishes a H-bond, and
with H5, resulting in superoxide rejection. Top (π–π attack with the three ring centers): ring A is
positively concerned for scavenging and the superoxide radical is directed towards H7, i.e., as when
originated from σ-scavenging. Interactions with ring B result in H-bond to H4′, i.e., behaving as in
the related H4′ σ-scavenging. With ring C (pyrone ring), a genistein-η-O2 complex is established,
turquoise arrow (*).
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−.
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(B) HO2
− was posed near a proton and DFT minimization showed H2O2 formation, separated

1.621 Å from O7, not shown, then a second superoxide was π–π posed on top of the A ring, with
a separation of 3.50 Å between their centroids. Upon DFT minimization, the centroid separation
shortened slightly by 3.477 Å, the superoxide O-O bond length became similar to that in the molecule
of O2, 1.276 Å, i.e., suggesting transfer of the superoxide electron to the polyphenol. Meanwhile,
O7-H7 became closer, 1.573 Å. (C) After the elimination of H2O2 in B, a proton was posed near O7,
2.60 Å, and minimization resulted in restoring the genistein O7-H7 bond. This also strengthened the
penetration of O2 in the ring environment, 2.931 Å. (D) After an additional superoxide was σ type
posed to H7, DFT shows the π–π bound molecule of O2 leaving ring A, 4.398 Å, and relocating above
ring C, i.e., having both centroids separated by 3.154 Å. This structure differs from the equivalent one
shown in Figure 4, where the molecule of O2 was completely displaced from FMNT.

Figure 5A shows the σ attack on H7. Contrary to FMNT, when a proton interacts
with the exposed O(superoxide) moiety of genistein-H7-O2, H2O2 forms and is well sep-
arated from genistein’s radical, 1.621 Å, which is not shown. Figure 5B shows the DFT
minimization after superoxide is π–π added onto ring C. Figure 5C shows results from
eliminating H2O2 and posing a proton near O7. Proceeding in a similar way as with FMNT,
the additional superoxide posed near H7 induces the π–π molecule of O2 to leave, not
shown, while the last superoxide forms a H-bond to H7. Meanwhile the second superoxide
relocates above ring C, 3.154 Å, between centroids, Figure 5D. Thus, genistein behaves as
FMNT and is able to perform another scavenging cycle, mimicking SOD action.

2.2.3. Daidzein Scavenging

Scheme 4 shows σ and π–π interactions between the superoxide and daidzein.
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Scheme 4. Daidzein interactions with superoxide. Bottom (σ attack): H(hydroxyl) in position 7 is
captured (green arrow). When directed towards H4′ superoxide a H-bond is established. Top (π
attack towards the three ring centers): when ring A is approached, the superoxide radical is later
directed towards H7 (turquoise arrow), which is captured, i.e., as when originated from σ-scavenging.
Interactions with rings C results in superoxide rejection, whereas when initially directed towards
ring B, the superoxide behaves as its equivalent σ approach towards H4′ that is forming a H-bond.

Daidzein behavior is similar to that of FMNT and genistein. Figure 6A shows the
initial π–π attack of superoxide on ring A, which is equivalent to the previously described
FMNT σ-scavenging on H7 that then forms HO2

−. Next, a proton was posed near the
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most exposed O(HO2
−) and DFT minimization resulted in H2O2 formation. Upon H2O2

elimination, a π–π superoxide was posed over ring A and DFT was applied resulting in the
superoxide being released as a molecule of O2, Figure 6C. Finally, a proton was van der
Waals posed near O7 and DFT calculations showed reformation of daidzein. In summary,
daidzein is able to consume two superoxides, Figure 6A,C, plus two protons, one shown in
Figure 6B, and the other in the process explained in Figure 6C, whereas H2O2 is eliminated
after Figure 6B, and O2 is released after the final proton is incorporated in Figure 6C. Thus,
daidzein, FMNT and genistein, are polyphenols able to act as SOD mimics.
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Figure 6. (A) The π–π interaction between superoxide and daidzein ring A results in the same
arrangement as that seen performing a σ interaction, i.e., the original separation between superoxide
and ring A centroids, 3.50 Å, becomes 4.997 Å, while H7 is captured by superoxide (following an
H atom transfer (HAT)), O(superoxide-H7) = 1.047 Å (1.069 Å in DMSO solvent), and HO2

