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Abstract: Bladder cancer is very common in humans and is often characterized by recurrences,
compromising the patient’s quality of life with a substantial social and economic impact. Both the
diagnosis and treatment of bladder cancer are problematic due to the exceptionally impermeable
barrier formed by the urothelium lining the bladder; this hinders the penetration of molecules
via intravesical instillation while making it difficult to precisely label the tumor tissue for surgical
resection or pharmacologic treatment. Nanotechnology has been envisaged as an opportunity to
improve both the diagnostic and therapeutic approaches for bladder cancer since the nanoconstructs
can cross the urothelial barrier and may be functionalized for active targeting, loaded with therapeutic
agents, and visualized by different imaging techniques. In this article, we offer a selection of recent
experimental applications of nanoparticle-based imaging techniques, with the aim of providing an
easy and rapid technical guide for the development of nanoconstructs to specifically detect bladder
cancer cells. Most of these applications are based on the well-established fluorescence imaging and
magnetic resonance imaging currently used in the medical field and gave positive results on bladder
cancer models in vivo, thus opening promising perspectives for the translation of preclinical results
to the clinical practice.

Keywords: nanotechnology; bladder cancer; urothelium; fluorescent imaging; scanning laser fluorescent
microscopy; magnetic resonance imaging; optical imaging

1. Introduction to Urinary Bladder

The urinary bladder is a hollow organ responsible for the temporary storage of urine,
which is excreted by kidneys, enters the bladder by ureters, and exits via the urethra. The
bladder wall is made of three layers: the urothelium (also called the transitional epithelium),
a stratified epithelium lining the bladder cavity and composed of highly specialized cells
acting as a barrier to urine and pathogens, and involved in many physiological functions [1];
the detrusor muscle that is made of three differently oriented smooth muscle sheets and
contracts during voiding; the external serous membrane called the adventitia.

Bladder diseases, especially those affecting the urothelium, are very common in
humans; these pathologies are often characterized by recurrences, thus compromising
the quality of life and having a substantial social-economic impact. Indeed, urinary tract
infections are the second most common infection in women [2], while bladder cancer
is one of the most frequent tumors worldwide (the second for men and the fourth for
women) [3,4].

Both the diagnosis and treatment of bladder pathologies, especially cancer, are prob-
lematic due to the unique features of the urothelium, in particular to the exceptionally
impermeable apical membrane of the upper umbrella cells [5]. In fact, the drugs admin-
istered by intravesical instillations hardly penetrate the urothelial barrier, thus failing to
reach the diseased cells located in the lower layers of the bladder wall [6,7]. Moreover, the
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constant production of urine and the recurrent voiding process limit the dwell time of the
therapeutic agents [8], thus making frequent administration necessary with consequent
heavy local irritation. As for diagnosis, photodynamic diagnosis (PDD) by fluorescence
cystoscopy is the most accredited method currently used to identify cancer cells in order to
selectively resect the tumor tissue avoiding recurrence and possible radical cystectomy [9].
However, currently, PDD is based on the administration of photosensitizing prodrugs
that preferentially accumulate in proliferating urothelial cells but do not enter specifically
urothelial cancer cells, thus rising important limitations in its reliability [10,11].

2. Nanotechnology and Urinary Bladder Imaging

In this context, nanotechnology has been envisaged as a great opportunity to improve
both diagnostic and therapeutic approaches for bladder diseases. In fact, nanoconstructs
are able to cross the urothelial barrier due to their small size approaching the molecular
scale, may be functionalized for active targeting, can be visualized by different imaging
techniques based on their physico-chemical features, and may be loaded with therapeutic
agents, thus ensuring sustained release at the target site [12–18]. Nanoparticles (NPs)
have also been explored as diagnostic tools to quantify analytes in urinary samples [19]
and have been used for regenerative medicine and tissue engineering to enhance bladder
repair/reconstruction and functional recovery [20].

To develop novel nanoconstructs suitable for applications on the urinary bladder,
it is crucial to assess their uptake and distribution in healthy and diseased bladder cells
and tissues. To this aim, imaging techniques proved to be unique in tracking the NPs
in experimental bladder models in vitro and in vivo (e.g., [21–24]). In particular, in vivo
administration of NPs for bladder cancer targeting may be performed by instillation into
the organ via urethra or by intravenous (i.v.) injection and, especially in the latter case,
monitoring their biodistribution is essential to assess their efficacy and safety. Therefore
NPs, designed not only to target bladder cancer cells but also to be effectively visualized
by different imaging techniques, represent a significant advantage for the development of
novel diagnostic and therapeutic strategies.

