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Abstract: Microglial fatty-acid binding protein 4 (FABP4) is a regulator of neuroinflammation. We
hypothesized that the link between lipid metabolism and inflammation indicates a role for FABP4
in regulating high fat diet (HFD)-induced cognitive decline. We have previously shown that obese
FABP4 knockout mice exhibit decreased neuroinflammation and cognitive decline. FABP4 knock-
out and wild type mice were fed 60% HFD for 12 weeks starting at 15 weeks old. Hippocampal
tissue was dissected and RNA-seq was performed to measure differentially expressed transcripts.
Reactome molecular pathway analysis was utilized to examine differentially expressed pathways.
Results showed that HFD-fed FABP4 knockout mice have a hippocampal transcriptome consistent
with neuroprotection, including associations with decreased proinflammatory signaling, ER stress,
apoptosis, and cognitive decline. This is accompanied by an increase in transcripts upregulating
neurogenesis, synaptic plasticity, long-term potentiation, and spatial working memory. Pathway
analysis revealed that mice lacking FABP4 had changes in metabolic function that support reduction
in oxidative stress and inflammation, and improved energy homeostasis and cognitive function.
Analysis suggested a role for WNT/β-Catenin signaling in the protection against insulin resistance,
alleviating neuroinflammation and cognitive decline. Collectively, our work shows that FABP4
represents a potential target in alleviating HFD-induced neuroinflammation and cognitive decline
and suggests a role for WNT/β-Catenin in this protection.

Keywords: obesity; transcriptome; hippocampus; long-term potentiation; cognitive decline; inflam-
mation; microglia; WNT/β-Catenin

1. Introduction

Midlife obesity is associated with earlier onset of Alzheimer’s disease (AD) and
increased AD neuropathology [1–3]. Obesity is often characterized by chronic low-level
inflammation, along with metabolic disorders such as type-2 diabetes mellitus and insulin
resistance [4–6]. Insulin resistance is accompanied by increased fatty acid transport and
circulation. Fatty acid binding protein 4 (FABP4; also known as adipocyte protein-2; aP2)
is a fatty acid binding protein with roles in fatty acid transport and lipid metabolism.
FABP4 knockout in adipocytes is associated with reduced inflammation, insulin resistance,
and metabolic dysfunction [7]. Overconsumption of a high fat diet (HFD), specifically
those rich in saturated fatty acids (SFA), has been shown to exacerbate neuroinflammation,
neurodegeneration, and cognitive impairment [4,6,8–15]. Studies indicate that this is
influenced more by dietary SFA content than by total calories consumed [4,15].
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The FABP4 knockout mouse model (AKO) has allowed an increasingly comprehensive
understanding of lipid metabolism, diabetes, and peripheral immune response [16–20].
Unlike obese wild type controls, AKO mice present with decreased TNF-α (a biomarker
of obesity-related insulin resistance) in adipose tissue [5]. Fatty acid metabolism plays a
central role in immunometabolic diseases, including diet-induced obesity and metabolic
syndrome [16,21,22]. We hypothesized that the link between lipid metabolism and in-
flammation indicates a role for FABP4 in regulating HFD-induced cognitive decline. We
have previously shown that AKO mice are protected against HFD-induced hippocampal
proinflammatory cytokine expression and memory deficits [23,24]. These mice were fed
HFD for 12 weeks starting at 15 weeks of age. Herein, we investigated the transcriptomics
of the AKO model fed HFD compared to wild type (WT) mice fed the same diet. As
our previous research showed no differences in hippocampal inflammation and cognitive
decline between groups fed normal chow diet (NC), nor between HFD-fed and NC-fed
AKO groups [23], only HFD hippocampal transcriptomes were analyzed. Our present re-
sults show that AKO mice present with a neuroprotective hippocampal transcriptome that
correlates with a decrease in proinflammatory signaling, ER stress, apoptosis, and cognitive
decline, and an increase in neurogenesis, synaptic plasticity, long-term potentiation, and
spatial working memory. This is accompanied by an increase in WNT/β-Catenin signaling,
suggesting a role for the pathway in preventing HFD-induced neuroinflammation and
cognitive decline.

2. Results
2.1. Transcript Analysis

We determined the transcripts that were differentially expressed in HFD-fed AKO
mice compared to HFD-fed WT mice. AKO and WT mice were fed 60% HFD for 12 weeks
starting at 15 weeks of age. Hippocampal tissue was dissected and RNAseq was per-
formed to measure differentially expressed transcripts. Transcript analysis showed 1793
differentially expressed transcripts at log10 adjusted p-value (padj) ≤ 0.05 (Figure 1).
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Figure 1. Volcano plot of the distribution of magnitude and significance of all genes. Log fold change
(log2) is represented on the x-axis. Significance (log10 adjusted p-value) is represented on the y-axis.
The red line indicates padj = 0.05 and the blue line indicates padj = 0.01.

2.2. Downregulated Transcripts in HFD-Fed AKO Compared to HFD-Fed WT Mice

We determined the transcripts that were most downregulated in HFD-fed AKO mice
compared to HFD-fed WT mice (LFC ≤ −1.00, padj ≤ 0.001). There were 12 transcripts
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in total (Table 1). HFD-fed AKO mice have downregulated transcripts associated with
negative regulation of Wnt/β-Catenin signaling [25] and neurite outgrowth [26] along with
positive regulation of cognitive decline [27], proinflammatory cytokine signaling [28,29],
amyloid beta plaque formation [30], and ER stress [31]. Downregulated transcripts also
have roles associated with lipid metabolism [32] and GABA signaling [33,34].