− forms,
well separated from O7, 1.512 Å (1.445 Å in DMSO). The difference of energy between the reagent
and product in the gas phase is −181.7 Kcal/mol. (B) After posing the more exposed oxygen atom of
HO2

− near a proton, DFT minimization shows H2O2 formation, well separated from O7, 1.619 Å.
(C) After elimination of H2O2 and posing a π–π superoxide over ring A, DFT minimization shows the
formation of O2, seen by an O-O bond length of 1.264 Å, separated by 3.494 Å from ring A centroid,
i.e., the superoxide electron has been transferred to the polyphenol system. Therefore, after posing a
proton 2.60 Å near O7 and applying DFT minimization, a molecule of O2 results in being eliminated
and daidzdein becomes reformed ready for performing another SOD cycle, not shown.

2.2.4. Biochanin A Scavenging

Scheme 5 shows biochanin A results, where H7 is again σ scavenged. The π–π
scavenging shows ring B rejection of superoxide and the formation of biochanin A-η-O2
complex with ring C centroid, 2.844 Å, as is the case with genistein, whereas the attack on
ring A occurs as a σ scavenging on H7.

The biochanin A path of scavenging is similar to that of the other three isoflavones.
First, H7 is well captured by superoxide, following an H atom transfer (HAT), both through
σ or π–π approaches. Next, a proton was added, and upon DFT minimization, a well
separated H2O2 moiety was seen, 1.621 Å from the remaining biochanin neutral radical.
Hence, H2O2 was eliminated, the biochanin A radical was minimized and another proton
was posed near O7. Upon DFT minimization, O7-H7 formed, and additional superoxide
was a van der Waals π–π posed on ring A, 3.50 Å. The subsequent DFT minimized structure
is the real catalyst for biochanin A mimicking SOD action, Figure 7.
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four isoflavones is the same: the superoxide radical is redirected to H7 that is then 

Scheme 5. Biochanin A interactions with superoxide. Bottom (σ attack): H7(hydroxyl) is scavenged
(green arrow), whereas H(hydroxyl) in position 5 is rejected. Top (π attack with the three ring centers):
when interacting with ring A, H7 is captured (turquoise arrow), as was the case for σ scavenging. With
ring C, the formation of a π–π biochanin-η-O2 complex is established, i.e., the separation between
both centroids is shorter than the van der Waals distance of 3.50 Å (red arrow), 2.844 Å. With ring B,
there is the rejection of superoxide.
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Figure 7. Biochanin A is reformed after acting like SOD, and includes a π–π bound molecule of O2.
This O2-η-biochanin complex is able to initiate another cycle of scavenging superoxide. This structure
is closely related to that shown in Figure 3F.

2.3. Structural Details When the π–π Approach Is First Performed

As mentioned earlier, when the superoxide resides above ring A, the response of the
four isoflavones is the same: the superoxide radical is redirected to H7 that is then captured,
as shown in deposited Video S1 for FMNT. In contrast, there are differences in superoxide
approaching the other two rings B and C. Thus, FMNT and biochanin A show rejection of
the superoxide, whereas for genistein and daidzein, the superoxide is redirected towards
the 4′-hydroxyl located in ring B, forming a H-bond. This is obviously not possible for
FMNT and biochanin as they have a methoxy group in position 4′. The H-bond between
superoxide and H4′(hydroxyl) is also formed after a π–π approach over ring B for genistein
and daidzein. Interestingly, a superoxide π–π approach over the pyrone ring C results in
a bond with genistein and biochanin being established, but not for FMNT and daidzein;
the reason for this difference is not obvious. The difference in energy between reagents
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and products for the O2-η-biochanin-A complex, Figure 7, is −178.0 Kcal/mol, and for
the equivalent O2-η-genistein, it is −147.7 Kcal/mol. Table 3 lists all possibilities of π–π
interactions, with related structural parameters.