The most used imaging techniques in preclinical research aimed at setting up diag-
nostic and therapeutic nanoconstructs or intraoperative nanotools are based on fluores-
cence [25,26]. NPs can be made visible by modulating their physico-chemical features
as it occurs for quantum dots or nanodiamonds [27–29] or by loading with appropriate
fluorophores (some examples in [30–33]). However, special attention must be paid to the
selection of fluorescent NPs with appropriate spectral characteristics, especially when they
are administered in vivo. In fact, in biological tissues, only a small absorption window
in the near-infrared wavelength range, between 650 nm and 900 nm, is useful for in vivo
image acquisition due to the hemoglobin absorption on one side and the water and lipid
absorption on the other side of the spectral range. This range is further limited between 650
and 750–800 nm (called near-infrared I, NIR I) due to the sensitivity of the detectors used in
confocal laser scanning microscopy (CLSM) or in whole-body/whole-organ optical imag-
ing (OI) (i.e., the photomultipliers or the charge-coupled device (CCD), respectively) [34].
Detector improvements and extended sensitivity presently allow exploiting another NIR re-
gion (named NIR II) of an almost optically transparent tissue window in the 1000–1700 nm
wavelength range. The interest in the NIR II window has re-focused attention on tissue
autofluorescence, resulting from the emission by tissue or organs occurring when excited
with external sources. Most endogenous fluorophores accumulate in animal organs with
feeding and emit in the blue/green part of the wavelength region of the electromagnetic
spectrum. To avoid overlapping with autofluorescence, it is necessary to shift to red or
NIR the emission of the NPs in order to make them detectable. However, a recent study
reported that autofluorescence affects in vivo imaging even in the NIR II window [35]. To
overcome this problem, upconverting NPs can be used, which are excited by multiple
photon interactions to produce a single photon with energy greater than each incoming
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photon; upconverting NPs are especially convenient since very few organic molecules with
upconverting optical properties exist in the living tissues [36–38].

Despite the limitations due to the optical tissue absorption, which reduces the number
of photons passing through the tissues, and the scattering, which deflects the trajectory
of the photons, fluorescence imaging (FLI) is a very fast, cheap, and easy technique that
is largely used in many laboratories. For bladder diseases, FLI is especially suitable
for cystoscopic analyses due to the small thickness of the urothelium that facilitates the
detection of the fluorescence signals; on the contrary, FLI has a limited application to whole-
body detection due to the absorption by the abdomen wall tissues covering the bladder.

FLI is especially used for preclinical applications, while another technique, magnetic
resonance imaging (MRI), is largely used also in the clinical field.

MRI takes advantage of the high resolution of the images and three-dimensional (3D)
tomographic reconstruction, which is generally unsuitable for FLI. In recent years, the
availability of increasing magnetic field intensity significantly improved image quality.
Moreover, the 3D measure of tumor volume makes it possible to stage the cancer or monitor
the response in terms of mass reduction following therapeutic treatments [39–42]. Many
NPs have been developed to be used in MRI as contrast agents or diagnostic biosensors, for
hyperthermia therapy, or for targeted drug or gene delivery [43–46]. These nanoconstructs
are mostly based on iron oxide or gold and are characterized by magnetic properties that
make them easily detectable in a biological environment that virtually lacks magnetic
background; moreover, they can be made biocompatible by appropriate binding or coating,
and their surface can be functionalized for specific targeting. Thanks to these properties,
NP-based MRI has also been considered a promising tool for bladder cancer diagnosis and
treatment [47,48].

Due to the increasing interest in nanotechnology for bladder cancer pathology, in
this work, we offer a selection of recent experimental applications of NP-based imaging
techniques to this research and clinical field. Several NPs have been constructed to target
bladder cancer cells, but in the present review, we selected only those designed for detection
by imaging techniques currently used in the medical field (mainly FLI and MRI), with the
aim of providing an easy and quick technical guide, especially for scientists involved in
the development of nanoconstructs to specifically detect bladder tumor for diagnostic and
therapeutic purposes.

3. Quick Overview of the Literature

Four tables containing a selection of interesting references on the synthesis or applica-
tion of NPs to bladder cancer are presented in this section: Table 1 contains articles on NPs
suitable for FLI, Table 2 on NPs for MRI, Table 3 on NPs suitable for bimodal imaging (both
FLI and MRI), and Table 4 on NPs suitable for other imaging techniques. The list is focused
on studies explicitly devoted to biomedical imaging. Some other contributions were added
due to their applications in photodynamic therapy (PDT) or PDD if the imaging aspect
was relevant.

The information reported in the columns of the table is listed below.

