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Abstract: In a search for novel therapeutic options for head and neck squamous cell carcinomas
(HNSCCs) generally treated with limited therapeutic success, we synthesized a series of novel
erlotinib–chalcone molecular hybrids with 1,2,3-triazole and alkyne linkers and evaluated them
for their anticancer activity on Fadu, Detroit 562 and SCC-25 HNSCC cell lines. Time- and dose-
dependent cell viability measurements disclosed a significantly increased efficiency of the hybrids
compared to the 1:1 combination of erlotinib and a reference chalcone. The clonogenic assay demon-
strated that hybrids eradicate HNSCC cells in low micromolar concentrations. Experiments focusing
on potential molecular targets indicate that the hybrids trigger the anticancer effect by a complemen-
tary mechanism of action that is independent of the canonical targets of their molecular fragments.
Confocal microscopic imaging and real-time apoptosis/necrosis detection assay pointed to slightly
different cell death mechanisms induced by the most prominent triazole- and alkyne-tethered hybrids
(6a and 13, respectively). While 6a featured the lowest IC50 values on each of the three HNSCC
cell lines, in Detroit 562 cells, this hybrid induced necrosis more markedly compared to 13. The
therapeutic potential indicated by the observed anticancer efficacy of our selected hybrid molecules
validates the concept of development and justifies further investigation to reveal the underlying
mechanism of action.
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1. Introduction

Head and neck squamous cell carcinomas (HNSCCs) represent the sixth most common
cancer worldwide, accounting for approximately 660,000 new diagnoses and 325,000 deaths
annually. The main risk factors are tobacco and alcohol consumption, but infection with
human papillomavirus or Epstein–Barr virus is also responsible for the development of the
disease [1,2].

The topological diversity and the high genomic heterogeneity of the individual HN-
SCC tumors make it difficult to identify predictive biomarkers of therapeutic value. The
principal modalities of curative therapy for HNSCCs are surgery, radiation, and systemic
therapy [3].

Since human epidermal growth factor receptor (EGFR) has a pivotal role in carcinogen-
esis and HNSCCs show significantly increased EGFR expression, several EGFR inhibitors
were developed and tested for HNSCC treatment in the past few decades [4]. The currently
available types of EGFR inhibitors are monoclonal antibodies (e.g., cetuximab) and tyrosine
kinase inhibitors (such as gefitinib, erlotinib, afatinib and lapatinib). Despite effective EGFR
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inhibition, these compounds have relatively low response rates in HNSCC patients in
monotherapy, and the development of resistance is a general problem, which compromises
the chances of cure. EGFR antisense DNA represents a promising approach by inhibition
of EGFR expression in tumor cells; however, a therapeutic breakthrough has yet to be
achieved. Therefore, the combination of EGFR inhibitors with other therapeutic agents has
emerged as a promising strategy to overcome resistance and improve clinical outcomes [5].

Although recent advances in immunotherapy led to a better survival rate than achiev-
able by conventional chemotherapy in a small fraction of HNSCC patients, the overall
clinical response rate is still below that observed in many other tumor types. It follows that
the necessary improvement in the survival of HNSCC patients requires novel strategies
based on the identification of better molecular targets and therapeutic agents [3].

Fragment-based drug discovery is a promising recent approach to developing potent
hybrid compounds for cancer treatment by coupling different pharmacophore residues
into new multitarget anticancer agents [6–8]. The enhanced efficiency of hybrid anticancer
drugs with more than one molecular target in the cells lies in the fact that they trigger
multiple signal transduction pathways, finally leading to the multiplied stimulation of
cell death. In principle, hybrid anticancer agents might have a real potential to overcome
certain disadvantages of single cancer drugs, such as resistance and adverse effects.

In attempting to target HNSCCs with enhanced efficacy, we envisaged exploring
the concept of fragment-based drug design for the development of novel hybrid com-
pounds. Accordingly, erlotinib (1, Scheme 1) was selected as the fragment displaying EGFR
inhibitory activity with a terminal alkyne moiety that makes this molecule feasible for
well-established coupling reactions used for chemical hybridizations.
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Following the strategy of fragment-based drug design, we selected representative
types of chalcones to be incorporated in erlotinib-based hybrid molecules as an additional
pharmacophore unit with significant potency in contributing to antiproliferative activity.
As it has been extensively reviewed, chalcone derivatives represent a highly potent class of
anticancer drug candidates featuring manifold mechanisms of action in cancer cells [9–12].
For instance, a great number of their representatives were found to induce significant
cell cycle arrest at the G2/M phase leading to apoptosis; moreover, they exhibited higher
efficacy due to their inhibitory activity in tubulin polymerization, enzyme dynamics [13]
and signal transductions induced by nuclear factor κB [14]. Highlighting the importance of
cell cycle arrest, 1,2,3-triazole-tethered cinchona-chalcone hybrids demonstrated substantial
antiproliferative activity in the highly treatment-resistant PANC-1 pancreatic carcinoma
cells, exerting extensive inhibitory effects in the subG1, S and G2/M phases [15].

