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Abstract: Lipid-lowering therapies are widely used to prevent the development of atherosclerotic
cardiovascular disease (ASCVD) and related mortality worldwide. “Omics” technologies have been
successfully applied in recent decades to investigate the mechanisms of action of these drugs, their
pleiotropic effects, and their side effects, aiming to identify novel targets for future personalized
medicine with an improvement of the efficacy and safety associated with the treatment. Pharma-
cometabolomics is a branch of metabolomics that is focused on the study of drug effects on metabolic
pathways that are implicated in the variation of response to the treatment considering also the
influences from a specific disease, environment, and concomitant pharmacological therapies. In this
review, we summarized the most significant metabolomic studies on the effects of lipid-lowering
therapies, including the most commonly used statins and fibrates to novel drugs or nutraceutical
approaches. The integration of pharmacometabolomics data with the information obtained from the
other “omics” approaches could help in the comprehension of the biological mechanisms underlying
the use of lipid-lowering drugs in view of defining a precision medicine to improve the efficacy and
reduce the side effects associated with the treatment.
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1. Introduction

Atherosclerotic cardiovascular disease (ASCVD) is considered the leading cause of
death globally [1]. Established lipid-lowering therapies are available, which reduce low-
density lipoprotein cholesterol (LDL-C), preventing ASCVD and mortality, but they are still
insufficient to bring a halt to the ASCVD epidemic. Strong efforts have been made in recent
decades to fully characterize the mechanism of action of these drugs, their pleiotropic
effects, and their side effects using both hypotheses-driven and “omics” approaches, such
as genomics, proteomics, and metabolomics.

Several proteomics studies have contributed substantially to better understanding
the profiles of cholesterol-lowering drugs, aiming to elucidate the mechanism of action by
drug–protein interaction and to discover multiple drug-specific targets in treated patients
by monitoring the pharmacological effect [2–4].

The integration of proteomics and metabolomics has led to assessing both protein
and metabolite changes improving the understanding of pathophysiological mechanisms
and the discovery of novel biomarkers for future personalized drug therapy with higher
efficacy and safety. Successful metabolomic studies have been recently performed in
different contexts, such as for the evaluation of the associations of plasma metabolome with
subclinical atherosclerosis in diabetes patients from the Diabetes Heart Study [5].

Metabolomics allows the quantitative detection of multiple small molecule metabo-
lites and lipids in biological systems and the investigation of the alterations in metabolic
pathways and networks, thus providing information on the mechanisms underlying the
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beneficial effects and adverse metabolic consequences of a drug [6]. The quantitative
measurement of the dynamic metabolic responses of a person to pathophysiological stim-
uli, drug therapy, or other interventions is often defined as metabonomics and involves
the characterization of the changes of metabolic products in biological fluids and tissues
following disease processes, environmental factors, drugs, and gut microflora [7]. The
difference between metabonomics and metabolomics is minimal and the terms are often
used interchangeably because the analytical procedures are the same.

Considering that the metabolome is both impacted by genetic background and en-
vironmental exposure, it provides a more specific description of the phenotype. Indeed,
the metabolic profile is strongly influenced by both pathophysiological status and external
perturbation such as specific drug treatment [8].

This intrinsic characteristic of the metabolome leads to the development of a specific
metabolomics branch, pharmacometabolomics, which is now viewed as a complementary
technique to genomics, transcriptomics, and proteomics for the therapeutic evaluation of
specific drug products. Pharmacometabolomics or pharmacometabonomics contributes to
a comprehensive understanding of the drug effects by also considering influences from
a particular disease, environmental factors, diet, and concomitant pharmacological treat-
ments [9]. This approach can be used to better understand the pharmacokinetic profile of a
drug or to evaluate the metabolite levels after a pharmaceutical treatment, thus clarifying
the mechanisms underlying the variations in response to therapy. In addition, it can provide
potential unique signatures useful to stratify patients based on their metabolic heterogeneity
within a specific disease state and to predict individual therapeutic responses [10].