1. Nanoparticles: NPs or NP-based compounds tested by the authors. Brief description
of the particles and abbreviations used throughout the papers by the authors. When
reported, the size of the NPs is given. The instrument used to measure NP size,
i.e., transmission electron microscopy (TEM), dynamic light scattering (DLS), or
atomic force microscopy (AFM), is also reported. The size of NPs is not reported
if they are inserted into a more complex system; in this case, the overall size of the
system is reported;

2. Imaging techniques: The techniques used for imaging purposes are reported, generally
FLI (CLSM or OI) or MRI. Bioluminescent imaging was also used to monitor tumor
growth. Few details regarding the detector/tomograph are reported, and, for FLI, the
excitation and emission wavelengths used;
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3. Experimental design: Cancer model, in vitro, in vivo, or ex vivo experimentation,
route of NPs administration, animal species, NP concentration, and incubation/
visualization time;

4. Main results: Among the results reported by the authors, particular attention was fo-
cused on the imaging results and other observations considered relevant for the readers.

Table 1. Studies focusing on imaging bladder cancer tissue or cells using NPs or NP-based com-
pounds designed for FLI. Studies are listed chronologically from the earliest to the most recent.
AIE, aggregation-induced emission; CLSM, confocal laser scanning microscopy; DLS, dynamic light
scattering; exc, excitation; ems, emission; OI, optical imaging; PEG, polyethylene glycol; PDT, photo-
dynamic therapy; PDD, photodynamic diagnosis; QD, quantum dots; TCC, transitional cancer cells.
TEM, transmission electron microscopy.

Nanoparticles Imaging Technique Experimental Design Main Results Ref.

QD 625 conjugated with
antibody anti-CD47

Clinical confocal
endomicroscopy system
based on a 2.6 mm fiber
optic probe with a
microscopic field of view
(240 mm) and acquired
video sequences at
12 frames/s.

Humans: QD 625 were
instilled into fresh, intact
bladders obtained from human
subjects after radical
cystectomy for
muscle-invasive or high-risk
non-muscle-invasive
bladder cancer.

Successful endoscopic
imaging of human bladder
cancer cells by targeting
the protein CD47,
highly expressed in a
variety of cancer cells but
undetectable in
normal urothelium.

[49]

Single-walled carbon
nanohorns QD-cisplatin
(SWNH-QD+cis)
TEM: 337 ± 11 nm

Fluorescence microscopy. In vitro: rat AY-27 cancer cells.
Incubation time: 1 h.
Visualization time: 24, 48, and
72 h.

SWNH-QD+cis were
well-trackable for 3 days.
SWNH-QD+cis efficiently
releases cisplatin in vitro.

[50]

BPN-BBTD AIEgen
encapsulated into
amphiphilic polymer NPs
(BPN-BBTD NPs)
TEM: 37.1 ± 2.3 nm

FLI: whole-body imaging
in NIR II window and NIR
I window.
In particular:
NIR II window using
785 nm laser beam InGaAs
camera, a 1000 nm
long-pass filter.
NIR I window:
exc 700, ems < 900 nm by
IVIS® Spectrum.

In vivo:
nude mice with
subcutaneously xenografted
bladder tumors or orthotopic
bladder tumors (human
UMUC3 cancer cells) were
injected i.v. with
BPN-BBTD NPs.
Incubation/visualization time:
1 h.

BPN-BBTD NPs were
capable of monitoring
subcutaneous and
orthotopic tumors for a
long time (32 days).

[51]

QDs605 conjugated with
an antibody against the
prostate stem cell antigen
(QD-PSCA).

Fluorescence microscopy. In vitro: human EJ cancer cells.
Concentration: 10 nM.
Incubation time: 30 min.
Visualization time: 6, 24, and
48 h.

QD-PSCA was able to
specifically recognize the
PSCA protein expressed in
bladder cancer cells;
fluorescence was stable
and long-lasting.

[52]

Upconverting NPs coupled
with gold nanorods
conjugated with an
antibody to epidermal
growth factor
(EGF) receptor
(UCNP-AuNR nanocluster)
TEM: 48.2 ± 5.17 nm

CLSM (exc 980 nm) In vitro: human T24T
cancer cells.
Concentration: 8 × 1010/mL.
Incubation/visualization time:
1–2 h.

High contrast imaging and
high sensitivity detection
of bladder cancer cells.
Nanobubbles forming in
the vicinity of the AuNRs
after irradiation by a
femtosecond pulsed laser
were able to disrupt the cell
membrane (useful
for PDT).

[53]
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Table 1. Cont.

Nanoparticles Imaging Technique Experimental Design Main Results Ref.

Alexa-PEG-modified
titanium dioxide NPs
(TiO2-PEG NPs)
DLS: 123.8 nm

Super-resolution
fluorescence microscopy.

In vitro: human UMUC3 TCC.
Incubation/visualization time:
1, 2, and 4 h.

The high uptake by
bladder cancer cells led to
the intracellular
accumulation of TiO2-PEG
NPs, thus increasing
their fluorescence.