It is also of note that diverse chalcone derivatives have a real potency even in the
therapy of drug resistance as they display promising in vitro and in vivo effects on both
drug-susceptible and drug-resistant cancers while also being capable of acting on a variety
of targets, such as aromatase, breast cancer resistance protein (BCRP), vascular endothelial
growth factor (VEGF) and ATP binding cassette subfamily G member 2 (ABCG2) [16,17].

In the context of our recent program, it is of particular relevance that focused mech-
anistic studies identified highly potent 1,2,3-triazole-tethered chalcone hybrids inducing
apoptosis, G2/S arrest, inhibition of the ATR-mediated activation of Chk1 and disruption of
mitochondrial membrane potential in a panel of human cancer cell lines [18,19]. Mitochon-
drial damage could be achieved in both drug-sensitive and multidrug-resistant (MDR) lung
carcinoma cells by such ferrocene-based triazole-containing cinchona-chalcone hybrids [20],
which were also found to exhibit significant antiproliferative activity in HepG2 hepatoma
and HT-29 colorectal adenocarcinoma human tumor cell cultures [21].

We envisaged introducing 1,2,3-triazole and alkyne moieties as linkers to tether er-
lotinib and chalcone fragments in the target hybrid molecules. On the one hand, given
the presence of the ethynyl group in erlotinib, this choice of linkers is reasonable from the
synthetic aspect, and on the other hand, their introduction in the molecular architecture
might significantly attenuate the antiproliferative activity of a hybrid therapeutic agent.
Accordingly, the 1,2,3-triazole ring, a privileged pharmacophore unit readily available by
“click” chemistry, is capable of forming a variety of noncovalent interactions with diverse
enzymes, proteins and receptors by hydrogen bonds as well as van der Waals and dipole–
dipole forces [22–25]; thus, this heterocycle has been extensively utilized as a valuable
pharmacophoric motif in bioactive compounds with diverse activities, including anti-
malarial [26–28], antibacterial [29,30], antiviral [31,32] and anticancer [15,18–21,28,32–34]
effects. The presented selection of examples from the recent literature underlines that the
1,2,3-triazole ring is worth being incorporated as a linker in the target chalcone-containing
hybrids.

Besides the synthetic feasibility of well-established protocols of Sonogashira coupling,
the beneficial feature of the introduction of an acetylenic linker into anticancer drug candi-
dates is also justified by characteristic literature examples reporting on alkyne derivatives
identified as potent antitumor agents of natural and synthetic origin [35–41].

Finally, it is of note that our current strategy in fragment-based drug design is fur-
ther supported by a previous research that demonstrated that both 1,2,3-triazole-linked
and alkyne-tethered hybrid molecules with identical terminal pharmacophores display
antiproliferative activity in a panel of human cancer cell lines [42].

2. Results
2.1. Chemistry

Starting from erlotinib (1) and azidochalcones 2a–c, 3a–c and 4a,b as coupling partners,
the target hybrids with 1,4-disubstituted 1,2,3-triazole linkers with alternative chalcone
constitutions (5a,b,d, 6a,b,d and 7a,b, respectively: Scheme 1) were accessed in acceptable-
to-good yields (33–85%) by straightforward synthetic routes based on the well-established
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copper-catalyzed alkyne-azide cycloaddition [43]. The reactions were conducted at room
temperature for a prolonged reaction time (12 h) using copper(I) iodide as a catalyst in
dimethylsulfoxide (DMSO) that served both as solvent and ligand. The hybrids with a
4-aminophenyl group at the terminal position of the chalcone fragment (5d and 6d) were
obtained in low overall yields (22% and 23%, respectively) by standard cycloaddition/acid-
catalyzed N-deprotection sequence employed in a one-pot protocol without isolation of
the tert-butoxycarbonyl-protected intermediate (Scheme 1(5c) and (6c)). The azidochalcone
components were prepared by Claisen–Schmidt condensation of the appropriate arylalde-
hyde and methyl ketone, as described in previous works (2–3a: [15], 2–3b: [21] and 4a: [28])
and in the Supplementary Materials (SM) (2–3c and 4b: Section S1).