Table 3. Converged structures after DFT geometry optimization for superoxide and polyphenols π–π
van der Waals distance initial separation, 3.50 Å. The difference in energy between the reagent and
product is −157.7 Kcal/mol (genistein) and −178.0 Kcal/mol (biochanin A). * Calculation in DMSO
solvent shows a slightly longer separation between the inserted superoxide and ring C centroids.

Ring A Ring B Ring C

Centroid
Separation

O-O Bond
Length

Centroid
Separation

O-O Bond
Length

Centroid
Separation

O-O Bond
Length

FMNT Longer than 3.50;
H7 capture 1.369 Rejection Rejection

Genistein Longer than 3.50;
H7 capture 1.369 Longer than 3.50;

H-bond to H4′ 1.333 3.030
(*) 3.102

1.327
(*) 1.344

Daidzein Longer than 3.50;
H7 capture 1.368 Longer than 3.50;

H-bond to H4′ 1.269 Rejection

Biochanin A Longer than 3.50;
H7 capture 1.377 Rejection 2.844

(* 2.979)
1.321

(* 1.349)

2.4. Hydrodynamic Cyclovoltammetry

The DFT scavenging activity of the four isoflavones was measured using a previously
established cyclic voltammetry protocol [23]. This method uses a rotating ring disk electrode
(RRDE) method that confirms and quantifies the antioxidant activity. Figures 8–11 show
the corresponding results for the four isoflavones in this study.
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Table 4 shows slopes of Collection Efficiency (indicators of scavenging superoxide) [8]
for several polyphenols using the RRDE method in the literature. The four isoflavones in the
present study have slopes in between eriodictyol and butein (FMNT: −7.3 × 104; genistein:
−6.4 × 104; daidzein: −7.0 × 104; biochanin A: −7.1 × 104). They are slightly weaker
than DHDM, 2′,4′-dihydroxy-3,4-dimethoxy chalcone, which contains a 2′,4′-dihydroxy
ring moiety responsible for scavenging. Butein, clovamide and quercetin are stronger
scavengers than the isoflavones in this study and have catechol moieties, a structural
feature associated with good scavenging activity. However, the best superoxide scavenger
so far studied by the RRDE technique, galangin, has no ring B-hydroxyls.
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Table 4. Slopes of several polyphenols analyzed with the RRDE method.

BHT Chrysin Eriodictyol DHDM Butein Clovamide Quercetin Galangin

−0.16 × 104

[24]
−1.10 × 104

[23]
−2.20 × 104

[23]
−8.0 × 104

[25]
−11.2 × 104

[25]
−12.0 × 104

[26]
−15.5 × 104

[23]
−19.0 × 104

[20]

2.5. FMNT Docking into the PPARγ Ligand Binding Domain (LBD)

To better understand the interactions of FMNT as a possible PPARγ partial agonist,
atomic coordinates from the crystal structure of FMNT were docked in the PPARγ ligand
binding domain (LBD), PDB Code: 5UGM [27], which contains edaglitazone in the active
site. After applying CHARMm force field, the protocol “prepare protein” was applied
to also provide H atoms to the protein. The edaglitazone position at the active site was
selected to define the sphere of radius 10 Å and later eliminated. Docking of FMNT in this
PPARγ LBD was affected for 10 poses and showed Cys285 π-interactions with FMNT rings.
Pose 5 and pose 4 formed a cluster that was selected for further calculations, which included
a standard dynamic cascade. The latter calculation confirmed Cys285 π-bonded to ring A
(2.521 Å) and strengthened its interaction by the pyrone ring centroid, 2.758 Å (Figure 12).
Initially, these were 2.569 Å and 3.110 Å, respectively, at docking. The environment of
FMNT includes van der Waals interactions with Arg288 and Ile341 amino acids, Figure 13.
Previous work has established that nearly every partial agonist interacts in a hydrophobic
manner with Cys285 of Helix 3 and most interact with Arg288 using either electrostatic
interactions or hydrophobic interactions. However, partial agonists that lack an acidic
group can also stabilize the β-sheet by means of hydrophobic interactions, especially with
the side chain of Ile341 [16]. These three amino acids show a similar role in our docking
study, thus suggesting FMNT for potential use as partial agonist of PPARγ domain. Figure
S3 displays a partial view of the 5UGM protein, including FMNT pose 5 “Calculating
Binding Energy” after standard dynamic cascade.
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Figure 13. Dynamics calculation of FMNT shows its stabilization in the ligand-binding pocket by a
combination of van der Waals interactions and π-alkyl bonds, including the important amino acids
Cys285, Arg288 and Ile341.