Table 1. Downregulated Transcripts in HFD-fed AKO Compared to HFD-fed WT Mice. Transcripts
with LFC ≤ −1.00 and padj ≤ 0.001 are displayed. Gene symbol, Ensembl ID, gene description, log
fold change (log2), log10 adjusted p-value, and relevant known function are displayed.

Gene Symbol Ensembl ID Gene Description Log FC padj Function

Fabp4 ENSMUST00000029041 Fatty acid binding
protein 4, adipocyte −2.50 2.06 × 10−3

Positive regulator of obesity
linked inflammation and ER
stress [20]

Sox6 ENSMUST00000072804
SRY (sex
determining region
Y)-box 6

−2.03 3.27 × 10−3 Negative regulator of
Wnt/β-catenin signaling [25]

Apoa2 ENSMUST00000005824 Apolipoprotein A-II −1.95 6.44 × 10−3

Component of HDL with role in
lipid metabolism and positive
regulator of amyloidosis [32],
Positively associated with
cognitive decline [27]

Ube3a ENSMUST00000202945 Ubiquitin protein
ligase E3A −1.85 3.27 × 10−3

Positive regulator of amyloid
plaque formation [30], Positive
regulator of GABA release [33]

Tpx2 ENSMUST00000028969 TPX2-microtubule
associated −1.61 7.15 × 10−3 Positive regulator of

proinflammatory cytokines [28]

Dmd ENSMUST00000114000 Dystrophin,
muscular dystrophy −1.43 7.76 × 10−3

Positive regulator of
proinflammatory cytokines [29],
Associated with altered GABA
signaling [35]

Eif4e2 ENSMUST00000113233
Eukaryotic
translation initiation
factor 4E member 2

−1.29 7.88 × 10−3

Phosphorylated state is
positively associated with
hyperphosphorylated tau and
AD [36]

Zfp971 ENSMUST00000108926 Zinc finger
protein 971 −1.19 3.27 × 10−3

Unknown function, predicted to
increase DNA-binding
transcription repressor
activity [37], contains KRAB
box and C2H2 type domain [38],
may have a role in
neurodegenerative diseases [39]

Zwint ENSMUST00000105431 ZW10 interactor −1.18 4.46 × 10−3
Associated protein has role in
retrograde trafficking from
Golgi to ER [34]

Tmod2 ENSMUST00000164100 Tropomodulin 2 −1.17 9.35 × 10−3 Negative regulator of neurite
outgrowth [26]

Lonp2 ENSMUST00000155433 lon peptidase 2,
peroxisomal −1.05 5.32 × 10−3 Upregulated in response to ER

stress [31]

Wtap ENSMUST00000159986 Wilms tumour 1
-associating protein −1.04 5.05 × 10−3

Positive regulator of m6A
methylation [40] promoting AD
development [41]
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2.3. Upregulated Transcripts in HFD-Fed AKO Compared to HFD-Fed WT Mice

We determined the transcripts that were most upregulated in HFD-fed AKO mice
compared to HFD-fed WT mice (LFC ≥ 1.00, padj ≤ 0.001). There were 19 transcripts in
total (Table 2). AKO mice fed HFD have upregulated transcripts associated with negative
regulation of apoptosis [42–44], neuroinflammation [45], and ER stress [42,43] along with
positive regulation of long-term potentiation [46–48], spatial working memory [49], synaptic
plasticity [50,51], neurogenesis [52,53], and Wnt/β-Catenin signaling [54].

Table 2. Upregulated Transcripts in HFD-fed AKO Compared to HFD-fed WT Mice. Transcripts with
LFC ≥ 1.00 and padj ≤ 0.001 are displayed. Gene symbol, Ensembl ID, gene description, log fold
change (log2), log10 adjusted p-value, and relevant known function are displayed.

Gene Symbol Ensembl ID Gene Description Log FC padj Function

Sort1 ENSMUST00000135636 Sortilin 1 1.007 3.53 × 10−3

Positive regulator of murine
apoE clearance in brain [55],
Regulator of lipid metabolism
in brain [56]

Hspa5 ENSMUST00000100171 Heat shock protein 5 1.038 9.34 × 10−3
Antiapoptotic regulator of ER
stress and unfolded protein
response [42]

Adra2a ENSMUST00000237285 Adrenergic receptor,
alpha 2a 1.069 7.32 × 10−3

Positive regulator of NMDA
receptor-dependent long-term
potentiation [46]

Atp2a2 ENSMUST00000031423
ATPase, Ca++
transporting, cardiac
muscle, slow twitch 2

1.103 5.32 × 10−3

Regulator of calcium
homeostasis [57],
Downregulated in AD
brain [58]

S1pr3 ENSMUST00000087978
Sphingosine-1-
phosphate
receptor 3

1.144 8.07 × 10−3

Negative regulator of
inflammation in brain [45],
Positive regulator of spatial
working memory [49]

Mdga1 ENSMUST00000171691

MAM domain
containing
glycosylphos-
phatidylinositol
anchor 1

1.151 8.87 × 10−3

Positive regulator of
hippocampal long-term
potentiation [47], Regulator of
trans-synaptic bridge
formation [59]

H3c15 ENSMUST00000167403 H3 clustered
histone 15 1.193 3.27 × 10−3

Associated with the formation
of the β-catenin:TCF
transactivating complex and
Senescence-Associated
Secretory Phenotype
(SASP) [60]

Paqr3 ENSMUST00000069453
Progestin and adipoQ
receptor family
member III

1.226 8.60 × 10−3
Regulator of cholesterol
homeostasis [61], Regulator of
autophagy [62]

Brd1 ENSMUST00000109380 Bromodomain
containing 1 1.317 5.30 × 10−3

Positive regulator of H3K14
acetylation [63] associated
with synaptic plasticity [50]

Gpr68 ENSMUST00000110066 G protein-coupled
receptor 68 1.351 6.44 × 10−3

Positive regulator of adult
hippocampal
neurogenesis [52]
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Table 2. Cont.

