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Abstract: Derived from the natural language processing (NLP) algorithms, protein language models
enable the encoding of protein sequences, which are widely diverse in length and amino acid
composition, in fixed-size numerical vectors (embeddings). We surveyed representative embedding
models such as Esm, Esm1b, ProtT5, and SeqVec, along with their derivatives (GoPredSim and
PLAST), to conduct the following tasks in computational biology: embedding the Saccharomyces
cerevisiae proteome, gene ontology (GO) annotation of the uncharacterized proteins of this organism,
relating variants of human proteins to disease status, correlating mutants of beta-lactamase TEM-1
from Escherichia coli with experimentally measured antimicrobial resistance, and analyzing diverse
fungal mating factors. We discuss the advances and shortcomings, differences, and concordance of
the models. Of note, all of the models revealed that the uncharacterized proteins in yeast tend to
be less than 200 amino acids long, contain fewer aspartates and glutamates, and are enriched for
cysteine. Less than half of these proteins can be annotated with GO terms with high confidence. The
distribution of the cosine similarity scores of benign and pathogenic mutations to the reference human
proteins shows a statistically significant difference. The differences in embeddings of the reference
TEM-1 and mutants have low to no correlation with minimal inhibitory concentrations (MIC).

Keywords: deep learning; natural language processing; protein annotation; protein language model;
protein sequence embedding; survey of embedding models

1. Introduction

Proteins are biopolymers made up of amino acid residues. The composition and order
of amino acids determine the 3D structure and function of a protein. Since the creation
of the first databases of protein sequences, there has been a need for a descriptor that can
uniquely identify a protein sequence, its physicochemical properties, and function.

Recent advances in natural language processing (NLP) and deep learning (DL) have
led to the development of protein language models that consider single amino acids and
their doublets or triplets as tokens (words) and generate fixed-size vectors (embeddings)
representing a given protein. These vectors account for both the composition of amino
acids and their order in the sequence [1]. Two major encoding approaches used in the field
are long short-term memory (LSTM) [2] and transformer [3], e.g., bidirectional encoder
representations from transformers (BERT).

Sequence embeddings can be used to predict global or local properties of proteins.
Examples of global properties predicted by the embedding-based methods include molec-
ular function [4,5], subcellular localization [4,6–9], taxonomic origin [4,9], gene ontology
(GO) [10], hydrophilicity [11], etc. Local properties pertain to the residue level. The em-
beddings were used to predict such local properties as secondary structure states [9,12],
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intra- or inter-molecular residue-residue contacts [12], ligand binding sites [13], conserved
positions, and effects of missense mutations [12,14], etc. Some embedding-based methods
allow the prediction of both global and local protein properties [15].

In this work, we surveyed a number of representative embedding models for execution
time, memory needs, and their ability to perform various tasks related to global properties
for different protein sets: proteome-wide sequence embedding, GO annotation, association
of human variants with disease, correlation of mutants with antimicrobial resistance in a
bacterial drug target, finding similarity in diverse fungal mating factors, and distinguishing
taxonomy and function in virulence factors.

2. Results
2.1. Proteome Wide Benchmarking

First, all of the models were assessed for speed and memory needs to generate embed-
dings on a proteome-wide level. We used Saccharomyces cerevisiae (S288C strain) for this
benchmarking as this organism has a considerably sized proteome (over 6000 proteins of
various length, which are largely annotated) with the structural and functional complexity
of eukaryotic organisms. Of note, given that both Esm and Esm1b impose the input se-
quence length limit of 1022 amino acids, we used two sets of proteins: proteins with length
within 1022 aa for all five models, and all proteins for the One-Hot, SeqVec, and ProtT5
models only.