Through pharmacometabolomics is possible to improve the efficacy and minimize the
side effects associated with a treatment [11]. Indeed, in the last few years, the focus on drug
therapy has moved further toward a personalized approach. Personalized therapy is very
important in medical treatment, and it first of all requires the ability to recognize a different
response to a specific drug in individuals [12]. In this respect, longitudinal studies using
pharmacometabonomics have become a valuable tool to examine individual metabolic
responses and, consequently, to direct toward a correct personalized medicine [13–15].
Thus, thanks to the recent evolution of the metabolomic field, metabolomic-based platforms
are now also employed during the early phases of drug discovery, from target engagement
to the elucidation of the mechanisms of action and discovery of markers for therapies
monitoring, and have the potential to accelerate drug development [16].

The highly dynamic profiles of metabolites and their extreme chemical diversity
present a challenge to research; thus, there is no single analytical technique that is able to
cover the entire range of metabolites in a complex biological sample providing a comprehen-
sive metabolomic analysis [17]. Among the analytical platforms employed in metabolomic
analysis, nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the most
widely used. Due to higher sensitivity and throughput, MS is often applied both in untar-
geted and targeted metabolomics in combination with previous separation techniques, such
as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis
(CE), that enhance the analytical capabilities of MS, improving the metabolite coverage
of the analysis and facilitating the identification of the numerous compound classes [18].
Therefore, it is necessary to combine different separation procedures to cover a wide portion
of the metabolome, even if this is time-consuming and data processing is more compli-
cated. One of the main analytical methods used for metabolite analysis is LC-MS, and in
particular, in recent years, the application of two-dimensional (2D) LC has grown, allowing
higher sensitivity of the analysis, an improvement in compound separation when single-
dimension separation is difficult, and, consequently, a significant increase in the compound
number measured [17]. The metabolomic analysis can be either untargeted or targeted,
depending on the research question and several other factors, including the classes, sta-
bility, and chemical properties of the metabolites of interest, as well as the appropriate
analytical accuracy. Metabolomics can provide an untargeted identification of hundreds
to thousands of metabolites simultaneously within a sample, achieving qualitative data
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as relative intensities of the metabolites associated with a particular pathophysiological
status [19]. On the other hand, a targeted analysis allows the measurement of specific
known compound classes using stable isotope labelled internal standards, thus providing
absolute quantitative data. The most commonly used technique for targeted analysis is
selected reaction monitoring (SRM) or multiple reaction monitoring (MRM) when multiple
proteins are measured during a single MS analysis.

The rapid and continuous development of high-throughput analytical strategies and
more robust bioinformatic tools will improve the use and integration of metabolomics into
the biomedical research to discover new diagnostic and prognostic measures and drugs.

This review summarizes the currently available metabolomics studies performed to
address the effects of lipid-lowering therapies from widely used statins and fibrates to pro-
protein convertase subtilisin/kexin type 9 (PCSK9) inhibitors or nutraceutical approaches.

2. Methodological Approaches for Pharmacometabolomics and Pharmacolipidomics

Metabolomics can be applied to multiple biological matrices, such as tissues, cells,
and biofluids. Plasma and serum are easily accessible and the most widely used matrices
in human metabolomic clinical studies [20,21], together with urine samples which are
commonly used for both human and animal metabolomics studies. However, metabolomics
has also found several applications with less used biosamples, such as feces, saliva, culture
medium, cells, or tissues [22], which can likewise provide interesting information on
biological functions in health and disease. Feces, for example, are of increasing interest in
metabolomics studies, because they reflect the metabolic association between the host and
its intestinal microbiota [23,24]. Instead, even though tissues are invasive sample types,
their analysis is also important, as they describe the metabolic changes that occur as a result
of a disease. Tissue composition is often inhomogeneous in composition, thus increasing
biological variability which should be always considered during sample collection and
treatment. Indeed, pre-analytical handling steps are an important aspect of metabolomics
study design, because accurate sample collection, processing, and storage are crucial to
preserving sample integrity and quality. For this reason, guidelines and specific standard
operating procedures for the pre-analytical handling of samples are required prior to
initiating a metabolomic study to increase the metabolite recovery and stability for further
metabolic investigation [23].