Since the initial cell viability inhibition screening (discussed in detail in Section 2.2)
identified 6a as the most active member of the hybrids with the 1,2,3-triazol linker (Scheme 1),
we selected 3,4,5-trimethoxyhenyl derivatives 13 and 14 as targeted structures expected to
have promising anticancer properties in the series of the possible alkyne-tethered erlotinib–
chalcone hybrids. Accordingly, following a simple synthetic route, alkyne-containing alde-
hyde intermediates 10 and 11 were first obtained in mediocre yields (44% and 48%) by using
a well-established protocol of Sonogashira coupling of 1 with 4-bromobenzaldehyde (8) and
2-iodobenzaldehyde (9), respectively (Scheme 2). In the second step, hybrids 13 and 14 were
accessed by base-catalyzed Claisen–Schmidt condensation of 3,4,5-trimethoxyacetophenone
12a with aldehyde components 10 and 11, respectively (Scheme 2). The relatively low iso-
lated yields of 13 and 14 might be due to the competing conjugate addition of 12a to the
activated carbon-carbon triple bond in the aldehyde components and/or uncontrolled
polymerization processes. Finally, 12a was also subjected to Claisen–Schmidt condensation
with benzaldehyde to afford chalcone 15 as a reference compound [44] (Figure 1).
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Figure 1. The novel hybrids emerged as the most potent model compounds in the viability assays
(6a, 13 and 14), which were selected for further biological studies (red) using erlotinib (1) and chalcone
(15) as reference fragments (blue) exploited in structure design.

2.2. In Vitro Cell Viability Inhibition Screening of Novel Erlotinib–Chalcone Hybrid Molecules on
HNSCC Cell Lines

The synthesized compounds were screened for their anticancer activities against three
HNSCC cell lines (Fadu, Detroit 562 and SCC-25) using the CellTiter-Glo luminescent cell
viability assay (Figure 2). The screening was performed at a 10 µM concentration and
72 h treatment time, and untreated cells (cultured in 0.2% DMSO-containing medium) were
used as reference. The efficacy of the compounds that constitute the two fundamental
moieties of our molecular hybrids, i.e., 1 and 15, were also assessed. Although 3a, 5b,
6d and 15 were also found to be more potent antiproliferative agents than 1, among the
tested hybrid molecules, 6a, 13 and 14 showed the highest efficacy (Figures 1 and 2). These
compounds proved to be significantly more potent than either 1 or 15 and were selected
for further investigation.
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2.3. Time- and Dose-Dependent Effects of Selected Hybrid Molecules on the Viability of HNSCC Cells

The viability inhibition potency of the selected hybrid molecules (6a, 13, 14) was
further investigated on HNSCC cells using the CellTiter-Glo cell viability assay (Figure 3).
Molecular fragments of the hybrids (1 and 15) as well as their combination (1:1 mixture)
were tested as reference models.
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postincubation period. Cell viability was determined by CellTiter-Glo assay. Curves were fitted by
GraphPad Prism 8 software (nonlinear regression, variable slope; n = 4).
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Erlotinib significantly inhibited the viability of all tested cancer cells in the nanomolar
range; however, it was far from being able to completely eradicate the cancer cells even at
the highest concentration applied (10 µM). On the other hand, the effect of 15 (reference
chalcone) was only detectable in the micromolar range. It must be pointed out as a novel
finding that the most prominent hybrids (6a, 13 and 14), showed superior potency not
only to 1 and 15 when applied as single agents but also to the 1:1 combination of these
reference compounds.

Among the hybrids, 6a showed the highest efficiency both in the short term (24 h
treatment) and long term (72 h treatment + 72 h postincubation). The results of the short-
term treatment suggest that hybrids 13 and 14 have no direct cytotoxic effect, while 6a
showed significant viability inhibition on Fadu and SCC25 cells; however, it proved to be
less efficient against Detroit 562 cells.

The long-term treatment revealed the outstanding potency of the hybrids superior
to that produced by their molecular components (1 and 15) either as single agents or in
combination. According to the cell viability measurement, all three HNSCC cell lines were
eradicated by the selected hybrids in the micromolar range. The IC50 values (Table 1) as well
as the combination indexes (Figure 4) demonstrate that Fadu cells are the most sensitive
and SCC-25 are the most resistant to the hybrids in our experiments. Dose-dependent
combination indexes also reveal that the combination of 1 + 15 has only an additive effect,
while each of the three hybrids exhibits strong synergism on all of the three HNSCC cell
lines in the micromolar range. On the other hand, combination indexes of the hybrids
indicate antagonism in the nanomolar range, which can be reasoned by the fact that the
hybrids proved to be less effective in the nanomolar range compared to 1.