Figure 1 shows the benchmarking results of generating the proteome-wide embed-
dings using the same hardware. As anticipated, One-Hot runs very fast and does not
require much memory for either of the protein sets. SeqVec is the longest model to execute
(33,305 ± 179 and 42,816 ± 494 s for short and all proteins, respectively) followed by ProtT5
(17,724 ± 145 and 23,390 ± 532 s). On the other hand, the SeqVec model demonstrates
the lowest memory footprint among the four embedders—953 ± 10 and 1142 ± 73 MB
on average and peak memory, respectively, for short proteins, whereas ProtT5 is the most
memory demanding model (5176 ± 45 and 15,763 ± 2 MB). Thus, execution time appears
to depend on the type of the neural network: Transformer-based models are faster than
LSTM, whereas memory requirements are directly proportional to the complexity of the
models (the numbers of layers and parameters).

Original publications of the embedding models assessed in this survey already provide
visualizations as to how they can distinguish proteins by structure organization (e.g., all
alpha, all beta, multi-domain, etc.), enzymatic function (e.g., oxidoreductases, transferases,
hydrolases, etc.), or by the origin (viruses, archaea, bacteria, eukaryota). Given that S. cere-
visiae, as any other sequenced organism, contains some not yet annotated proteins (845 of
6016 proteins in the S288C strain, in particular), we posed a different question—whether em-
beddings can separate the uncharacterized proteins in a given proteome and why. Figure 2
shows that all four embedding models are able to cluster out a large fraction of the unchar-
acterized proteins. When compared by sequence names, the clusters of uncharacterized
proteins appear largely overlapped (Figure 3A). To determine why all models group these
sequences in a separate cluster, we compared four subsets: (1) uncharacterized proteins
within the cluster, (2) uncharacterized proteins outside the cluster, and annotated proteins
within (3) and outside (4) that cluster. Since the uncharacterized sequences constituting a
separate cluster are nearly the same across the embedders, only the SeqVec-based data was
analyzed. The first observation was that the sequences constituting this cluster were short
(under 200 aa, Figure 3B). The second observation was that three amino acids demonstrate
a skewed composition within the cluster: aspartate and glutamate are under-represented,
whereas cysteine is enriched in the cluster of uncharacterized proteins (Figure 3C–E). The
third observation is that no compositional bias is observed for the pairs of amino acids
within the cluster.
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Figure 1. Benchmarking of the embedding models over the Saccharomyces cerevisiae (S288C) proteome.
Values are based on the whole proteome (All, n = 6016) and on the subset of proteins shorter than
1023 aa (n = 5242). Error bars are standard deviations computed over three independent runs on the
same hardware (16 CPU Intel® Xeon® E5-2680 2.70 GHz).
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Figure 2. Visualization of embeddings of the Saccharomyces cerevisiae (S288C) proteome by different
models in the context of annotated (orange) versus uncharacterized (blue) proteins. Uncharacterized
proteins are the sequences that contain either “putative” (n = 227) or “uncharacterized” (n = 618)
keywords in their sequence name. All t-SNE plots were generated using 3000 iterations with a
perplexity of 30.
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Figure 3. Analysis of the Saccharomyces cerevisiae (S288C) proteome embeddings. (A). Overlap of the
uncharacterized sequences clustered out by the four embedding models (Figure 2, Supplementary
material S1). (B). Length distribution of the sequences within and outside the cluster of uncharacter-
ized proteins derived from the t-SNE data of SeqVec. The inset shows only sequences under 1000 aa
for a better resolution of the short-range lengths. (C–E). Composition (Equation (1)) distributions of
aspartate, glutamate, and cysteine, respectively, in sequences within and outside the cluster of unchar-
acterized proteins. The embedding data and line colors are the same as in panel (B). Distributions for
all amino acids can be found in Supplementary material S2.

Amino acid composition is defined as the log-odds ratio between the given sequence
and the background frequency (Equation (1)):

LORa = log
pa

Pa
= log

na
n

Na
N

(1)

where a is an amino acid type (1 out of the 20 most common natural amino acids); na—the
count of the amino acid in a given sequence; n—the sequence length; Na—the total count of
the amino acid in the proteome; N—the total length of the proteome.