Furthermore, there is a plethora of literature on extraction procedures for metabolomics
but there is no optimal procedure because it depends on the molecular targets given the
complexity of biological matrices, metabolite enzymatic turnover rates, or the need to
enrich low-abundance compounds [25].

Metabolomics is a technology-driven discipline, like all the other “omics” approaches,
strongly based on new developments in analytical techniques, instrumentation, software,
and methods for data analysis.

As mentioned above, MS and NMR are the most widely used technologies for
metabolomics, allowing the qualitative and quantitative analysis of metabolites in bio-
logical samples. MS is often coupled to other separation techniques such as GC and LC
to better resolve and characterize the metabolome, providing analytical platforms able to
separate ions beyond the mass-to-charge ratio (m/z).

Therefore, most of the metabolomics studies have been performed using GC-MS,
LC-MS, or NMR, which are briefly described below since details of the technical aspects
have been clearly reviewed elsewhere [26,27]. Of note, none of them allow the complete
identification and quantification of all metabolites in biological samples, because they
have specific advantages and disadvantages [28]. A typical workflow for metabolomic
experiments is reported in Figure 1.
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Figure 1. Schematic workflow of metabolomic studies. Several steps are involved from experi-
mental design and biological sample preparation to data analysis, processing, and interpretation.
Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the main an-
alytical technologies used in metabolomics research. GC-MS, gas chromatography-MS; LC-MS,
liquid chromatography-MS.

Lipidomics is considered a subfield of metabolomics because it gives information
about the global lipid profile of a biological system that can be closely associated with
the other metabolic pathways in the understanding of all mechanisms mediating statin
effects. Similarly to metabolomics, lipids can be divided into several classes based on
their different structural properties, and many analytical strategies have been developed,
including targeted, untargeted, and shotgun lipidomics [29,30]. Lipidomics employs
similar analytical techniques to metabolomics, even if MS-based techniques are still the
most widely used approach by a direct analysis of the sample or following a lipid extraction
and separation procedure [31].

Due to the advances in MS, lipidomics has grown in the last decade providing both
qualitative and quantitative data on multiple lipid categories whose changes can be in-
volved in many metabolic diseases, such as ASCVDs and diabetes. The study of lipids and
their metabolic pathways has significant potential for finding biomarkers and developing
innovative therapeutic targets for real-world biological questions [31].

Recently, high-density lipoprotein (HDL) lipidome was investigated by NMR in pa-
tients with prediabetes and compared to profiles from normoglycemic subjects and patients
with established type 2 diabetes [32]. Significant qualitative and quantitative alterations in
HDL lipidome, potentially with proatherogenic properties, were observed in prediabetic
patients compared to normoglycemic individuals. These changes in the lipid composition
of HDL were qualitatively similar but with quantitative levels less severe than those mea-
sured in diabetic patients. Therefore, progressive changes in HDL lipidome from healthy
subjects to patients with prediabetes and type 2 diabetes was reported, demonstrating that
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lipidomics helps to study the metabolic pathways underlying the progression to diabetes
and to identify patients with high risk of developing CVD. Although none of the patients
involved in this study were taking lipid-lowering drugs or other therapies known to affect
lipid metabolism, this study highlighted significant variations in lipid composition of
serum lipoproteins [32].

It has become clear that impaired metabolism and lipid composition of serum lipopro-
teins is critical for the pathogenesis of CVDs. The beneficial effect of lipid-lower therapies
has been extensively studied in biomedical research demonstrating an improvement of
circulating lipid levels and generally lipid metabolism. In this regard, pharmacolipidomics
helps to explore the underlying mechanisms of lipid metabolism and its regulation by
lipid-lower therapies in pathological conditions. Moreover, it could be a powerful approach
for risk stratification of patients, discovery of disease biomarkers, treatment evaluation
monitoring of therapeutic responses of multiple lipid classes, as well as indications for
future personalized medicine.