3. Materials and Methods
3.1. X-ray Structures

Formononetin was recrystallized from ethanol by slow evaporation. An APEX2 DUO
platform X-ray diffractometer from Bruker Advanced X-ray Solutions was used to obtain X-
ray data measurements at 125 K. Temperature was maintained using a cold liquid nitrogen
stream from Oxford cryosystems; the X-ray source emitted MoKα radiation at 0.71069 Å.
The crystal structure was solved and refined using full-matrix least-squares on F2 with the
Bruker incorporated ShelX programs [28]. We input the X-ray data into the MERCURY
program from Cambridge Structural Database (CSD) to produce images of the molecules
and crystal packing [29]. Crystal data of FMNT have been deposited at the CSD and are
available at https://www.ccdc.cam.ac.uk/structures/? (accessed on 28 October 2022) using
Identifier CCDC number 2216211.

3.2. RRDE Measurement of Antioxidant Activity

Materials used to determine the antioxidant activity of the 4 isoflavones were tetra-
butylammonium bromide (TBAB; Sigma Aldrich, St. Louis, MO, USA) and 99.9% anhy-
drous dimethyl sulfoxide (DMSO; Sigma Aldrich). The four isoflavones, FMNT, genistein,
daidzein and biochanin A, were all obtained from Indofine Chemical Company (Hills-
borough, NJ, USA). A 0.1 M TBAB/DMSO solution was used to produce electric current
and enhance the occurrence of redox reactions. Antioxidant activity was measured via
the hydrodynamic voltammetry technique with a rotating ring disk electrode (RRDE).
The equipment used in this experiment was an MSR electrode rotator together with a
WaveDriver 20 benchtop USB from Pine Instrumentation, Grove City, PA, USA. The main
electrode tip was an E6RI ChangeDisk with a rigid gold ring and gold disk (Au/Au) insert.
Before and after each experiment, 0.5 µm alumina suspension was used to clean the disk
electrode tip (Allied High Tech Products, Inc., Rancho Dominguez, CA, USA) on a moistened
polishing microcloth to eliminate potential film formation. A platinum (Pt) reference electrode
and Pt counter electrode were also used in this experiment. All electrodes were obtained from
Pine Research, Durham, NC, USA [30]. Cyclic voltammograms were run using a Solartron SI
1287 Potentiostat/galvanostat (Solartron Analytical, Oakridge, TN, USA) controlled through

https://www.ccdc.cam.ac.uk/structures/
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Coreware© software. The antioxidant activity of the four isoflavones (all of them 99.9% pure)
was determined based on their superoxide radical scavenging ability that was measured
using the protocol developed in our lab [23]. Stock solutions of all compounds (99.9% purity)
were prepared. Biochanin A, MW = 284.27, 0.071 g dissolved in 5 mL of DMSO, concen-
tration = 0.05 M; genistein, MW = 270.25, 0.054g/4 mL DMSO, concentration = 0.05 M; for-
mononetin, MW = 268.27, 0.107g/8 mL DMSO, concentration = 0.05 M; daidzein, MW = 254.24,
0.081 g/8 mL DMSO; concentration = 0.05 M.

For the experiment, the electrolytic cell was bubbled for 5 min with a dry O2/N2
(35%/65%) gas mixture to establish its dissolved oxygen level. The Au disk electrode was
then rotated at 1000 rpm while the disk was swept from 0.2 V to −1.2 Volts and the ring
was held constant at 0.0 Volts, the disk voltage sweep rate was set to 25 mV/s. Several runs
plus blank were performed in the RRDE experiment for the 4 compounds to determine
their antioxidant activity with equal addition of 5 µL of each stock solution.