Next, we looked into the ability of the embedding models to predict the global prop-
erties of these uncharacterized proteins as gene ontology (GO). Two recently published
methods were assessed: GoPredSim [10] and PLAST [16]. GoPredSim employs SeqVec
embeddings, whereas PLAST is based on the Esm1b model. We ran GoPredSim using
the k-nearest neighbors mode, with k = 1. Both methods used annotated proteins from
Swiss-Prot as a reference database. Since the true GO annotations are not known for the
uncharacterized proteins by definition, the goal was to compare the concordance of these
two methods in their annotations.

Of the 255 uncharacterized proteins submitted to these two tools, GoPredSim was
able to annotate 80 proteins with a high confidence, whereas PLAST assigned GO terms to
153 proteins. Overall, GoPredSim is more conservative in the GO annotation than PLAST
(Figure 4A,B). Interestingly, these two tools have overlaps in 62 proteins and 15 GO terms
only, even for the relaxed cutoffs (RI > 0.2 and p-value < 0.01, Figure 4C,D).
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Figure 4. Concordance of GoPredSim and PLAST in GO annotation of the uncharacterized S. cerevisiae
proteome. (A,B). Number of unique proteins and GO terms assigned by GoPredSim and PLAST,
respectively, per different cutoffs. (C,D). Overlap of the annotated proteins and GO categories. RI is
the GoPredSim reliability index; pP is −log10 (PLAST p-value).

2.2. Human Protein Variants and Diseases

To assess whether the embeddings of human gene variants may be indicative of a
disease status (Pathogenic versus Benign), 100 proteins were randomly picked from the
UniProt/Swiss-Prot humsavar database of human variants (Release 2022_03 of 3 August
2022). These proteins contained 2889 likely pathogenic/pathogenic (LP/P) and 833 likely
benign/benign (LB/B) mutations curated from the literature (see the complete list of
assessed proteins and mutations in Supplementary material S3). The length of protein
sequences ranged between 79 and 5202 aa. As some proteins were larger than 1022 aa (the
limit for the Esm/Esm1b models), the SeqVec and ProtT5 embeddings were only considered
for this analysis.

As can be seen from Table 1, both benign and pathogenic variants in human proteins
cause very minor changes in the corresponding embedding vectors: cosine similarity scores
between mutated sequences and their reference proteins have a standard deviation in the
third digit after the point. Overall, cosine scores are not normally distributed. However,
the Mann–Whitney U test shows that similarity scores for benign mutations are statistically
different from the pathogenic variants.
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Table 1. Distribution of cosine similarity scores for the embeddings of the variants and their corre-
sponding reference human proteins *.

Model Cos Range Cos Mean ± SD Shapiro-Wilk Test
p-Value

Mann-Whitney U Test
p-Value

ProtT5 0.975–1.000 1.000 ± 0.001 1.138 × 10−77 0.0038

SeqVec 0.966–1.000 0.999 ± 0.004 2.217 × 10−81 1.175 × 10−8

* The distribution statistics and test for normality are computed based on the whole set of assessed mutations,
whereas the Mann–Whitney U test is to compare benign versus pathogenic subsets of mutations.

2.3. TEM-1 Variants and Antimicrobial Resistance

Beta-lactamase TEM-1 from Escherichia coli was used to assess how embeddings for
various variants deviate from the reference protein sequence and whether they may corre-
late with the experimentally measured antimicrobial resistance. Jacquier and colleagues
generated a large library of TEM-1 mutants using the GeneMorph II Random Mutagenesis
Kit (Stratagene) and measured the minimal inhibitory concentration (MIC) of amoxicillin
necessary to stop the growth of the respective bacterial colonies [17].

Following the original publication, MIC values were binned into 0, 12.5, 25, 50, 100,
250, 500, 1000, 2000, and 4000 mg/L, and log transformed. The reference TEM-1 sequence
of 286 aa long was taken from the UniProt database (UniProt ID: P62593). Of the 8621 total
sequenced mutants, only those representing non-synonymous mutations and containing
no early stop codons or frame shifts were considered in this work. If different mutations
resulted in identical protein variants, only one protein sequence was included in the dataset.
Such filtering resulted in 4930 unique mutants ranging from single to eleven simultaneous
amino acid mutations. This dataset gives a unique opportunity to assess the effect of
diverse and multiple simultaneous mutations on sequence embeddings on a large scale
and to relate them to experimentally derived data, such as MIC. A summary of the mutants
considered and the corresponding results of the embeddings is presented in Table 2.