This important role of pharmacolipidomics was clearly demonstrated in a lipidomic
analysis performed to study the association of coronary artery stenosis with atherogenic
(non-HDL) and atheroprotective (HDL) lipid profiles in patients with coronary heart disease
at various stages and compared with subjects with normal coronary arteries [33]. Patients
with different grades of coronary artery stenosis were separated from subjects with normal
coronary arteries in the atherogenic model, and the severe stage was also distinguished
from both mild and moderate with significant power. Instead, in the atheroprotective
model, only the differentiation between patients with mild and severe coronary artery
stenosis was statistically significant. Therefore, the study of lipid species in lipoproteins
provides the possibility to identify early markers of the onset of cardiac diseases and
determine the best therapeutic approach for patients [33].

2.1. Nuclear Magnetic Resonance (NMR)

NMR is an extensively used analytical platform in metabolomics studies, addressing
the specific metabolic changes associated with mechanisms of action or toxic effects of
several drugs [22].

For most 1H-NMR-based metabolomics studies, sample preparation requires the
addition of a deuterated buffer to the blood or urine samples to adjust the pH and provide
the necessary lock signal [34]. Indeed, pH adjustment is particularly relevant in urine or
saliva, which are particularly sensitive to inter-individual pH changes. This approach offers
the advantage of easy sample preparation, the ability to obtain and absolute quantitate
metabolites, high reproducibility, and, of note, non-destructiveness. The only disadvantage
of this approach is in terms of sensitivity, which is 10 to 100 times less than MS-based
techniques. Moreover, it is highly reproducible and, therefore, more suitable for large-scale
metabolomics studies than MS-based methods, and can be used to detect and characterize
sugars, organic acids, alcohols, polyols, and other highly polar compounds, which can be
more difficult to detect with MS-based approaches [28].

NMR-based metabolomics and lipidomics have been extensively applied to find
specific patterns for the diagnosis and prognosis of different human diseases, such as
ASCVDs [35]. NMR was recently applied in a cross-sectional study to evaluate plasma
metabolomics and lipidomics in atherosclerosis according to the presence of type 1 dia-
betes or previous preeclampsia [36]. Significant differences were reported according to
the presence of diabetes or preeclampsia, which is known to have implications for fu-
ture cardiovascular disease (CVD) events, and it has been shown that circulating levels
of phosphatidylcholine, free cholesterol, saturated fatty acids, and w-7 fatty acids were
independently associated with preclinical carotid atherosclerosis.

In another recent large prospective cohort study, metabolomic and lipidomic profiles
and their relationship to infection burden during the first year of life were characterized by
NMR [37], demonstrating that infants with a higher infection burden had proinflammatory
and proatherogenic plasma metabolomic and lipidomic profiles that in adults suggest
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an enhanced risk of CVD, obesity, and type 2 diabetes. Therefore, the study of the car-
diometabolic associations with common infections and inflammation in early life is very
important to perform a risk stratification and develop targeted interventions to prevent
CVD implications.

Since ACVDs are the major cause of death in patients with type 2 diabetes mellitus,
1H-NMR-based lipidomic technology was also applied to evaluate compositional features
of the HDLs in healthy subjects with normal coronary arteries, diabetic patients with
normal coronary arteries, and patients with acute coronary syndrome [38]. Significant lipid
alterations in HDL were observed in diabetic patients compared to controls, an atherogenic
pattern that is further aggravated in patients with established coronary heart disease.
Similarly, NMR was applied to study serum metabolome of subclinical atherosclerosis,
measured using ankle brachial index (ABI), in people with type 2 diabetes, compared with
the profile for symptomatic CVD in the same cohort of individuals [39]. This study revealed
that glycolysis-related metabolites, fluid balance molecules, and inflammation markers
were independently associated with ABI and symptomatic CVD.