Table 1. IC50 values of hybrids (6a, 13 and 14) and reference fragments (1 and 15) as single agents
and in 1:1 combination, after 72 h treatment and 72 h postincubation. IC50 values were determined by
GraphPad Prism 8 software (nonlinear regression, variable slope, best fit values are presented, n = 4).

IC50 Values (nM)

1 15 1 + 15 6a 13 14

Fadu 1199 1880 362 389 770 658

Detroit 562 4035 3074 1488 673 810 1264

SCC-25 180 2777 173 725 1935 1444
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and Fadu cells than SCC-25 cells; however, it was far from being able to eliminate these 
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Figure 4. Concentration-dependent visualization of combination index of hybrids (6a, 13 and 14) and
their fragments: erlotinib (1) and chalcone (15) in 1:1 mixture. Combination index was calculated by
CompuSyn using the mean values of cell viability data measured by CellTiter-Glo after 72 h treatment
and 72 h postincubation. Total concentration means the overall concentration of 1 and 15 either in
combination or in hybridized form.

2.4. Colony Formation Assay

A colony formation assay was performed in order to verify the elimination of HNSCC
cells even after a single-dose treatment with hybrid molecules 6a, 13 and 14. Therefore, cells
were treated only for 24 h at a 2.5 µM concentration followed by a 7-day-long postincubation
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period in complete medium. Untreated cells were used as control, and 1 and 15 served
as references.

In this experimental setup, erlotinib has no significant anticancer effect as it is demon-
strated in Figure 5. Chalcone 15 proved to be more effective against Detroit 562 and Fadu
cells than SCC-25 cells; however, it was far from being able to eliminate these cancer
cells. Triazole-tethered hybrid 6a was identified as the sole investigated compound able to
completely eradicate the whole cell population of all three HNSSC cell lines tested, while
13 caused total lethality on Detroit 562 cells and proved to be highly efficient on Fadu cells
as well. Surviving cancer cells were visible on each investigated cell line after the treatment
with hybrid 14. Since this compound proved to be the less effective one among the three
hybrids in the colony formation assay, it has been excluded from further experiments.
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Figure 5. Colony formation assay of HNSCC cells using 2.5 uM concentration, 24 h treatment time and
1-week-long postincubation in treatment-free cell culture medium. C: control (medium containing
0.2% DMSO); 1: erlotinib; 6a, 13 and 14: hybrids; 15: chalcone.

2.5. Apoptosis and Necrosis Quantitation Assay

The mechanism of action of the most potent hybrids, 6a and 13, was investigated
by an apoptosis-necrosis detection assay on the HNSCC cells. Paclitaxel, the emblematic
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apoptosis-inducing agent used in current HNSCC therapy, was employed as a positive
control for apoptosis, and untreated cells served as a negative control. Nuclei were labeled
with DRAQ5 (blue). Early apoptosis was defined here as annexin V-positive (green color)
and EthD-III (pink color)-negative cells, while late apoptosis/necrosis was defined as both
annexin V- and EthD-III-positive cells. As shown in Figure 6, hybrid 6a resulted in the
formation of several early apoptotic Fadu and SCC-25 cells but only late apoptotic/necrotic
Detrotic-562 cells. In the case of treatment with 13, early apoptosis was detectable in several
Fadu and Detroit 562 cells but not in SCC-25 cells. Plasma membrane blebbing, as another
potential morphological marker of apoptosis [45,46], was also revealed in some Annexin
V-positive cells.
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Figure 6. Apoptosis-necrosis detection assay on Fadu, Detroit 562 and SCC-25 HNSCC cells by
confocal laser scanning microscopy. The cells were treated for 28 h at 2.5 µM. Paclitaxel was used as
a positive control and untreated cells as a negative control. Nuclei were visualized by membrane-
permeable dye DRAQ5 (blue). CF488A-labeled Annexin V stains apoptotic cells with green fluores-
cence. Membrane-impermeable Ethidium Homodimer III stains the nuclei of necrotic cells and late
apoptotic cells exclusively (pink color). Plasma membrane blebs are marked with yellow arrows.
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2.6. Mitochondrial Membrane Potential Detection