Table 2. E. coli TEM-1 mutants and their embeddings.

Esm Esm1b ProtT5 SeqVec

AAM 1 Total
2 cos 3 r4 cos r cos r cos r

1 855 1.0 ± 0.0 0.125 1.0 ± 0.0 NA 0.999 ± 0.002 0.229 0.998 ± 0.007 0.197

2 1740 1.0 ± 0.0 0.116 1.0 ± 0.0 NA 0.999 ± 0.002 0.281 0.998 ± 0.008 0.222

3 1230 1.0 ± 0.0 0.170 1.0 ± 0.0 0.044 0.998 ± 0.002 0.293 0.997 ± 0.010 0.208

4 626 1.0 ± 0.0 0.158 1.0 ± 0.0 0.028 0.997 ± 0.003 0.281 0.996 ± 0.011 0.172

5 316 1.0 ± 0.0 0.190 1.0 ± 0.0 NA 0.997 ± 0.003 0.247 0.993 ± 0.018 0.158

6 105 0.999 ± 0.001 0.150 1.0 ± 0.0 0.057 0.996 ± 0.003 0.240 0.994 ± 0.011 0.132

7 42 0.999 ± 0.001 0.083 1.0 ± 0.0 NA 0.995 ± 0.005 0.065 0.994 ± 0.011 0.114

8 10 0.999 ± 0.001 NA 1.0 ± 0.0 NA 0.991 ± 0.008 NA 0.996 ± 0.003 NA

9 4 0.999 ± 0.001 0.816 1.0 ± 0.0 0.333 0.991 ± 0.007 0.619 0.995 ± 0.002 0.733

10 1 0.999 NA 1.0 NA 0.986 NA 0.890 NA

11 1 0.999 NA 1.0 NA 0.994 NA 0.893 NA

Any 4930 1.0 ± 0.0 0.210 1.0 ± 0.0 0.040 0.998 ± 0.003 0.348 0.997 ± 0.010 0.223
1 The number of simultaneous amino acid mutations in a TEM-1 variant. 2 Total count of mutants. 3 Cosine
similarity to the reference sequence, mean ± SD. 4 Pearson correlation of cosine similarity scores with log (MIC).

All tested embedding models show little to no variance in the cosine similarity scores
between variants, including the multiple simultaneous mutations and the reference se-
quence of TEM-1. The standard deviations of cosine similarity are in the third digit after
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the point or lower. Also, no or low linear correlation is observed between cosines and
corresponding MIC values. ProtT5 model yields the highest correlation coefficients for 1 to
6 simultaneous mutations compared to other embedding models.

2.4. Mating Factors

Mating factors (pheromones) are essential for sexual reproduction in fungi and are
classified as mating factors “a” and “α”. They allow for the recognition and mating of
cells of different mating types in heterothallic species. After being thoroughly studied
in baker’s yeast, mating factors are identified in many fungi. As pheromones display a
high complexity and variability of sequences, the identification of a homolog through the
simple sequence homology search is non-trivial [18]. In this survey, the ability of sequence
embeddings to identify hidden common features among the diverse mating factors of the
same type across species was examined. Then, how such similarities correlate with the
actual sequence homology derived from the pairwise sequence alignments by BLAST were
assessed. Full protein sets of α-factor precursors (n = 60) and mating factors of type a1
and a2 (n = 34) were retrieved from the Pfam database (Pfam IDs: PF05436 and PF17317,
respectively).