Results from each run were collected on Aftermath software and represented as
voltammograms showing current vs. potential graphs that were later analyzed using
Microsoft Excel. In an RRDE voltammetry experiment, the generation of the superoxide
radicals occurs at the disk electrode while the oxidation of the residual superoxide radicals
(that have not been scavenged by the scavenger) occurs at the ring electrode.

Reaction 2: Reduction of molecular oxygen at the disk electrode

Disk current O2 + e− → O2
•− (2)

Reverse Reaction 3: Oxidation of superoxide radicals at the ring electrode

Ring current O2
•− → O2 + e− (3)

Thus, the rate at which increasing concentrations of antioxidant scavenged the gen-
erated superoxide radicals during the electrolytic reaction was determined by obtaining
the ring current/disk current (percent value) at each concentration. These values were
denoted as the Efficiency of the scavenger at different concentrations. Using Microsoft
Excel, Collection Efficiency values were plotted against the corresponding concentrations
of each analyzed compound to produce a graph illustrating the effect of their increasing
concentrations on the scavenging of superoxide radicals in the electrolytic solution. Ulti-
mately, the slope of the curves served as a quantitative measure of the antioxidant activity
of each compound.

3.3. Theoretical Calculations: Isoflavones Studied Using DFT and Molecular Mechanics

Calculations were performed using programs from Biovia (San Diego, CA, USA).
Density functional theory (DFT) program DMol3 was applied to calculate energy, geometry
and frequencies implemented in Materials Studio 7.0 [31]. We employed the double
numerical polarized (DNP) basis set that included all the occupied atomic orbitals plus a
second set of valence atomic orbitals, and polarized d-valence orbitals [32]; the correlation
generalized gradient approximation (GGA) was applied including Becke exchange [33],
plus BLYP correlation including Grimme’s correction when van der Waals interactions
were involved [34]. All electrons were treated explicitly and the real space cutoff of 5 Å was
imposed for numerical integration of the Hamiltonian matrix elements. The self-consistent
field convergence criterion was set to the root mean square change in the electronic density
to be less than 10−6 electron/Å3. The convergence criteria applied during geometry
optimization were 2.72 × 10−4 eV for energy and 0.054 eV/Å for force. Calculations
were generally performed with no solvent inclusion, those made in DMSO are specifically
indicated. Docking studies were performed with the CDOCKER package in Discovery
Studio 2020 version [35].
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4. Conclusions

The X-ray structure presents FMNT’s ability to have strong intermolecular interac-
tions, such as hydrogen bonding and stacking, which are useful for antioxidant actions.
Antioxidant activity measured using the RRDE method revealed the four isoflavones to
share a similar pattern in the collection efficiency slopes. All DFT calculations confirm
these findings and allow us to conclude that antioxidant activity is based on the familiar
superoxide σ-scavenging mode involving ring-A H7(hydroxyl) capture and supplemented
by the π–π (polyphenol–superoxide) scavenging activity. These results suggest the possibil-
ity of their mimicking SOD action and help to explain the ability of natural polyphenols
to assist in lowering superoxide concentrations. The SOD metalloenzymes all dismutate
O2
•– to H2O2 plus O2 through metal ion redox chemistry [21], whereas these polyphenolic

compounds do so through suitable intermolecular interactions (hydrogen bonding and
stacking interactions). This theoretical assessment is confirmed using the cyclovoltammetry
technique of rotating ring disk electrochemistry (RRDE), which results in very similar
antioxidant activity for the four isoflavone scavengers, as shown by slopes in collection
efficiency. Additionally, docking calculations suggest that FMNT can be a partial antago-
nist of the PPARγ domain. Our work shows the efficacy in combining multidisciplinary
approaches, including experimental X-ray crystallography and RRDE, as well as computa-
tional docking and DFT methods, to provide an understanding of the mechanism of action
of small molecule polyphenolic antioxidants. Finally, our findings promote the further
exploration of other natural products, including those known to be effective in traditional
Chinese medicine for potential drug design in diabetes research.
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