Mitochondrial membrane potential as an indicator of mitochondrial function was
investigated by the membrane-permeant JC-1 dye [47]. Mitochondrial uncoupling agent
2,4-Dinitrophenol (DNP) was used as a positive control [48]. Compared to the nontreated
cells, where the well-functioning mitochondria appear with red color, both hybrids 6a and
13 resulted in a significant reduction in membrane potential as indicated by the diffuse green
color in Figure 7. Complementing the results of the Apoptosis and Necrosis Quantitation
Assay, characteristic morphologic alterations were observed on the confocal images of JC-1-
labeled cells as well. Vacuolated cytoplasm (bubble-like formation) was detectable in all
three HNSCC cell lines after treatment with 13. In contrast, vacuolated cytoplasm was not
detectable in Detroit 562 cells treated by 6a and only detectable in Fadu and SCC-25 cells, as
shown in Figure 8. Upon treatment with 13, nuclear shrinkage, as another morphological
marker of programmed cell death [49], was also more pronounced than that caused by 6a
in Detroit 562 cells.
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Figure 7. Mitochondrial Membrane Potential Using the Cationic JC-1 Dye. Nontreated cells were
used as negative control, with their well-functioning mitochondria represented with red color. Mito-
chondrial uncoupling agent 2,4-Dinitrophenol (DNP) was used a positive control. Diffusive green
color indicates the diminished mitochondrial membrane potential in DNP-treated cells. Hybrids 6a
and 13 resulted in significant mitochondrial dysfunction (at 2.5 µM after 28 h treatment) in HNSCC
cells. Nuclei were visualized by membrane-permeable dye DRAQ5 (blue).
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Figure 8. Morphological changes in Detroit 562 cells. Besides mitochondrial dysfunction (green color),
JC-1 Dye (labels the well-functioning mitochondria with red color) revealed vacuolated cytoplasm
and nuclear shrinkage in Detroit 562 cells, after 28 h of treatment with hybrid 13 at 2.5 µM. DNP
was used as positive control for mitochondrial membrane depolarization. Nuclei were visualized by
membrane-permeable dye DRAQ5 (blue).

2.7. Real-Time Apoptosis Detection

The effects of hybrids 6a and 13 were further characterized by using RealTime-Glo™
Annexin V Apoptosis and Necrosis Assay on Detroit 562 cells. In this experiment, DNS
released as a marker of necrosis induced a fluorescent signal (red curve), while annexin
V binding as a marker of apoptosis resulted in a luminescent signal (blue curve). Detroit
562 cells were monitored for 48 h in a CO2-incubated plate reader in the presence of the
compounds. The intensive increment in the luminescent signal and subsequent appearance
of the necrotic signal a few hours later refer to apoptosis, while the parallel increase in
the two signals is the marker of necrosis. In correlation with the images obtained by the
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Apoptosis and Necrosis Quantitation Assay, the effect of 6a proved to be rather necrotic in
Detroit 562 cells, while the effect of 13 in character was in between apoptosis and necrosis
when compared to paclitaxel, which served as a positive control of apoptosis (Figure 9).
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Figure 9. Real-time apoptosis detection in Detroit 562 cells. The cells were treated with the compounds
at 2.5 µM and monitored for 48 h. DNS release as a marker of necrosis provided fluorescent signal
(red curve), while annexin V binding as a marker of apoptosis resulted in luminescent signal (blue
curve). Intensive increment of luminescent signal, which was followed a few hours later by the
appearance of the fluorescent signal, refers to apoptosis. Paclitaxel was used as a positive control of
apoptosis. While hybrid 6a resulted in necrotic-like cell death, the effect of hybrid 13 proved to be
more apoptotic-like.

3. Discussion

The main purpose of developing erlotinib–chalcone hybrids was to identify the first
members of a novel class of anticancer small molecules as efficient drug candidates ca-
pable of overcoming erlotinib resistance in cancer therapy. The synthesized compounds
were evaluated for their anticancer potential on three HNSCC cell lines, Fadu, Detroit
562 and SCC-25. The initial screening revealed an interesting structure-activity relationship
regarding the dramatic difference observed in the effects of the triazole-tethered isomer
pair 5a and 6a. While 5a proved to be one of the least efficient hybrids, 6a was identified
as the most potent one. The only structural difference is the site (ortho vs. para posi-
tion) of conjugation to the triazole linker on the phenol ring in the chalcone moiety. The
strict “ortho vs. para” rule related to relative activity was not discernible in their analogs
13 and 14 containing the acetylenic linker, since both hybrids displayed similar activity
against the investigated HNSCC cells. These structural differences highlight the pivotal
role of the linker and the site of conjugation in building up the cancer-specific efficacy
of these hybrids. According to the results of the screening, the three most prominent
hybrids 6a, 13 and 14 were selected for further investigation.

Time- and concentration-dependent cell viability measurements (based on quantitation
of the ATP level) revealed that hybrids are significantly more effective than their molecular
fragments (1 and 15), used either as single agents or in a 1:1 combination.