Gene Symbol Ensembl ID Gene Description Log FC padj Function

Sufu ENSMUST00000111867
SUFU negative
regulator of hedgehog
signaling

1.355 9.26 × 10−3
Positive regulator of adult
hippocampal
neurogenesis [53]

Grm1 ENSMUST00000105560 Glutamate receptor,
metabotropic 1 1.378 9.34 × 10−3

Positive regulator of
pyramidal neuron
excitation [64]

Nsd3 ENSMUST00000146919
Nuclear receptor
binding SET domain
protein 3

1.412 4.06 × 10−3

Positive regulator of REST
mediated H3K36
trimethylation and associated
with antiapoptotic genes [65]

Dlgap1 ENSMUST00000155016 DLG associated
protein 1 1.538 9.33 × 10−3

Positive regulator of synaptic
scaling in excitatory
synapses [51]

Grik2 ENSMUST00000105484
Glutamate receptor,
ionotropic, kainate 2
(beta 2)

1.969 7.15 × 10−3

Positive regulator of NMDA
receptor-independent and KA
receptor-dependent
hippocampal long-term
potentiation [48]

Fbxw7 ENSMUST00000107678 F-box and WD-40
domain protein 7 1.976 6.95 × 10−3

Negatively associated with
glutamate mediated
excitotoxicity and negative
regulator of pro-apoptotic
protein c-Jun [66]

Nox1 ENSMUST00000033610 NADPH oxidase 1 2.038 8.04 × 10−3

Positive regulator of
Wnt/β-catenin signaling [54],
Positive regulator of M2-type
macrophage polarization [67]

Smpd4 ENSMUST00000090159 Sphingomyelin
phosphodiesterase 4 2.334 4.77 × 10−3

Negatively associated with ER
stress and apoptosis in
brain [43]

Zfp329 ENSMUST00000121215 Zinc finger protein 329 2.502 6.16 × 10−3
Ortholog is a positive
regulator of antiapoptotic
protein BCL2 [44]

2.4. Differentially Expressed Pathways in HFD-Fed AKO Compared to HFD-Fed WT Mice

Using Reactome molecular pathway analysis, we determined the differentially ex-
pressed pathways in HFD-fed AKO mice compared to HFD-fed WT mice (FDR ≤ 0.01).
There were 39 pathways in total. Nine of these pathways were unrelated to ribosomal
protein subunits and were examined further for transcript function (Supplemental Table S1).
We further condensed these results into pathways that relate to metabolism and Wnt/β-
Catenin signaling (Table 3). Transcripts associated with the electron transport chain [68–75]
and citric acid cycle [76–79] were downregulated and upregulated, respectively. Transcripts
relating to Wnt/β-Catenin signaling were upregulated [80–85].
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Table 3. Differentially Expressed Pathways in HFD-fed AKO Compared to HFD-fed WT Mice.
FDR ≤ 0.01. Pathway name, stable identifier, log fold change (log2), and false discovery rate for each
pathway are displayed. Within each pathway, gene ID, Ensembl ID, gene description, log fold change
(log2), log10 adjusted p-value, and relevant known function are displayed.

Reactome
Pathway

Gene
Symbol Ensembl ID Gene Description Log FC padj Known

Function

The citric acid
(TCA) cycle and

respiratory
electron

transport
(R-HSA-
1428517)
LFC: 0.03

FDR:
2.71 × 10−3

Ndufb2
Ndufb4
Ndufb11
Ndufs8
Ndufa4
Ndufb9
Ndufa2

ENSMUST00
000119379
ENSMUST00
000023514
ENSMUST00
000116621
ENSMUST00
000237341
ENSMUST00
000204978
ENSMUST00
000022980
ENSMUST00
000014438

NADH:ubiquinone
oxidoreductase subunit B2

NADH:ubiquinone
oxidoreductase subunit B4

NADH:ubiquinone
oxidoreductase subunit B11

NADH:ubiquinone
oxidoreductase core

subunit S8
Ndufa4, mitochondrial

complex associated
NADH:ubiquinone

oxidoreductase subunit B9
NADH:ubiquinone

oxidoreductase subunit A2

−0.32
−0.29
−0.28
−0.27
−0.25
−0.23
−0.20

2.39 × 10−2

2.89 × 10−2

3.32 × 10−2

4.63 × 10−2

4.69 × 10−2

4.16 × 10−2

4.83 × 10−2

Partial
inhibition of
Complex I leads
to reduced
oxidative stress
and increased
long-term
potentiation in
AD mice [68]

Cox7b ENSMUST00
000033582

Cytochrome c oxidase
subunit 7B −0.31 1.13 × 10−2

Loss leads to
decrease in
oxidative stress
and amyloid
formation in
AD mice [71]

Uqcrh ENSMUST00
000078676

Ubiquinol-cytochrome c
reductase hinge protein −0.29 3.04 × 10−2

Positive
regulator of
apoptosis via
cytochrome c
release [72]

Atp5j2
Atp5h

ENSMUST00
000161741
ENSMUST00
000043931

ATP synthase, H+
transporting, mitochondrial

F0 complex, subunit F2
ATP synthase, H+

transporting, mitochondrial
F0 complex, subunit D

−0.27
−0.26

1.82 × 10−2

3.98 × 10−2

Inhibition is
neuroprotec-
tive in aging
and AD [86]

mt-Nd3 ENSMUST00
000082411

Mitochondrially encoded
NADH dehydrogenase 3 −0.23 4.06 × 10−2

Partial
inhibition of
Complex I leads
to reduced
oxidative stress
and increased
long-term
potentiation in
AD mice [68]

mt-Co3 ENSMUST00
000082409

Mitochondrially encoded
cytochrome c oxidase III −0.21 3.87 × 10−2

Loss leads to
decrease in
oxidative stress
and amyloid
formation in
AD mice [71]
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Table 3. Cont.