[54]

Indocyanine green-loaded
PLGA NPs covalently
attached to YB1 (Salmonella
typhimurium bacterium)
(YB1-INPs)

FLI: OI by CRi Maestro
(exc 704 nm, ems 735 nm)

In vivo: mice were
subcutaneously injected with
mouse MB49 cancer cells and
injected i.v. with YB1-INPs.
Concentration: 107 µg/mL.
Incubation/visualization time:
12 h.
Ex vivo: analysis of
tumor sections.
Incubation/visualization time:
72 h.

YB1-INPs acted as
nanophotosensitizers
leading to specific hypoxia
and perfect photothermal
conversion, targeting solid
tumors, and showing
efficient fluorescence
imaging properties.

[55]

SiO2 NPs and liposomes
labeled by cyanine (named
tumor-selective cascade
activatable self-detained
system-TCASS)

FLI: OI
by Maestro II and IVIS®

Spectrum CT

In vivo: nude mice with
xenografted EJ urothelial
cancer cells were injected i.v.
with NPs.
Concentration: 14 mg/kg.
Incubation/visualization time:
from 1–120 h (Maestro II); from
2–48 h (IVIS).
Humans: NPs instilled in
intact excised human bladders.
Concentration: 50 µM.
Incubation/visualization time:
1 h.

The in vivo self-assembled
molecules, combined with
the NIR probe, showed
high specificity and
sensitivity for detecting
bladder cancer cells.

[56]

BSA-multifunctional
BITT@DSP NPs with an
albumin-based NP
decorated with the
cisplatin (IV) prodrug and
loaded to produce strong
NIR FLI (BSA-BITT@DSP
NPs)
TEM and DLS:
70.2 ± 22.0 nm

FLI: CLSM
In vivo OI by ChemiDoc
MP imaging system
(exc 647, ems 695 nm)

In vitro: mouse MB49
cancer cells.
In vivo: mice bearing
subcutaneous MB49 tumors
were injected i.v. with
BITT@BSA−DSP NPs.
Incubation/visualization time:
from 2–10 min.
Ex vivo: analysis of
excised organs.
Incubation/visualization time:
6 h.

BITT@BSA−DSP NPs were
efficiently taken up by
bladder cancer cells both
in vitro and in vivo.

[57]
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Table 1. Cont.

Nanoparticles Imaging Technique Experimental Design Main Results Ref.

Cationic polymer
mucoadhesive
EAGC-DOPE hybrid lipid
NPs (EGCDNPs)
complexed with
Cy5-GFP-pDNA or
FLuc-pDNA
TEM: 30 ± 13 nm
(EGCDNPs);
from 67 ± 15 to 98 ± 28 nm
(complexes)

FLI: CLSM
Bioluminescent imaging:
OI by IVIS® Spectrum.

In vitro: human UMUC3 and
TCC-SUP bladder cancer cells;
human PC-3prostate cancer
cells; human U87-MG
glioblastoma cells; human
HEK-293 T embryonic kidney
cells were treated with
EGCDNPs—Cy5-GFP-
pDNA complexes.
In vivo:
EGCDNPs—Cy5-GFP-pDNA
complexes were instilled in the
bladder of healthy mice.
Concentration: 2.4 or
6.4 µg/mouse.
Incubation/visualization time:
24 and 48 h.
Ex vivo: bladder tissue
was analyzed
immunohistochemically for
Luc detection.

Tuning the molecular
weight of the
mucoadhesive cationic
polymer in NPs increased
gene transfer by improving
adherence and penetration
through the
bladder barrier.

[58]

Glycosylated PEGylated
phospholipid upconverting
NPs oleic acid-capped
NaYF4: Yb 20%, Er
2%@NaYF4 core–shell
structured with
phospholipid mixture
(X = 0, 25, 50, 75, or 100).
(UCNP-GX)
DLS: from 42.3 to 60 nm,
depending on the
phospholipid mixture

Multiphoton fluorescence
imaging (exc 908 nm, ems
545 nm)

In vitro: UMUC3 cells.
Concentration: 20 or
80 µg/mL.
Incubation/visualization time:
2 h.

UCNP-G100 improved the
contrast between bladder
cancer and normal cells.
For PDD, these NPs may
be used together with a
cystoscope equipped with
a NIR light source.

[59]

AIE molecules obtained by
incorporation of the
tetraphenylethylene unit
to the
triazaborolopyridiniu-m
encapsulated within
phospholipid-
connected PEG
(TT-1@DSPE-PEG)
DLS: 80.7–83.7 nm

FLI: CLSM
(exc 488 nm,
ems 550–590 nm and OI by
IVIS® Spectrum (exc
500 nm, ems 560 nm)

In vitro: human H1299 lung
cancer cells.
Concentration: 5 or 10 mM.
Incubation/visualization time:
2 h.
In vivo: BBN-driven bladder
cancer model mice were
injected i.v. with
TT-1@DSPE-PEG.
Concentration: 40 mM.
Incubation/visualization time:
from 5 min to 4 h.
Ex vivo: analysis of excised
major organs.