The short-term treatment (24 h) was expected to exclude the unfavorable cytotoxic
effect of the hybrids. As it is shown in Figure 3, none of the tested compounds were able
to reduce the viability of the cells to zero even at 10 µM, the highest concentration used.
However, hybrid 6a resulted in robust viability inhibition exclusively on Fadu and SCC-25
cells after 24 h, while Detroit 562 cells remained less affected. One possible explanation
for the enhanced activity on Fadu and SCC-25 is the significant oxidative stress induced in
these cells by 6a containing the triazole linker. The oxidative effect was significantly lower
in the case of the treatments with acetylene-tethered hybrids 13 and 14 as indicated by the
results obtained by the Glutathione assay (SM: Figure S3 in Section S4.4), which was used
for the investigation of oxidative stress.

The long-term treatment (72 h) followed by 72 h of postincubation was aimed to
assess the survival of the cancer cells, which is the main cause of the early development
of drug resistance. The long-term viability inhibition assay revealed a highly promising
overwhelming efficacy of the studied hybrids, which is superior to that produced by their
fragments. The hybrids were exclusively able to diminish the viability of HNSCC cells
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employed in the lower micromolar range. The IC50 values (Table 1) demonstrate that Fadu
cells are the most sensitive against the hybrids, while SCC-25 cells are the most tolerant.
Among the hybrids, 6a proved to be the most potent one on all three cell lines. However, it
is important to mention that the IC50 value characterizing hybrid 13 was found to be very
close to that measured for 6a on Detroit 562 cells.

It is well known that persistent cancer cells are prominently responsible for the early
development of drug resistance, treatment failure and recurrent disease [50,51]. Since the
capability of overcoming resistance in HNSCC cells was regarded as the most important
effectiveness criterion for the hybrids, we performed a colony formation assay to assess their
potency in the eradication of cancer cells even after an exposure of 24 h at 2.5 µM, serving
as a model experiment to mimic a single-dose treatment in vitro. In this experimental
setup, 1 and 15 were not able to significantly reduce the number of cancer cell colonies.
Among the selected hybrids, only 6a was able to totally eradicate all three cancer cells,
while 13 abolished Detroit 562 cells totally and Fadu cells almost completely. Since hybrid
14 proved to be less effective than 6a and 13, it has been excluded from further experiments.

In search of a plausible reason for the effectual surplus of the two most prominent
hybrids 6a and 13, we undertook further investigation by focusing on the potential targets
selected on the basis of the following considerations related to documented mechanisms
of action of the incorporated molecular fragments. Erlotinib, as the common structural
element of hybrids, is a well-known inhibitor of EGFR [52]. In agreement with clinical
experiences, our results also underline that the inhibition of EGFR might be able to reduce
the proliferation rate of tumor cells to a limited extent, but this effect is not sufficient to
eliminate them completely. Western blot analysis revealed that the superior anticancer
effect of hybrids 6a and 13 is independent of EGFR, since these hybrids were not able to
inhibit EGFR even at 5 uM, much above their IC50 values. Data from the Western blot
analysis can be found in the SM (Figure S1 in Section S4.2).

In the case of chalcones, several potential molecular targets have been previously
identified as it was detailed in the Introduction. One of their most relevant mechanisms of
action is the inhibition of tubulin polymerization [13,53]. Accordingly, we also carried out a
tubulin polymerization assay; however, this experiment revealed that, contrary to reference
chalcone 15, its hybrid derivatives 6a and 13 have no significant impact on this cellular
process in vitro. The results of the tubulin polymerization assay can be found in the SM
(Figure S2 in Section S4.3). Cell cycle analysis was also performed on all three HNSCC
cell lines; however, neither 15 nor the hybrids induced any significant changes after 18 h
treatment. Only erlotinib (1) produced a remarkable increment in the G0/G1 phase and
decrement in the S phase. The results of the cell cycle analysis can also be found in the
SM (Figure S4 in Section S4.5). Based on the molecular target exploration, we concluded
that the effectual surplus of our hybrids is independent of the canonical targets of their
molecular precursors.

Thus, the following additional experiments briefly discussed in the following para-
graphs were focused on attempting to collect further information on such potential cell
death mechanisms that might be responsible for the superior anticancer efficacy of
the hybrids.

Upon treatment with 6a, confocal microscopic images—generated by the Apoptosis
and Necrosis Quantitation Assay—indicated apoptosis in Fadu and SCC-25 cells and
marked necrotic cell death in Detroit 562 cells. In the case of treatment with 13, a sign of
apoptosis was detectable in Fadu and Detoit 562 cells, but apoptosis was less typical in
SCC-25 cells (Figure 5).