Reactome
Pathway

Gene
Symbol Ensembl ID Gene Description Log FC padj Known

Function

mt-Cytb ENSMUST00
000082421

Mitochondrially encoded
cytochrome b 0.21 4.53 × 10−2 Decreased in

AD brain [73]

Acad9 ENSMUST00
000011492

Acyl-Coenzyme A
dehydrogenase family,

member 9
0.29 2.59 × 10−2

Role in fatty
acid oxidation,
downregula-
tion associated
with
neurological
disease [69]

Aco2 ENSMUST00
000023116 Aconitase 2, mitochondrial 0.29 1.42 × 10−2

Suppressed by
nitric oxide
(Palmieri et al.,
2020),
Decreased in
AD patient
lymphocytes [76]

Sdha ENSMUST00
000022062

Succinate dehydrogenase
complex, subunit A,

flavoprotein (Fp)
0.29 1.02 × 10−2

Downregulation
is associated
with oxidative
stress and
insulin
resistance [74]

Ogdh ENSMUST00
000003461

Oxoglutarate
(alpha-ketoglutarate)

dehydrogenase (lipoamide)
0.30 3.73 × 10−2

Inhibited by
lipopolysaccha-
ride and IFN-γ
stimulation in
macrophages [77]

Cs ENSMUST00
000005826 Citrate synthase 0.32 1.53 × 10−2

Downregulated
in AD patient
platelets [78]

Pdk2 ENSMUST00
000038431

Pyruvate dehydrogenase
kinase, isoenzyme 2 0.35 4.52 × 10−2

mRNA levels
modulated
during aging in
brain [79]

Timmdc1 ENSMUST00
000002925

Translocase of inner
mitochondrial membrane

domain containing 1
0.36 9.17 × 10−3

Loss is
associated with
axonal
neuropathy and
cognitive
decline [70]

Taco1 ENSMUST00
000002048

Translational activator of
mitochondrially encoded

cytochrome c oxidase I
0.40 3.68 × 10−2

Loss associated
with motor
disfunction and
mitochondrial
disease in
mice [75]



Int. J. Mol. Sci. 2023, 24, 3381 8 of 22

Table 3. Cont.

Reactome
Pathway

Gene
Symbol Ensembl ID Gene Description Log FC padj Known Function

Disassembly of
the destruction
complex and

recruitment of
AXIN to the
membrane

(R-HSA-
4641262)
LFC: 0.38

FDR:
7.21 × 10−3

Ppp2cb
Ppp2r5a
Ppp2r5e
Ppp2r1a

ENSMUST00
000009774
ENSMUST00
000067976
ENSMUST00
000021447
ENSMUST00
000007708

Protein phosphatase 2
(formerly 2A), catalytic
subunit, beta isoform
Protein phosphatase 2,

regulatory subunit B′, alpha
Protein phosphatase 2,
regulatory subunit B′,

epsilon
Protein phosphatase 2,

regulatory subunit A, alpha

0.25
0.26
0.31
0.37

1.94 × 10−2

4.25 × 10−2

2.85 × 10−2

3.87 × 10−2

Positive regulator
of Wnt/β-catenin
signaling [80],
Inhibition leads
to spatial
memory
impairment [81]

Csnk1a1
Csnk1g2

ENSMUST00
000165123
ENSMUST00
000085435

Casein kinase 1, alpha 1
Casein kinase 1, gamma 2

0.26
0.33

3.90 × 10−2

4.73 × 10−2

Negative
regulators of
SMAD3 and
TGF-β signaling
[82]

Ctnnb1 ENSMUST00
000007130

Catenin (cadherin associated
protein), beta 1 0.37 1.38 × 10−2

Positive regulator
of Wnt/β-catenin
signaling,
neuronal survival
and synaptic
plasticity,
negative
regulator of Aβ

production [83]

Gsk3b ENSMUST00
000023507

Glycogen synthase kinase 3
beta 0.52 3.62 × 10−3

Regulator of
Wnt/β-catenin
signaling, loss
leads to synaptic
and social defects
in mice [84]

Dvl3 ENSMUST00
000003318

Dishevelled segment
polarity protein 3 0.72 2.23 × 10−2

Positive regulator
of Wnt/β-catenin
signaling,
downregulated in
AD brain [83]

Fzd1 ENSMUST00
000054294 Frizzled class receptor 1 0.73 3.81 × 10−3

Positive regulator
of Wnt/β-catenin
signaling, loss
leads to
impairment of
neuronal
differentiation [85]

2.5. Differentially Expressed Microglial Markers in HFD-Fed AKO Compared to HFD-Fed
WT Mice

We determined the differentially expressed transcripts that have been identified as
microglial markers (padj ≤ 0.05). There were 10 transcripts in total (Table 4). AKO mice fed
HFD have transcripts associated with microglial markers differentially expressed. Upregu-
lated transcripts have roles in the regulation of M2 microglial transcriptome activation [87],
ER/Golgi transport [88,89], dopaminergic neuronal survival [90], FcγR-dependent phago-
cytosis [91], and long-term potentiation [92,93].
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Table 4. Differentially Expressed Microglial Markers in HFD-fed AKO Compared to HFD-fed WT
Mice. Transcripts with padj ≤ 0.05 are displayed. Gene symbol, Ensembl ID, gene description, log
fold change (log2), log10 adjusted p-value, and relevant known function are displayed.