All these studies demonstrate the potential of NMR-based lipidomics and metabolomics
for disease biomarker discovery in complex biological samples in pathophysiological conditions.

2.2. Gas Chromatography-Mass Spectrometry (GC-MS)

GC-MS is the most standardized method for metabolomic studies, based on more
than 50 years of analyses, resulting in an increasing number of complete publicly available
libraries under standardized conditions of 70 eV electron ionization energy, such as the
NIST 14 Mass Spectral Library collection of the U.S. National Institute of Standards and
Technology (NIST) containing mass spectra for 242,477 unique compounds, partially charac-
terized also in terms of retention times, for a better performance of metabolite identification.
Despite the notable breadth, sensitivity, and specificity of metabolite detections, GC-MS
requires a derivatization step performed under very mild conditions, to decrease boiling
points and increase the stability of compounds for GC-MS analysis [25].

Recently, lipid peroxidation aldehyde metabolites were compared in cardiovascular
patients and healthy controls using a targeted and untargeted metabolomics approach
based on an advanced combined derivatization/solventless extraction procedure from
plasma followed by GC-MS [40]. The targeted GC-MS approach showed that hexanal,
malondialdehyde and 4-hydroxynonenal are significantly higher in CVD patients, while
untargeted GC-MS also reported higher levels of hexanal and lower levels of citral in CVD
patients compared to control subjects.

Since type 1 diabetes is associated with premature CVD, GC-MS was also applied to
measure plasma concentrations of free fatty acids in diabetic patients and healthy controls,
highlighting specific changes in lipid metabolism of patients that could have consequences
for inflammation, cellular function, and oxidative stress management [41].

Therefore, GC-MS has always been considered one of the most efficient and robust
analytical platforms for metabolomics and lipidomics research, and is complementary to LC-
MS so that it can be used to obtain full coverage of metabolite species in biological studies.

2.3. Liquid Chromatography-Mass Spectrometry (LC-MS)

Alternative to GC, LC is largely used for metabolomic and lipidomic studies in combi-
nation with high-resolution mass spectrometers as well as tandem MS for targeted analysis
to improve specificity, taking advantage of different selectivities in LC separation and the
high sensitivity in MS detection. Thanks to technological advances, thousands of features
can be detected. One of the most-used separation techniques is reversed phase for the
analysis of mid- to non-polar metabolites and it is often used for lipid analysis, while small
polar metabolites, such as amino acids, carboxylic acids, sugars, etc., can be resolved using
hydrophilic interaction liquid chromatography separation [17].

However, misidentification can be present due to overlapping compounds with similar
molecular weight (<5 ppm), in source degradation products, or the presence of isomeric
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and isobaric species that cannot be discriminated by MS, except for instruments equipped
with ion mobility separation [42]. Differently from NMR, untargeted LC-MS and GC-MS
provide relative quantities with respect to a reference sample, because peak intensities
are not directly proportional to concentration due to differential ionization efficiencies of
metabolites in complex mixtures [43].

LC-MS is a very sensitive and specific technique for lipidomic analysis and has been
extensively applied in heart biology for the discovery of potential biomarkers. Recently,
a sequential lipid profiling from acute to chronic heart failure was performed in mouse
and human samples by an untargeted LC-linear trap quadrupole orbitrap MS [44]. Both
tissue and plasma lipidomic profiles were acquired and compared to identify potential lipid
markers for heart failure. Multivariate analysis showed distinct cardiac lipidomic patterns
between healthy and ischemic patients, including significantly reduced glycerophospho-
lipids in the ischemic heart especially phosphatidylethanolamines that were considered
the main class of ischemia biomarkers. Phosphatidylethanolamines levels were instead
significantly enhanced in tissues and plasma from risk-free mice in chronic myocardial
infarction, thus suggesting a possible physiological cardiac remodeling. In addition, a
reduced mitochondrial function associated with several altered lipid levels seemed to be
an early marker of acute heart failure. The fold change analysis reported site-specific lipid
metabolites and inter-organ lipidomic patterns that were significantly associated with acute
and chronic heart failure, thus demonstrating a strong pathological lipid remodeling [44].