As can be seen from Table 3, both classes of mating factors are quite divergent, yielding
only a 38% and 59% sequence identity on average within the precursors of the α-factors and
a-factors, respectively. However, the average pairwise cosine similarity for the Esm and
Esm1b models is high—over 0.99—for both classes of mating factors. ProtT5 and SeqVec
also display high pairwise cosine similarity within the classes–over 0.8. However, when
compared with the actual sequence identity, the cosine scores show low to no correlation
for the α-factors, and a moderate correlation for a-factors. Among the four embedding
models, SeqVec shows the highest correlation between the cosine similarity and the actual
sequence identity, potentially making it the most reliable in finding sequences representing
the mating factors in the proteomes of non-annotated fungi.

Table 3. Comparison of embedding models with BLAST over mating factors (MF).

MF-Alpha Precursors (PF05436) MF a1 and a2 (PF17317)

Sequence
Identity 1

Conservative
Substitutions

Sequence
Identity

Conservative
Substitutions

38.26 ± 9.54% 57.77 ± 9.28% 58.97 ± 11.38% 74.06 ± 9.03%

Model cos 2 r 3 r cos r r

Esm 0.991 ± 0.006 0.062 0.049 0.992 ± 0.006 0.449 0.391

Esm1b 0.993 ± 0.004 0.060 0.014 0.990 ± 0.007 0.277 0.292

ProtT5 0.816 ± 0.098 0.108 0.071 0.882 ± 0.096 0.506 0.407

SeqVec 0.823 ± 0.077 0.271 0.205 0.857 ± 0.064 0.623 0.612
1 Distribution of pairwise BLAST alignment sequence identity and conservative substitutions, mean ± SD.
2 Distribution of pairwise cosine similarity scores, mean ± SD. 3 Pearson correlation of cosine similarity with
BLAST sequence identity and conservative substitutions.

2.5. Virulence Factors

Pathogenic microorganisms have evolved to employ various ways of infecting higher
organisms and thriving within hostile environments. Evasion or adaptation to host im-
munity, targeting different host cell receptors, or hijacking the transcriptional machinery
are some examples of such strategies. The Victors database provides access to the known
virulence factors of pathogens from bacteria, viruses, fungi, and other single cell eu-
karyotic parasites [19]. As of 20 October 2022, the database contained 5304 proteins for
127 pathogens. We assessed how the embedding models differentiate virulence factors
(Figure 5).
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Figure 5. Distribution of embeddings by the Esm, Esm1b, SeqVec, and ProtT5 models for the virulence
factors obtained from the Victors database [19]. The upper row presents all the virulence factors
colored by kingdoms, and the lower row presents the clusters of the orthologous group (COG)
categories, using cell motility (red) in contrast to other functions (blue), proteins with multiple
functions (orange), and other proteins with no COG assigned (grey). The t-SNE plots for all the other
COG categories can be found in Supplementary material S4.

While embeddings representing the bacterial virulence factors appear broadly dis-
tributed in all models, ProtT5 makes the best clustering of fungal and viral virulence factors
(Figure 5, upper row). When considered from the perspective of a specific function, all the
models successfully cluster out the proteins involved in cell motility (Figure 5, lower row,
red). The distribution of proteins from all 18 functions, as defined by the clusters of the
orthologous group (COG) categories in the Victors database can be found in Supplementary
material S4. Interestingly, all models, except for SeqVec, separate the virulence factors of
unknown function (Figure 5, lower row, grey).