Gene Symbol Ensembl ID Gene Description Log FC padj Function

Hpgd ENSMUST00000034026
Hydroxyprostaglandin
dehydrogenase 15
(NAD)

−0.337 3.60 × 10−2
Increased in aged tissues and
negative regulator of PGE2
signaling [94]

Cx3cr1 ENSMUST00000064165 Chemokine (C-X3-C
motif) receptor 1 0.393 1.08 × 10−2

Decreased in hippocampal
tissue of diet-induced obese
mice [95], Positive regulator
of hippocampal long-term
potentiation [92]

Cd68 ENSMUST00000018918 CD68 antigen 0.441 2.42 × 10−2 Marker of M1 and M2
microglial activation [96]

Csf1r ENSMUST00000025523 Colony stimulating
factor 1 receptor 0.530 9.83 × 10−3

Receptor of positive regulator
of M2 microglia
transcriptome [87]

Cyth4 ENSMUST00000043069 Cytohesin 4 0.571 1.90 × 10−2
Positive regulator of
ARF1 [88] which is a regulator
of ER/Golgi transport [89]

Ccr5 ENSMUST00000111442 Chemokine (C-C
motif) receptor 5 0.584 9.10 × 10−3

Positive regulator of neuronal
cell differentiation [97],
Positive regulator of
dopaminergic neuronal
survival [90]

Pla2g15 ENSMUST00000034377 Phospholipase A2,
group XV 0.611 3.81 × 10−3

Positively associated with
long-term memory and
downregulated in AD
brain [93]

Kcnk6 ENSMUST00000085818

Potassium inwardly
rectifying channel,
subfamily K,
member 6

0.698 3.99 × 10−2 Positively associated with
homeostatic microglia [98]

Lcp2 ENSMUST00000052413 Lymphocyte cytosolic
protein 2 0.788 3.68 × 10−2

Positively associated with
FcγR-dependent
phagocytosis [91]

Blnk ENSMUST00000054769 B cell linker 1.567 3.52 × 10−2
Positively associated with
FcγR-dependent
phagocytosis [91]

2.6. β-Catenin Western Blot

We performed Western blotting for nuclear β-Catenin in HFD-fed AKO and WT mouse
hippocampal tissue. Results showed that HFD-fed AKO mice had increased expression of
nuclear β-Catenin compared to WT (Figure 2; p = 0.03).
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3. Discussion

Obesity is known to be associated with peripheral and central chronic low-grade
inflammation [99]. Peripherally, HFD is linked to low-grade systemic inflammation associ-
ated with the development of metabolic disorders such as type 2 diabetes mellitus [100]. In
the brain, diets high in SFAs are known to be associated with neuroinflammation, cognitive
impairment, and the development of neurodegenerative diseases [101]. An increase in
circulating free fatty acids (FFAs) disrupts metabolic homeostasis [102]. This increase
in FFAs can also activate Toll-like receptor 4 (TLR4) in microglia, leading to ER stress
and increased inflammatory cytokine expression [103]. In turn, increased ER stress and
neuroinflammation can lead to cognitive deficits and neurodegenerative diseases such
as AD [102]. The HFD-fed FABP4 knockout model has revealed an altered hippocampal
transcriptome that is shown to have changes in metabolic pathways and be neuroprotective
against HFD-induced neuroinflammation and cognitive decline.

In the present study, the AKO model has shown an altered hippocampal transcriptome
with changes in metabolic pathways. AKOs had a decrease in pathways relating to the
electron transport chain (ETC). These pathways were “formation of ATP by chemiosmotic
coupling”, “cristae formation”, “complex I biogenesis”, “respiratory electron transport,
ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins”,
and “respiratory electron transport” (Supplemental Table S1). Importantly, the major
downregulated transcripts in these pathways encode for subunits of NADH:ubiquinone
oxidoreductase (Complex I) and ATP synthase (Complex V) of the ETC. Partial inhibition
of Complex I has been shown to improve energy homeostasis, synaptic activity, long-term
potentiation, and cognitive function while reducing oxidative stress and inflammation
in the brain [68]. Targeting Complex V has been shown to decrease expression of an
aged and dementia-associated transcriptome [86]. AKOs had an increase in the “citric
acid (TCA) cycle and respiratory electron transport” pathway (Table 3). It is important to
note that transcripts relating to the tricarboxylic acid cycle (TCA) were increased. These
transcripts include Aco2, Cs, Ogdh, and Sdha. Downregulation of these transcripts have
been observed in neurodegenerative transcriptomes and some have been associated with
oxidative stress and insulin resistance [74,76–78]. Our previous work has shown that FABP4
knockout confers protection against ROS production and ER stress through an increase
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in UCP2 [20]. As such, our present results provide further evidence that FABP4 knockout
leads to protective metabolic changes in HFD-fed mice. The AKO model has also shown
an increase in a pathway relating to Golgi transport. This pathway is named “transport to
the Golgi and subsequent modification” (Supplemental Table S1). The upregulated genes
in this pathway include regulators of ER to Golgi transport [104,105] and a decrease in
some of these transcripts have been associated with ER stress [106] and neurodegenerative
diseases [107,108]. As Golgi function and transport is important for lipid metabolism [109],
changes in transcripts relating to these pathways provide further insight on the neuro-
protection conferred via FABP4 knockout. Differentially expressed genes relating to lipid
metabolism in AKOs were Apoa2 (Table 1) and Sort1 (Table 2). Apoa2 was downregulated
in AKOs and encodes for a high-density lipoprotein. Certain polymorphisms of Apoa2
are known to be associated with obesity [110]. Sort1 was upregulated in AKOs and has
been shown to modulate low-density lipoprotein uptake in macrophages [111]. Together,
these changes in metabolic and Golgi transport pathways, along with genes associated
with changes in lipid metabolism, show that HFD-fed AKO mice have a hippocampal
transcriptome consistent with neuroprotection.