In a previous study, using LC-MS in SRM mode, the same authors absolutely quantified
sphingolipid mediators in ischemic human hearts, and measured them also in murine
spleen and heart as an integrative approach, as well as in plasma samples, to investigate
the role of sphingosine-1-phosphate interaction with its receptors in the transition of acute
to chronic heart failure [45]. They demonstrated that the early measurement of sphingosine-
1-phosphate levels could be a promising and effective strategy for heart failure treatment.

Therefore, high-throughput quantitative lipidomics using LC-MS is a powerful ap-
proach to study lipid signaling in molecular and cellular pathways, because it provides the
possibility to discover candidate diagnostic/prognostic markers or new therapeutic targets
for cardiac protection in clinical translation.

Another recent example of LC-MS application concerns the characterization of the
lipidome of the main phospholipids and sphingolipids species in HDL subfractions to in-
vestigate their association with premature coronary heart disease or metabolic syndrome in
families where a low HDL cholesterol level prior to statin treatment predisposed to prema-
ture coronary heart disease [46]. The lipidome of phosphatidylcholines, lysophosphatidyl-
cholines, and sphingomyelins in HDL subfractions was associated with cardiometabolic
disorders. Distinct fatty acid compositions of HDL phospholipids were observed to be
characteristic of both metabolic syndrome and premature coronary heart disease.

3. Lipid-Lowering Therapies and Metabolomics

Due to the important role of dyslipidaemia in the occurrence of atherosclerotic CVD,
different approaches have been developed to lower LDL-cholesterol to improve CVD
outcome. Despite the well-demonstrated benefits of statins, a proportion of patients does
not reach the target levels of cholesterol recommended by guidelines, mainly due to low
compliance associated with side effects [47,48]. Nowadays, alternative cholesterol lowering
approaches have been developed to obtain better results both in terms of efficacy and
tolerability, and they are often used in combination with statin. Fibrates act through the
activation of peroxisome proliferator-activated receptor-α (PPAR-α) to modulate lipid
and lipoprotein metabolism. One of the most recent classes of lipid-lowering therapy is
represented by the PCSK9 inhibitors involved in the control of LDL receptor. The reduction
of cholesterol absorption in the intestine can be obtained with ezetimibe interacting with
the Niemann-Pick C1-like protein 1 (NPC1L1). Bile acid sequestrants indirectly reduce
cholesterol that is needed by the liver to synthesize novel bile acids. Microsomal TG
transfer protein (MTP) inhibitor, Lomitapide, prevents very-low-density lipoprotein (VLDL)
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formation in the liver and chylomicron formation in the intestine, acting on the transfer of
triglycerides and phospholipids to Apolipoprotein B (ApoB). The antisense oligonucleotide,
mipomersen, reduces the liver translation of the ApoB protein. The novel Bempedoic acid
(ETC-1002) acts as an inhibitor of adenosine triphosphate citrate lyase (ACL), involved in
the production of precursor of cholesterol and fatty acids [49]. Novel approaches have been
also developed to reduce angiopoietin-like protein 3 (ANGPTL3) with a blocking antibody
or antisense nucleotide, or to reduce mRNA levels of apolipoprotein CIII [48]. Although the
pharmacological mechanisms of lipid-lowering drugs have been extensively studied, their
metabolism-regulating effects and adverse effects have not been fully elucidated, especially
after long-term treatments [50]. Indeed, as shown in Figure 2, describing the sites and
targets of the main lipid-lowering drugs or drug classes, it is evident that, at the moment,
only few of them have been studied from a metabolomic point of view in preclinical or
clinical studies.
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Figure 2. Sites and targets of lipid-lowering therapies. Diagram of the mechanisms of action of
the principal lipid-lowering drugs including those drug classes that have not yet been the object of
pharmacometabolomic studies. Drug classes analyzed in metabolomic studies are highlighted by
yellow boxes. Statins reduce cholesterol synthesis through 3-hydroxy-3-methyl-glutaryl-coenzyme
A reductase (HMGCR) inhibition. Fibrates are peroxisome proliferator-activated receptor alpha
(PPARα) activators, able to increase Lipoprotein lipase activity and globally reduce triglycerides
(TG) levels. Reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9), responsible for the
degradation of low-density lipoprotein receptor (LDLR), can be achieved with monoclonal antibodies
or Inclisiran, a siRNA specific for PCSK9 that prevents translation of PCSK9 messenger RNA. Other
drug classes without pharmacometabolomic studies are reported in green boxes. Bempedoic acid is a
potent inhibitor of adenosine triphosphate (ATP) citrate lyase (ACL), a cellular enzyme responsible
for the production of precursors for fatty acid and cholesterol synthesis. Lomitapide is an inhibitor
of microsomal triglyceride transfer protein (MTP), an enzyme responsible for the synthesis of very
low-density lipoproteins in the liver and chylomicrons in the intestine. Anionic exchange resins are
bile acids sequestrants. The depletion of the bile acid pool stimulates the conversion of cholesterol to
bile acid, reducing intracellular cholesterol in hepatocytes. Ezetimibe selectively inhibits intestinal
cholesterol absorption, inhibiting the cholesterol transport protein Nieman Pick C1-like 1 protein
(NPC1L1) in the intestine. ApoB100, apolipoprotein B100; LDL, low-density lipoprotein; LDL-r, LDL
receptor; mab, monoclonal antibody; CoA, coenzyme A.
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3.1. Statins