NPs showed bleft red
fluorescence within the
cells after a short
incubation time.
The increased fluorescence
signal observed ex vivo in
the tumor and intestine of
treated mice indicated
NP accumulation.

[60]
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Table 2. Studies focusing on imaging bladder cancer tissue or cells using NPs or NP-based com-
pounds designed for MRI. Studies are listed chronologically from the earliest to the most recent
ones. AFM, atomic force microscopy; DLS, dynamic light scattering; PEG, polyethylene glycol; SPIO,
superparamagnetic iron oxide; TCC, transitional cancer cells. TEM, transmission electron microscopy.

Nanoparticles Imaging Technique Experimental Design Main Results Ref.

Nanoplatform SPIO with
phosphonate group (PO)-PEG
and antibody against ETA
receptor labeled with
Alexafluor 488 (γFe2O3@PO-
PEGx-Ab-AF488)
TEM: 9.6 nm

MRI (7 T) In vivo: mice injected i.v.
with NPs.
Concentration: 200 µM Fe/kg

Efficiency of the antibody to
target specifically ETA
receptor overexpressed on
different bladder cancer cells.
The high r2/r1 ratios
confirmed the great potential
of these NPs as
T2-shortening contrast
agents for contrast-enhanced
MRI applications.
Labeling with Alexafluor 488
made these NPs potentially
useful for bimodal imaging
(MRI and FLI).

[61]

Cyc6-
functionalizedMesoporous
Silica NPs
(Cyc6-FITC-Gd2O3-MSN)
DLS: 187.3 nm

MRI (4.7 T) In vivo: MSN instillation into
the bladder of mice bearing Luc+
murine MB49 TCC and human
T2442 TCC orthotopic tumor.
Incubation/visualization time:
6–8 days.

Enhanced T1- and
T2-weighted MRI signals,
improving the detection of
the tumor boundaries.
Cyc6 peptide improved
binding efficiency and
specificity to bladder
cancer cells.

[62]

Nanoscale oxygen generator
(PLZ4@SeD) encapsulating
SPIO NPs and organoselenium
with PLZ4 peptide for bladder
cancer targeting (PLZ4@SeD)
TEM: ~150 nm

MRI (1.5 T) In vitro: human EJ cancer cells.
Concentration: until 4 µM.
Incubation/visualization time:
from 1 to 8 h.
Humans: PLZ4@SeD was
instilled into bladders from
patients after the
radical cystectomy.
Concentration: 1 mM.
Incubation/visualization time:
from 1–8 h.

PLZ4@SeD precisely targeted
the tumor inside the bladder
and enhanced the T2
MRI contrast

[63]

Black phosphorus nanosheets
covalently bond with SPIO
selenide to construct
heteronanostructure NPs
modified with methoxy PEG
(mPEG-NH2) (BPs-FeSe2-PEG)
AFM: ~10 nm

MRI (9.4 T) In vitro: human EJ cancer cells.
Concentration: until 0.02 mM.
In vivo: BPs-FeSe2-PEG were
injected i.v. in nude mice with a
subcutaneous cancer model.
Concentration: 10 mg/kg.
Incubation/visualization time:
from 2 to 24 h.

BPs-FeSe2-PEG acted as a T2
MRI contrast agent.
NPs enhanced photothermal
conversion efficiency and
photostability to realize
MRI-guided PTT.

[64]
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Table 3. Studies focusing on imaging bladder cancer tissue or cells using NPs or NP-based compounds
for bimodal imaging (both FLI and MRI). Studies are listed chronologically from the earliest to the
most recent ones. DLS, dynamic light scattering; exc, excitation; ems, emission; OI, optical imaging;
PEG, polyethylene glycol; PDT, photodynamic therapy; QD, quantum dots; SPIO, superparamagnetic
iron oxide; TCC, transitional cancer cells. TEM, transmission electron microscopy.

Nanoparticles Imaging Technique Experimental Design Main Results Ref.

QD-capped magnetite
Nanorings
(QD-FVIO)
TEM: 210 and 100 nm
DLS: 310 and 155 nm

Bimodal imaging: FLI
(two-photon microscopy exc
756 nm, ems long pass 560
nm) and MRI (1.5 T)

In vitro: MGH cancer cells.
Concentration: 0.05 mg/mL.
Incubation and visualization:
24 h.

QD-FVIO’s r2* relaxivity
and r2*/r1 ratio were 4
times and 2 orders of
magnitude, respectively,
greater than those of
commercial SPIOs
(ferucarbotran).
The uptake and
intracellular fate of
QD-FVIOs were monitored

[65]

Bimodal Mesoporous
Silica NPs
(PEG-TRITC-Gd2O3-MSN)
DLS: 80–180 nm

Bimodal imaging: FLI (OI by
IVIS® 200) and MRI (4.7 T).
Fluorescence microscopy

In vitro: Luc+ murine MB49
TCC and human T24 TCC.
In vivo:
(1) Subcutaneous injection of
TCC labeled with MSN or
instillation into the bladder
of mice.
Concentration: 1 × 105 cells.
(2) Installation of free MSN
into the bladder after
tumor development.
Concentration: 5 × 105 cells
Ex vivo: Microscopy analysis
of excised bladders.