Lysosomes also have an important role in cell death pathways. Triggered by lysosomal
membrane permeabilization (LMP) [54], lysosomal cell death usually remains functional
even in apoptosis-resistant cancer cells. The potential effect of the hybrids on the lysosomes
was investigated by a Galectin-3 puncta assay, which is a reliable tool to detect LMP [55].
Hybrids were not able to induce LMP in HNSCC cells according to the Galectin-3 puncta
assay as demonstrated by confocal images outlined in the SM (Figure S5 in Section S4.6).
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Mitochondria have a pivotal role in intrinsic apoptosis and are also implicated in
other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis [56].
Since mitochondrial outer membrane permeabilization (MOMP) is a crucial event for
most apoptotic pathways, mitochondrial membrane potential is a frequently investigated
marker in correlation with MOMP [57]. A JC-1-dye-based mitochondrial potential assay
confirmed that the membrane potential of mitochondria was significantly decreased in
hybrid-treated cells. Besides mitochondrial dysfunction, confocal microscopic images also
disclosed striking morphological changes in these cells. Besides the enlarged membrane
blebs detected in several Annexin V-positive cells, JC-1 dye revealed vacuolated cytoplasm
in the treated cells as well. More interestingly, the investigated hybrids showed different
specificity towards each cell type. In correlation with the previous experiments, the real-
time apoptosis-necrosis assay confirmed that hybrid 13 induces more apoptosis-like cell
death than 6a in Detroit 562 cells.

4. Materials and Methods
4.1. Cell Culturing

Fadu (human pharyngeal carcinoma), Detroit 562 (human pharyngeal carcinoma)
and SCC-25 (human tongue carcinoma) cell lines were obtained from American Type
Culture Collection (ATCC, Rockville, MD, USA). Cell lines were cultured according to the
instructions provided by ATCC. The authentication of the cell lines was validated by STR
DNA analysis (Eurofins Scientific, Luxemburg). All cell lines were routinely screened for
the absence of mycoplasma infection (DAPI staining).

4.2. CellTiter-Glo Cell Viability Assay

Fadu, Detroit 562 and SCC-25 head and neck cancer cells were seeded at 1000 cell/well
onto a flat bottom white 96-well plate (BRANDplates®, cat. no.: 781965). After 48 h,
cells were treated for the desired time and concentration. In the initial screening assay,
compounds were applied at 10 µM for 72 h. In dose-dependent experiments, 2-fold serial
dilution was used (from 10 µM to 156 nM). In the first case of dose-dependent assays, a
24 h long treatment was used. In the second case, 72 h of treatment was applied, which
was followed by a 72 h long postincubation in treatment-free medium. The viability of
the cells was measured by the CellTiter-Glo® luminescent cell viability assay (Promega,
Madison, WI, USA) according to the manufacturer’s instructions. The luminescence signal
was recorded using a microplate reader (BioTek Synergy 2 Multi-Mode Reader, BioTek,
Winooski, VT, USA). Dose–response curves (using a nonlinear regression model) were
generated and IC50 values were calculated by GraphPad Prism 8 software. The combination
index was calculated by CompuSyn software using the mean values of cell viability data
measured by CellTiter-Glo after 72 h of treatment and 72 h of postincubation.

4.3. Colony Formation Assay

The long-term survival of cancer cells after treatment was investigated by a clono-
genic assay. Cells were seeded in a transparent 6-well cell culture plate (VWR) (density:
750 cells/well). After seeding, cells were incubated for 72 h before the treatment. Cells
were treated with the compounds at 2.5 µM for 24 h. After the treatment, the medium
was removed, and the cells were washed with phosphate-buffered saline (PBS). Cells were
further incubated in their corresponding medium for 7 days. Thereafter, the medium was
removed and cells were washed with PBS and fixed with 4% paraformaldehyde for 10 min.
After fixation, cells were washed with PBS, and 0.5% w/v crystal violet (CV) solution was
added. After 1 h, the CV solution was removed, and cells were washed thoroughly with
water. Images were created by Corel Photo-Paint 2019.

4.4. Apoptosis and Necrosis Quantitation Assay

Fadu, Detroit 562 and SCC-25 head cells were seeded in eight-well Ibidi® µ-Slide
microscopic slides (2 × 103 cells/well) and allowed to adhere for 48 h. Cells were then
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treated at a 2.5 µM concentration in cell culture medium supplemented with 10% FBS and
incubated in a humidified, 5% CO2 atmosphere incubator for 28 h at 37 ◦C. Apoptosis
and Necrosis Quantitation Kit Plus (Biotium, cat. no.: 30065) was used according to
the manufacturer’s instructions. For nuclear staining of live cells, DRAQ5 was used
(5 µM, 30 min). Images of cells were acquired with a confocal laser microscope (Zeiss
Confocal LSM 710, Carl Zeiss AG, Oberkochen, Germany). (Objective: Plan-Apochromat
63×/1.40 Oil DIC M27. Pinhole: 0.99 AU. Laser wavelength: 488 nm and 633 nm. Detection
wavelength: 504–536 nm; 602–631 nm; and 692–758 nm).