Statins are a potent group of lipid-lowering drugs, also known as 3-hydroxy-3-methyl-
glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, that can lower the levels of LDL-
C in the blood. They are the primary cholesterol-lowering medications that work by
reducing the LDL-C production inside the liver by competitively inhibiting the enzyme
HMG-CoA reductase, which converts HMG-CoA to mevalonate formed during cholesterol
synthesis [51]. Consequently, statins have proven to be an effective and efficient therapeutic
way in the primary and secondary prevention of coronary heart diseases. In patients
with very high LDL-C levels and a high risk of cardiovascular diseases, statins reduce
the hardening and narrowing of the arteries and stabilize the plaques on blood vessel
walls when atherosclerosis is already present. Moreover, they improve endothelial function,
decrease inflammation status and oxidative stress, and prevent thrombogenic response [52].

A lifestyle modification through a cholesterol-lowering diet and physical exercise
is recommended as a first choice but when the cholesterol levels continue to stay high
after healthy lifestyle changes are implemented, statins can be helpful. The intake of
statins depends on cholesterol levels and other cardiovascular risk factors that must be
carefully considered and examined. Various forms of statins are commercially available
and they are often prescribed in combination with other drug agents, such as ezetimibe,
colesevelam, fibrates, or niacin [53,54], to increase their beneficial effects for the treatment
of hyperlipidemia. However, statins are prescribed on a long-term basis and are well-
tolerated by most people, but they can also have serious adverse effects in some cases,
such as liver damage, muscle problems, neuropathy, and increased blood sugar that can
lead to type 2 diabetes mellitus [55]. Moreover, statins may also undergo drug–drug
interactions with other drugs, including agents that are commonly used for the treatment
of cardiovascular diseases, leading to pharmacokinetic alterations and increased risk of
myopathy, hepatotoxicity, and immune effects [56]. Therefore, it is essential to study in
depth the pharmacological response to statins in patients to understand better the real
efficacy and safety of statins for definitive future guidelines.