Previously, we have shown that HFD-fed AKO mice exhibit an alleviation of hip-
pocampal inflammatory cytokine signaling compared to HFD-fed WT mice [23]. In the
present study, HFD-fed AKO mice had transcriptome changes consistent with a decrease
in neuroinflammation. AKOs had decreased expression of Tpx2 and Dmd (Table 1), along
with increased expression of S1pr3 (Table 2). Silencing of Tpx2 has been shown to decrease
inflammation as marked by decreases in TNF-α, IL-6, and IL-8 protein levels [28]. Mice
deficient of dystrophin, the protein encoded by Dmd, exhibit decreased infiltration of CD3+
T cells [29]. Knockdown of S1pr3 has been shown to exacerbate neuroinflammation as
measured by IBA1 and TNF-α [45]. HFD-fed AKO mice also had transcriptome changes
consistent with a decrease in ER stress. AKOs had decreased expression of Lonp2 (Table 1),
and increased expression of Hspa5 and Smpd4 (Table 2). ER stress is known to cause a
decrease in LONP2 expression [31]. HSPA5 is known to be a regulator of ER stress in the
brain [42] and loss of SMPD4 has been shown to induce ER stress in the brain [43]. HFD is
known to cause ER stress in the hippocampus [112] and ER stress can trigger inflammatory
responses in the brain, leading to neurodegeneration [113]. Therefore, the transcriptomic
changes relating to decreases in ER stress provide a potential mechanism for the decrease
in neuroinflammation.

We have also previously shown that HFD-fed AKO mice exhibit an alleviation of
cognitive decline and memory deficits compared to HFD-fed WT mice [23]. In the present
study, HFD-fed AKO mice had transcriptome changes consistent with a decrease in cog-
nitive decline. AKOs had decreased expression of Apoa2 (Table 1). Increased APOA2
expression is associated with cognitive impairment and late-life dementia [27]. AKOs also
had transcriptome changes consistent with a decrease in apoptosis. Expression of Hspa5
and Smpd4 were increased (Table 2). HSPA5 is known to be an antiapoptotic factor for
cells undergoing ER stress [42]. Loss of SMPD4 has been shown to lead to apoptosis under
stress conditions [43]. As apoptosis leading to neuronal cell death has been associated with
AD pathogenesis [114], an increase in antiapoptotic factors could contribute to a neuro-
protective profile against cognitive decline. AKOs also had a transcriptome negatively
associated with AD. Expression of Eif4e2 and Wtap were decreased (Table 1), and expression
of Atp2a2 was increased (Table 2). The phosphorylated state of EIF4E is associated with
hyperphosphorylated tau and AD [36]. WTAP is a component of the complex responsible
for m6A methylation [40], which is increased in AD mice [41]. Expression of ATP2A2 has
been shown to be decreased in the AD brain [58]. As cognitive decline is a hallmark of AD,
a transcriptome negatively associated with AD further reveals the neuroprotective profile
of the AKO hippocampus.

The transcriptomic changes in HFD-fed AKO mice also reveals differentially expressed
transcripts that relate to neurite outgrowth and neurogenesis. Expression of Tmod2 was
decreased (Table 1), and expression of Gpr68 and Sufu were increased (Table 2). Knockdown
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of Tmod2 leads to an increase in neurite outgrowth in vitro [26]. There is evidence to show
that GPR68 has a positive role in neurogenesis [52]. Deletion of Sufu has been shown to
decrease neurogenesis in the dentate gyrus [53]. As a decrease in neurogenesis is linked to
cognitive deficits and neurodegenerative disease [115], transcriptomic changes that promote
neurogenesis would further confer protection against cognitive decline. HFD-fed AKO mice
also had transcriptomic changes relating to synaptic plasticity and long-term potentiation.
Expression of Brd1, Adra2a, Mdga1, and Grik2 were increased (Table 2). The BRD1 protein is
needed for H3K14 acetylation [63], which is associated with synaptic plasticity [50]. The
activation of α2-adrenergic receptors has been shown to promote long-term potentiation
in the mouse brain [46]. Mice lacking MDGA1 and GRIK2 have exhibited compromised
hippocampal long-term potentiation [47,48]. Long-term potentiation and synaptic plasticity
are critical for forming memories and preventing cognitive impairment [116]. The AKO
hippocampal transcriptome further reveals protection against cognitive decline by having
upregulated transcripts that promote synaptic plasticity.