High cell uptake of MSN.
MRI revealed in vivo
detailed structural features
of the tumor boundaries.
MSN further
functionalized with a
peptide (CF3) bound
specifically bladder
cancer cells.

[22]

Bimodal dual-modality
peptide (CSNRDARRC)-
conjugated NPs with iron
oxide nanocubes and
glycol chitosan derivatives
(pMCNPs)
DLS: 481.8 ± 8.7 nm

Bimodal imaging: FLI (OI by
IVIS® II Lumina using
cyanine 5.5; exc 675 nm, ems
695 nm) and MRI (3.0 T)

In vivo: subcutaneous
injection in nude mice of
tumor canine K9TCC cancer
cells incubated with NPs.
Incubation/visualization
time: 24 h.
Ex vivo: analysis of
major organs.

Development of novel MRI
and NIRF
dual-modality NPs.
pMCNPs showed
preferential accumulation
and longer retention in
small tumors (useful as 3T
MRI contrast agents).
pMCNPs acted as
therapeutic agents
using vinblastine.

[66]

Bimodal
human serum
albumin-MNO2-chlorin
e6-NPs
(HSA-MnO2-Ce6 NPs)
DLS: 118.6 ± 8.1 nm
Other NPs for single
imaging technique:
HSA-MnO2 (18.5 ± 4.8 nm)
HSA-Ce6 (112.8 ± 7.4 nm)

Bimodal imaging: FLI (OI by
IVIS® Lumina; exc 675 nm,
ems 710–900 nm) and MRI
(7.0 T)

In vitro: mouse MB49
cancer cells
In vivo: orthotopic bladder
cancer model obtained by
MB49 cells injection; NPs
were administered i.v.
Concentration: from 0.05 to
0.4 mM.
Incubation/visualization
time: 12 h.
Ex vivo: analysis of excised
major organs.

Excellent bladder
tumor-targeting property
of HSA-MnO2-Ce6 NPs.
PDT with HSA-MnO2-Ce6
NPs showed therapeutic
efficacy and significantly
prolonged the lifetime
of mice.

[67]
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Table 4. Studies focusing on imaging bladder cancer tissue or cells using NPs or NP-based compounds
for imaging techniques different from FLI or MRI. Studies are listed chronologically from the earliest
to the most recent ones. exc, excitation; TEM, transmission electron microscopy.

Nanoparticles Imaging Technique Experimental Design Main Results Ref.

Two-sized oxygen
nanobubbles (ONBs)
TEM: 400 and 800 nm

HyperSpectral Dark Field
Microscope (HSDFM)

In vitro: mouse MB49
cancer cells.
Ex vivo: subcutaneous
injection of MB49 cells in mice
and treatment with ONBs.
Excision of tumor and analysis
of wax-embedded tissue slices.
Concentration: 100 µg/mL.
Incubation/visualization time:
4 days.

ONBs are suitable for in vitro
imaging in single cells and ex
vivo imaging in bladder
cancer tissues thanks to the
intense scattering signal.

[68]

Gold nanostars coated
with silver and silica
(AuNS@Ag@SiO2)

Surface-enhanced Raman
scattering (SERS) in vivo, but
visible ex vivo with
multiphoton microscopy (exc
800 nm)

In vivo: mice were injected
subcutaneously with MB49
cancer cells; after tumor
development, NPs were
injected i.v.
Concentration: 3.3 mg/mL.
Incubation/visualization time:
24 h.
Ex vivo: analysis of
excised tumors

Nanostars accumulated in
the tumor but not in the
healthy tissue.

[69]

Hyaluronic acid
modified and
liposome-coated IR1048
NPs (HAPO-1048 NPs)
TEM: 135.2 nm

Optical coherence
tomography angiography
(OCTA) and photoacoustic
(PA) imaging
NIR-II region two peaks
around 930 nm and 1100 nm

In vitro: Luc+ UMUC3 cells.
In vivo: HAPO-1048 NPs were
injected i.v. in an orthotopic
murine model of
bladder cancer.
Concentration: 200 µg/mL.
Incubation/visualization time:
from 3–72 h
Ex vivo: analysis of excised
major organs.

HAPO-1048 proved to be a
NIR-II photothermal agent
for CD44-overexpressing
bladder cancer, showing
strong NIR II optical
absorption, preferential
tumor targeting, excellent
biocompatibility, and high
PTT efficacy.