4.5. Mitochondrial Membrane Potential Detection

Fadu, Detroit 562 and SCC-25 head cells were seeded in eight-well Ibidi® µ-Slide mi-
croscopic slides (2 × 103 cells/well) and allowed to adhere for 48 h. Cells were then treated
(6a, 13 and paclitaxel) at a 2.5 µM concentration in cell culture medium supplemented with
10% FBS and incubated in a humidified, 5% CO2 atmosphere incubator for 28 h at 37 ◦C.
2,4-Dinitrophenol was added to nontreated cells only 1 h before the JC-1 dye. After the
treatment, JC-1 mitochondrial dye (5 µg/mL) and DRAQ-5 nuclear dye (5 µM) were added
to the cells. The cells were incubated in a 5% CO2 atmosphere incubator for 30 min at
37 ◦C. Images of cells were acquired with a confocal laser microscope (Zeiss Confocal LSM
710, Carl Zeiss AG, Oberkochen, Germany). (Objective: Plan-Apochromat 63×/1.40 Oil
DIC M27. Pinhole: 1.01 AU. Laser wavelength: 488 nm and 633 nm. Detection wavelength:
520–540 nm; 583–602 nm; and 683–758 nm).

4.6. Real-Time Apoptosis Detection

Detroit 562 cells were seeded at 1000 cell/well onto a black, half-area, and clear-bottom
96-well plate. After 48 h of adherence, cells were treated for the compounds at 2.5 µM.
Reagents of the RealTime-Glo™ Annexin V Apoptosis and Necrosis Assay were added
according to the manufacturer’s instructions (https://worldwide.promega.com (accessed
on 1 October 2021)). Luminescent and fluorescent signals were detected every 5 min during
the 48 h long treatment by a Clariostar Multi-Mode Plate Reader (BMG LABTECH). The
plate reader maintained the 5% CO2 atmosphere and 37 ◦C during the measurement. Data
were evaluated by MS Excel and GraphPad Prism 8 software.

5. Conclusions

The development of hybrids was aimed to enhance the anticancer efficacy of erlotinib
(1) and some representative chalcones displayed as single agents by their incorporation
into hybrids with potential multitarget character containing acetylenic and triazole linkers
between these pharmacophoric molecular fragments. Thus, the novel hybrids were ac-
cessed by copper(I)-catalyzed azide-alkyne [2 + 3] cycloadditions and Sonogashira coupling
reactions followed by standard Claisen–Smith condensation. Since tumor heterogeneity
and, consequently, drug resistance in HNSCC represent a great unmet medical need for
more efficient drug therapies, the novel hybrids were tested in three HNSCC cell lines
Fadu, Detroit 562 and SCC-25. The investigation of the hybrids was focused on such
features of their anticancer potential, which may be manifested in their pronounced ability
to overcome resistance in these cancers.

A screening assay, followed by time- and dose-dependent cell viability measurements,
demonstrated that the most prominent hybrids (6a, 13 and 14) have an efficacy superior to
their molecular fragments erlotinib (1) and reference chalcone (15) and revealed specific
structure–activity relationships. These hybrids showed very strong synergism in the low
micromolar range in all three HNSCC cell lines. Hybrid 6a resulted in the total eradication
of all the investigated cancer cells at 2.5 µM, while 13 also proved to be markedly efficient
against Fadu and Detroit 562 cells. Experiments focusing on the mechanism of action indi-
cated that the enhanced efficacy of the most potent hybrids is independent of the canonical
molecular targets of their precursors, pointing to the need for further explorations directed
to disclose the cause of their prominent efficacy. On the other hand, phosphatidylserine
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exposure, a decrease in mitochondrial membrane potential cytoplasmic vacuolization and
nuclear shrinkage are typical markers of programmed cell death, which were observed in
hybrid-treated HNSCC cells. Further experiments supported that the effect of 13 might
be related to necroptosis in Detroit 562 cells. Although the exact mechanism of action of
these hybrids remains unclear, their prominent anticancer efficacy demonstrated in the
experiments justifies a highly promising therapeutic potential, which warrants further
investigation. Finally, the expected new biological results with particular regard to the
identification of cellular target(s) and mechanism of action might be taken into account
in a rational design and synthesis of further hybrids with enhanced anticancer activity
explorable in the therapy of HNSCC-related diseases.
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