The WNT/β-Catenin signaling pathway has been shown to be neuroprotective against
cognitive decline and neurodegenerative disease. Mechanisms that confer this protection
include increasing neuronal survival, neurogenesis, synaptic plasticity, and blood–brain
barrier integrity, as well as decreasing amyloid-β production and tau hyperphosphoryla-
tion [83,117–119]. HFD-fed AKO mice exhibited transcript and pathway changes consistent
with an increase in WNT/β-Catenin signaling. After Fabp4, the next most downregulated
transcript was Sox6 (Table 1), which has been shown to inhibit WNT/β-Catenin signaling in
adipocytes [25]. The third most upregulated transcript was Nox1 (Table 2), which has been
shown to increase WNT/β-Catenin signaling [54]. Reactome analysis revealed that the
most upregulated pathway was “disassembly of the destruction complex and recruitment
of AXIN to the membrane” (Table 3). Within this pathway, transcripts that were increased
included Ctnnb1, Dvl3, Fzd1, Ppp2cb, Ppp2r1a, Ppp2r5a, and Ppp2r5e (Table 3). These tran-
scripts encode for proteins that are positive regulators of WNT/β-Catenin signaling, and
have roles in neuronal survival, synaptic plasticity, neuronal differentiation, and improved
spatial memory [80,83–85]. Ccnd1, a target of WNT/β-Catenin signaling [120], was also
found to be increased in AKOs (Log FC: 0.63, padj: 3.62 × 10−2). As CCND1 has been
shown to be a positive regulator of neurogenesis [121], the increase in this target gene
further supports the neuroprotective profile of AKOs. To verify the increase in WNT/β-
Catenin signaling, we performed Western blotting for nuclear β-Catenin in HFD-fed AKO
and WT mouse hippocampal tissues. Results showed that AKO mice had an 80% increase
in nuclear β-Catenin expression compared to WT (Figure 2). This is higher than the increase
in Ctnnb1 transcript, which was 30% (Table 3). These results further show that loss of FABP4
confers neuroprotection against HFD-induced cognitive decline and suggests a role for
WNT/β-Catenin in this protection. It is important to note that Csnk1a1, Csnk1g2, and Gsk3b
were also upregulated in this pathway (Table 3). These transcripts encode for proteins
that are canonically negative regulators of WNT/β-Catenin signaling. These proteins are
known to have roles in other pathways in the brain. Casein kinase 1 is known to be a
negative regulator of TGF-β [82], whose overproduction in the brain has been linked with
glucose intolerance [122]. GSK3B also has many roles in the brain including regulating
neurogenesis, axon growth, and synaptic plasticity [123]. These roles may explain why
these transcripts were upregulated in AKOs.

FABP4 is expressed in peripheral macrophages and microglia. In the periphery, knock-
out of FABP4 in macrophages leads to a decrease in inflammatory cytokine secretion [124].
We have previously shown that FABP4 is expressed in microglia [24]. As microglia activa-
tion is an important aspect of HFD-induced neuroinflammation, we decided to examine
the changes in microglial marker transcripts in AKOs. The transcripts Csf1r and Kcnk6 were
both significantly upregulated (Table 4). Csf1r encodes for the receptor of colony stimulating
factor 1, a positive regulator of the M2 microglial transcriptome [87]. KCNK6 is associated
with a homeostatic microglial phenotype [98]. Other upregulated microglial transcripts
include positive regulators of memory and long-term potentiation [92,93], and neuronal
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cell differentiation and survival [90,97]. Together HFD-fed AKO mice have changes in mi-
croglial transcripts consistent with homeostatic microglia and protection against cognitive
decline. Future studies will include the immunohistochemical staining of these microglial
markers to provide further insight on their regulation in the AKO hippocampus.

The HFD-fed FABP4 knockout model has revealed an altered hippocampal transcrip-
tome that is shown to have changes in metabolic pathways and be neuroprotective against
HFD-induced neuroinflammation and cognitive decline. We and others have shown that
knockout of FABP4 leads to an alleviation of HFD-induced peripheral and central inflam-
mation, insulin insensitivity, and cognitive decline [16,20,23]. In the present study, we have
shown that this alleviation in the brain is associated with changes in metabolic pathways,
Golgi transport, and WNT/β-Catenin signaling. As there is much supporting evidence
that the WNT/β-Catenin pathway is neuroprotective against cognitive decline, our study
suggests a role for WNT/β-Catenin in the FABP4 knockout-induced alleviation of cognitive
decline. Other studies have shown that WNT/β-Catenin has a role in the regulation of
microgliosis. A decrease in WNT/β-Catenin signaling has been shown to lead to proin-
flammatory microglial activation in the developing brain [125]. Wnt-3a, an activator of
WNT/β-Catenin signaling, causes a decrease in the expression of inducible nitric oxide
synthase (iNOS) and TNF-α and a decrease in microgliosis [126], while increasing insulin
sensitivity [127]. Other activators of WNT/β-Catenin signaling have been shown to cause
a switch in microglia from a proinflammatory phenotype to an anti-inflammatory one
after ischemic stroke [128]. As many targets of WNT/β-Catenin were found to be un-
changed in this study, further work is necessary to determine the mechanism and role
of WNT/β-Catenin signaling in the alleviation of HFD-induced neuroinflammation and
cognitive decline caused by FABP4 knockout. These studies will likely focus on isolated
microglia from whole brain tissue. Single-cell RNA sequencing (scRNA-seq) has been
used to define microglial immunoheterogeneity in models of AD [129,130]. Future studies
using scRNA-seq to elucidate the microglial transcriptome changes that occur with FABP4
knockout in HFD-fed mice will provide further clarity on the mechanisms that lead to
neuroprotection.

4. Materials and Methods
4.1. Mouse Model of Obesity and Immunometabolism

The FABP knockout mouse model (also known as aP2−/− or AKO mouse) carries a null
mutation in FABP4 bred to wild-type C57BL/6J mouse background [16]. We refer to this
transgenic mouse line (and tissue derived from these mice) as AKO mice. Genotyping was
confirmed using PCR as previously described [16,124]. Mice were maintained in a 12:12 h
light/dark cycle in a temperature-controlled room (21–22 ◦C) and were group-housed.
WT and AKO mice (n = 5 per genotype) were placed on a high fat diet (HFD; Research
Diets D12492; 60% total fat and 32% saturated fat) for 12 weeks starting at 15 weeks of
age and water was provided ad libitum. The experimental protocol was approved by the
Institutional Animal Care and Use Committee at the Minneapolis VAHCS.

4.2. Brain Dissection and RNA Isolation

Hippocampal tissue was rapidly dissected from WT and AKO mice sacrificed during
the light phase, 5–8 h after lights on [131]. Total RNA was extracted from hippocampal
tissue with the aid of Trizol (Invitrogen; Carlsbad, CA, USA), purified using the RNeasy
Mini Kit (Qiagen, Hilden, Germany) and both procedures were performed according to the
manufacturer’s specification [131,132].