[70]

4. Technical Clues for Nanoparticle-Based Imaging of Bladder Cancer Cells

The studies reported in Tables 1–4 provide useful information to overcome various
technical issues to be faced in planning reliable NP-based imaging techniques suitable
for the specific detection of bladder cancer cells. Below, a summary of the successful
approaches is reported.

4.1. Nanoparticles

A large variety of NPs proved to be suitable for bladder cancer detection by applying
FLI, MRI, bimodal FLI-MRI, or other imaging techniques. In particular, for FLI, quantum
dots [49,50,52,65], mesoporous silica NPs [22,62], and titanium dioxide NPs [54] were
frequently used. To increase the luminescent signal-to-noise ratio, upconverting NPs [53,59]
(Figure 1) proved to ameliorate the detection of bladder cancer cells.

For MRI, contrast agent NPs were composed of iron oxide [61,63,66] (Figure 2), man-
ganese dioxide [67], or ferrous selenide [64].

Albumin-based nanoplatforms [57,67], single-walled carbon nanohorns [50], gold
nanorods [53], titanium dioxide [54], and silica NPs [56] loaded with fluorescent or magnetic
agents or even with other NPs were also employed for imaging purposes.
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Figure 2. Chemical structure of glycol chitosan NPs conjugated to hydrophobic 5β-cholanic acid, a
bladder cancer-targeting peptide (CSNRDARRC), iron oxide nanocubes, and the anticancer drug
vinblastine. Cy5.5 was chemically conjugated to the glycol chitosan for NIR fluorescence imaging
(adapted from [66]).

Aggregation-induced emission (AIE) is the process in which weakly luminescent
molecules become very bright by aggregating. AIE luminogens are, therefore, interest-
ing molecules suitable to synthesize organic NPs for biomedical imaging thanks to their
brightness. Accordingly, AIE NPs were applied in some studies for bladder cancer detec-
tion [51,60].

4.2. Imaging Techniques and Detectors

The most used techniques to investigate bladder cancer by NPs detection are differently
suited to morphological tissue imaging (Figure 3).
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MRI, OI, and photoacoustic (PA) imaging are largely diffused techniques that allows
whole-body or whole-organ imaging, but they have low-resolution capabilities (fraction of
a millimeter). Instead, CLSM can provide high-resolution images (below 1 micrometer),
thus revealing sub-cellular structures, but it penetrates less deeply into the sample, reaching
100 µm in depth. Optical coherence tomography (OCT) can achieve a spatial resolution of
10 µm and a few micrometers in depth [71,72].

MRI has a molecular sensitivity in the range of micromolar–millimolar, while PA, OI,
and CLSM can obtain nanomolar sensitivity. Recently it has been demonstrated that OCT
can achieve picomolar sensitivity for in vivo imaging [73,74].

In the articles selected in this review, conventional fluorescence microscopy and CLSM
were often employed to visualize in vitro and to confirm ex vivo the uptake of fluorescent
NPs in bladder cancer cells [22,50,52–54,57–60,63]. For whole-body detection in both
orthotopic and subcutaneous cancer models, the most useful approach was whole-body
or whole-organ OI, generally conducted with IVIS® instruments or analogs, which are
equipped with very sensitive CCD cameras, often cooled to reduce the thermal noise inside
the electronic detector [22,55–58,60,66,67].

Hyperspectral imaging (HSI) collects a high-resolution spectrum at each pixel, allow-
ing identification of the location of the NPs with great accuracy thanks to their spectral
signatures. Dark-field microscopy, excluding the unscattered incident beam, generates
a clear background in the images, which enhances the contrast. Interestingly, HSI, in
combination with dark-field microscopy, allowed the successful tracking of single oxygen
nanobubbles in vitro and ex vivo in bladder cancer tissue [68] (Figure 4).

Cancer growth was detected in the whole body by bioluminescent imaging techniques
using luciferase-expressing (Luc+) cells [58].

In the case of MRI, tomographs with magnetic fields from 1.5 T to 9.4 T were used [22,61–67].
MRI was especially useful in detecting in vivo NPs injected i.v. in mice, allowing us to
monitor their biodistribution and tumor-targeting efficacy.

Interestingly, bimodal NPs suitable for both FLI and MRI were developed in order
to combine the information given by the two imaging techniques, making these nanocon-
structs suitable for in vitro, in vivo, and ex vivo analyses [22,65–67].
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Figure 4. Oxygen nanobubbles (ONBs) are composed of an oxygen core and a sodium carboxymethyl-
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4.3. Cancer Models and Targeting

Different cancer cell lines were used as in vitro cancer models. In particular, tran-
sitional cancer cells MB49 were largely employed [22,55,57,62,67–69], but also human
transitional carcinoma cells UMUC3 [51,54,58,59] and human bladder urothelial carcinoma
EJ cells [52,56,63,64] were treated with NPs for imaging purposes. Moreover, a cancer
model was obtained by injecting mice i.v. with N-butyl-N-(4-hydroxybutyl)-nitrosamine
(BBN) [60].