3. Discussion

Our survey of the embedding models demonstrates that most models are able to
separate proteins of unknown function from annotated proteins in a given dataset (Figure 2,
Figure 5). In part, it may be attributed to the biases in sequence length as uncharacterized
proteins tend to be shorter (Figure 3B), but there may also be biases in the amino acid
composition (Figure 3C–E). In the context of the functional annotation of such proteins,
sequence embedding-based methods demonstrate variable performance. GoPredSim ap-
pears to be highly conservative in assigning gene ontology terms—it was able to annotate
only about 30% proteins with unknown function in S. cerevisiae with a degree of high
confidence. Interestingly, its reliability index, as a measure of confidence, appears to follow
a bimodal distribution and may potentially serve as a classification variable with a cutoff
of around 0.25 (Figure 4A). On the other hand, PLAST has a more gradual relationship
between p-value and embedding similarity (Figure 4B). But PLAST generally finds simi-
lar sequences more frequently than GoPredSim, which may be attributed to the fact that
PLAST is based on Esm1b embeddings. From the other tests in our survey, Esm and Esm1b
models tend to generate embeddings for diverse proteins that result in a very narrow range
of high cosine similarity scores (0.99–1.00, Table 2), which may potentially yield a high
false positive rate. Low variance in the embedding vectors of the Esm/Esm1b models is
further demonstrated in the diverse sets of fungal mating factors that have a low pairwise
sequence identity. However, although cosine similarity is very high, it has a low to no
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correlation with sequence identity for the α-factors, and a moderate correlation for the
a-factors (Table 3).

Interestingly, a comparison of embeddings for variants in human proteins, as well as
various mutants in the beta-lactamase TEM-1 of E. coli, shows that the resulting vectors are
very similar to those of the reference sequences, yielding a cosine similarity score in the
0.9–1.0 range (Tables 1 and 2). Nevertheless, the Mann–Whitney U test indicates that there
is a statistically significant difference in the distributions of these scores between benign and
disease-causing mutations (Table 1). This is in line with the recent report on the ability of
the protein language models to detect conserved positions in proteins and disease-causing
single amino acid variants [14]. The use of such embeddings in predicting antimicrobial
resistance remains to be seen, though, as our survey shows low to no correlation between
the cosine similarity and minimal inhibitory concentrations for all models (Table 2).

4. Materials and Methods
Protein Sequence Embedding Models

In this survey, four of the most cited embedding models were used: Esm/Esm1b [12],
Sequence-to-Vector (SeqVec) [4], and ProtTrans (ProtT5) [9], along with One-Hot as a
baseline model. Their respective implementations were taken from the Bio Embeddings
python library [20]. Both the Esm and Esm1b models are based on the Transformer [3]
architecture and trained on the high-diversity sparse dataset of the UniRef50 representative
sequences, with 1280-dimensional output vectors. Esm has 670 M parameters (34 layers),
while Esm1b has 650M parameters (33 layers). SeqVec is based on the bidirectional LSTM
language model [2] with 93M parameters and is trained on the UniRef50 protein dataset.
ProtT5-XL is based on the T5 text-to-text transformer [21] with 3B parameters (24 layers)
and is also trained on UniRef50. Both SeqVec and ProtT5 generate 1024-dimensional
embedding vectors. The One-Hot output is a 21-dimensional vector, including 20 common
plus one rare (selenocysteine, U) natural amino acid.

5. Conclusions

This survey provides an overview of the performance of four protein embedding
models (Esm, Esm1b, SeqVec, and ProtT5) on various tasks, such as identifying uncharac-
terized proteins, predicting gene ontology, and differentiating virulence factors. The results
indicate that the Esm and Esm1b models are the fastest models to execute, but have a
restriction on protein length. This limits their broad application, especially to the proteomes
of higher organisms. Although the SecVec model is the slowest, it is the most memory
efficient. All of the models were able to cluster out a large fraction of uncharacterized
proteins. In baker’s yeast, such proteins demonstrated biases in the sequence length and
amino acid composition. The performance of the embedding models in predicting the gene
ontology varied, with GoPredSim being more conservative and PLAST assigning more
GO terms. The embeddings of human gene variants did not show much deviation from
a reference sequence but yielded statistically significant differences in the distributions
between the benign and pathogenic mutations. The embeddings of various TEM-1 mu-
tants did not show a correlation with antimicrobial resistance. The survey also found that
Esm/Esm1b models tend to generate embeddings for diverse proteins that result in a very
narrow range of high cosine similarity scores, which may potentially yield a high false
positive rate. Overall, the ability of the protein language models to generate uniform, fixed
length numerical identifiers for proteins has the potential to enable fast searches for similar
proteins and different annotations, which is especially important in light of the vast amount
of data generated by modern sequencing technology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24043775/s1.
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