4.3. RNA-Seq cDNA Library Synthesis

Total RNA (3 µg) samples were sent to Novogene (Davis, CA, USA) for RNA-seq
analysis. Briefly, RNA purity (OD260/OD280) was quantified using a Nanodrop spec-
trophotometer (Thermo Scientific; Waltham, MA, USA), RNA integrity and potential
contamination was analyzed using agarose gel electrophoresis, and RNA integrity was
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further analyzed using the Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA). mRNA was purified from total RNA using poly-T oligo-attached magnetic beads
and mRNA was then fragmented randomly. All sequencing was performed in one batch.
First strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse
Transcriptase Minus (RNase H−). Second strand cDNA synthesis was then performed
using DNA Polymerase I and RNase H with dTTP replaced by dUTP. Double-stranded
cDNA was purified using AMPure XP beads. Remaining overhangs of the purified double-
stranded cDNA were converted into blunt ends via exonuclease/polymerase activities.
After adenylation of 3′ ends of DNA fragments, NEBNext Adaptor with hairpin loop struc-
ture was ligated to prepare for hybridization. The second strand cDNA was then digested
by USER enzyme. The final library was obtained by PCR amplification and purification of
PCR products by AMPure XP beads. Library quality was ensured using the Agilent 2100
bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Clustering was performed on a
cBot cluster generation system using the TruSeq PE Cluster Kit v3-cBot-HS (Illumina; San
Diego, CA, USA). Library sequencing was performed using the Illumina HiSeq Platform
(Illumina; San Diego, CA, USA).

4.4. RNA-Seq Analysis

Raw data (raw reads) were stored in FASTQ (fq) format. Raw reads containing adap-
tors, over 10% indeterminate bases, or over 50% low-quality bases were removed. Clean
reads were mapped to a reference genome using STAR software. Differential expression
analysis was performed using the DESeq2 R package. P-values were adjusted using Ben-
jamini and Hochberg’s procedure. Enrichment analysis of differentially expressed genes
was performed using clusterProfiler software (version 3.16), including GO, DO, KEGG and
Reactome database enrichment [133].

4.5. Reactome Analysis

Transcript quantification was performed with Salmon 1.0 [134] packaged in clus-
terProfiler 3.14.2 [135]. It was run with mapping mode selective alignment, minimum
count of three, and relative abundance calculated in transcripts per million (TPM) rela-
tive to reference RNA transcripts from GENCODE VM23. Overrepresentation of tran-
scripts and pathways and all other expression analysis was conducted with Reactome
gene set analysis (ReactomeGSA) with Reactome pathway browser 3.7, database release
74 using the gene set enrichment analysis (GSEA) method and including disease path-
ways [136]. Within ReactomeGSA, normalization was performed with edgeR’s calcNorm-
Factors function, transformed using limma’s voom and normalizeBetweenArrays functions,
and pathway analysis using limma’s camera function as implemented in the respective
Bioconductor R package. Reactome identifiers are shown in square brackets and can be
accessed at https://reactome.org. Unless otherwise noted, statistical significance was
evaluated with a cutoff of ≤ 0.01 using the false discovery rate (FDR) as calculated us-
ing the Benjamini-Hochberg procedure for pathways and multiple correction adjusted
p-values for transcripts (or genes). Transcript identifiers were translated to Ensembl gene
IDs (names) with g:Profiler [137]. Additional ad hoc pathway analysis was conducted with
GO, KEGG databases. Estimate surrogate cell type proportions variables were calculated
with BRETIGEA [138]; input gene-level expression calculated by summing transcript TPMs
per gene, and output with mouse species and separate runs with 20, 50, and 200 markers
for all six cell types (astrocytes, endothelial cells, microglia, neurons, oligodendrocytes, and
oligodendrocyte precursor cells). Senescence was evaluated with a list of 88 gene markers
from the Tabula Muris Consortium [139].

4.6. Western Blotting

Western blotting was performed using dissected hippocampal tissues from AKO
and WT mice as previously described. Tissue was homogenized in RIPA buffer (Thermo
Scientific, Waltham, MA, USA) and PIC (HALT; Thermo Scientific, Waltham, MA, USA)

https://reactome.org
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using a tissue homogenizer (Bullet Blender; Next Advance, Troy, NY, USA). Nuclear
fractions were isolated using a nuclear extraction reagent (NE-PER; Thermo Scientific,
Waltham, MA, USA). Protein concentration was determined using an infrared spectrometer
(Direct Detect; Millipore, Burlington, MA, USA). 25 µg of protein was loaded onto a 4–20%,
30 µL-well precast gel (Bio-Rad, Hercules, CA, USA). Protein was transferred using the
Trans-Blot Turbo system (Bio-Rad, Hercules, CA, USA). Total protein was stained using
Licor Revert 700 stain (LI-COR, Lincoln, NE, USA) and imaged using the LI-COR Odyssey
FC imager (LI-COR, Lincoln, NE, USA). Blocking was performed using Intercept Blocking
Buffer (LI-COR, Lincoln, NE, USA). Primary antibody was used at 1:2000 dilution for a
concentration of 1.25 × 10−1 µg/mL (BD Biosciences 610153; BD Biosciences, Franklin
Lakes, NJ, USA), performed overnight at 4 ◦C with agitation. Secondary antibody was used
at 1:10,000 dilution for a concentration of 1.0 × 10−1 µg/mL (LI-COR 926-32210; LI-COR,
Lincoln, NE, USA) and imaged. Densitometry was performed using Image Studio software
(LI-COR, Lincoln, NE, USA) and statistical analysis was performed using t-test (GraphPad
Prism 7; GraphPad, San Diego, CA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24043381/s1. References [68–86,104–108,140–176] are cited
in supplementary materials.
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