In vivo, both subcutaneous [22,55–58,60,61,64,66,69] and orthotopic [51,62,67,70] murine
models of bladder cancer were adopted. It should be underlined that although the subcuta-
neous model is relatively simple to obtain in animals with standardized procedures, the
model closer to the pathological target in humans is the orthotopic one, where cancer cells
are implanted in the organ/tissue matching the tumor histotype. In most cases (especially
in subcutaneous cancer models) NPs were administered i.v. [51,55–57,60,61,64,66,67,69,70]
to verify their capability to systemically reach tumor cells. Alternatively, NPs were instilled
in the bladder in order to assess their capability to cross the urothelial barrier [22,62,67].
Taking into account that the final scope of this experimentation is setting up an NP-based
imaging system to target cancer cells in the urinary bladder and that this hollow organ can
be easily reached in a non-invasive way through the urethra, the administration of NPs
by instillation into the bladder seems more promising for a clinical application in the near
future, both for diagnostic and therapeutic purposes. The use of appropriate NPs would
overcome the problem of crossing the urothelial barrier, and the use of a cystoscope associ-
ated with a suitable light source would allow the immediate visualization of the labeled
tumor tissue. Accordingly, some ex vivo studies were performed by installing the NPs into
intact human bladders obtained from patients who underwent radical cystectomy [49,56,63].
In other studies, ex vivo analyses were performed on major organs or tumors excised from
animals treated in vivo with NPs to confirm their biodistribution [22,55,57,58,60,66–70].

To increase the specific internalization of NPs into bladder cancer cells, different
strategies were adopted, e.g., the use of peptides [62,63,66], antibodies against molecules
overexpressed in bladder cancer cells [49,52,53,61], or plasmids [58].

An original approach involved the genetically modified Salmonella typhimurium strain
YB1, which is known to penetrate hypoxic tumor cores avoiding damage to normal tissues.
It is, in fact, essential not only to kill tumor cells but also to preserve the surrounding healthy
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tissue [75]. Nanophotosensitizers indocyanine green-loaded NPs were covalently attached
to the surface of YB1, and the YB1-INPs treatment demonstrated specific hypoxia-targeting
to solid tumors with high fluorescence emission [55] (Figure 5).
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5. Conclusions

The treatment of bladder cancer has become a central target for the current clinical
research due to the high incidence of this tumor and its high social and economic costs in
terms of low quality of life, disability, and mortality. To obtain tumor eradication, bladder
cancer cells must be detected by specific markers (to allow their precise location for surgical
removal) or targeted by therapeutics (for pharmacological treatment). However, the blad-
der urothelium represents an almost impenetrable barrier that hinders the administered
molecules from reaching cancer cells. To overcome this crucial limitation, nanotechnol-
ogy has been envisaged as a possible solution. In fact, thanks to their nanometric size,
nanoconstructs can cross the urothelial barrier; moreover, their surface can be function-
alized to specifically bind cancer cells and act as targeted therapeutic tools by delivering
antitumor agents or as highly specific diagnostic tools provided that they are detectable by
imaging techniques.

During the last decade, researchers have intensely been working to develop NP-based
techniques to specifically image bladder cancer cells. The selected articles reported in
the present review are good examples of the current ingenious experimental proposals of
NP-based imaging techniques. However, the various developed nanoconstructs are quite
heterogeneous, and most of them have been tested in preclinical cancer models weakly
correlated with the diagnostic or therapeutic process in human patients. Therefore, at
present, none of the proposed strategies seem to be ready for translation to clinical practice.

On the positive, most of the attempts are based on the well-established FLI and MRI
that are currently used in the medical field. FLI is very useful in preclinical studies, but
due to tissue absorption, its use in clinics would be restricted to the direct application
on the bladder wall in PDD and PDT. However, this should not be seen as a limitation
because the instillation of drugs directly into the bladder is a widely applied administration
procedure. The advent of NPs crossing the urothelial barrier and targeting cancer cells
would represent an upgrade rapidly applicable to the current clinical procedures. MRI
is a powerful tool to investigate the biodistribution of NPs in vivo, especially when they
are administered systemically by i.v. injection; MRI also allows monitoring of the tumor
3D features following therapeutic treatment. However, the systemic administration of
NPs suitable for MRI is still unauthorized in clinical practice. Therefore it is likely that
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the translation of this approach from preclinical research to patient treatment will take a
long time.

In sum, this review demonstrates that several original nanoconstructs proved to
be suited to the targeted imaging of bladder cancer cells, but their clinical applicability
still seems far away. However, these promising results represent a solid experimental
foundation to proficiently pursue the efforts to set up novel NP-based diagnostic and
therapeutic tools and increase the success rate in combating bladder cancer.
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