3.1.1. Statin Response Variability

Statins have a variety of pleiotropic effects which are not yet fully understood. Char-
acterizing the metabolic profiling following statin treatment provides further informa-
tion about metabolic pathways involved in the pleiotropic effects of statins. Recently,
Silva et al. [57] performed the first comprehensive evaluation of the metabolic signature of
simvastatin treatment in a large population-based study, demonstrating that simvastatin
shows several pleiotropic effects in the participants with statistically significant changes
in multiple metabolite concentrations, affecting not only lipids, but also amino acids, pep-
tides, nucleotides, carbohydrates, co-factors, vitamins, and xenobiotics. They identified
more than 300 “novel” metabolites previously unpublished in association with simvastatin
treatment, in particular short-chain acyl-carnitines and amino acids, thus reporting a more
complex metabolic signature of simvastatin treatment compared to what was thought [57].
These “novel” metabolites are already known in the literature, but were reported for the
first time in this study in the participants that used simvastatin.

In addition, pharmacometabolomics can help to study the interindividual variation in
the response to statins [58]. It is important to evaluate such variability, which may affect
drug efficacy and toxicity, before the drug administration in patients. In the literature, sev-
eral pharmacometabolomic studies focus on the characterization of the metabolic profiles of
patients before treatment to stratify them as “responders” or “non-responders” to a specific
therapeutic intervention [22].

The identification of predictive pre-treatment metabolic markers could be very useful
in clinics to define individual variation, improve LDL-C lowering, and minimize drug
toxicity [12].

For this reason, a pharmacometabonomic approach was applied to predict metabolic
phenotypes and pharmacokinetic parameters of atorvastatin in healthy volunteers to in-
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vestigate the individual differences in drug response without any prior knowledge of the
genomic profile [12]. The authors measured the levels of metabolites in pre-dose base-
line plasma samples from 48 healthy volunteers using a GC-MS-based global metabolic
profiling and quantified the atorvastatin levels in plasma at various time points after oral
administration using an LC-MS/MS system operating in MRM mode. The untargeted
metabolite profiling was performed on baseline plasma samples of all participants leading
to the identification of several peaks, including amino acids, organic acids, carbohydrates,
fatty acids, steroids, and many other compounds. In addition, a high degree of individual
variation regarding pharmacokinetic responses was reported measuring the plasma con-
centration of atorvastatin. At this point, the group of participants was randomly divided
into a training set and a prediction set for the subsequent multivariate statistical modeling,
which was applied to screen potential markers of individual diversity by correlating en-
dogenous metabolites in pre-dose plasma with pharmacokinetic parameters [12]. Using the
baseline metabolic profiles of the subjects in the training set, a prediction model of multiple
features was created and correctly predicted the pharmacokinetic parameters of the healthy
volunteers in the prediction group. Endogenous molecules showed a good correlation
with pharmacokinetic parameters, and in particular tryptophan, alanine, arachidonic acid,
2-hydroxybutyric acid, cholesterol, and isoleucine were considered as potential markers for
predicting individual differences among the volunteers.

Indeed, it has been demonstrated that monocarboxylate transporters mediate the trans-
port of endogenous aromatic amino acids such as tryptophan, tyrosine, and phenylalanine
across the plasma membrane, as well as metabolically important monocarboxylates in
the intestine, such as benzoic acid, short chain fatty acids, and drugs with monocarboxy-
late structures [59,60]. Since atorvastatin is a monocarboxylic acid, it has been reported
its intestinal absorption by monocarboxylate transporters [61], whose inhibition causes a
reduction of drug bioavailability. Thus, the potential markers identified in this study, includ-
ing tryptophan, tyrosine, phenylalanine, and the monocarboxylic acid 2-hydroxybutyric
acid, could play an important role in predicting atorvastatin pharmacokinetics, because
they affect the activity of the intestinal monocarboxylate transporters and compete with
the atorvastatin immediately after its administration.

Using pre-drug plasma metabolic profiles, this pharmacometabonomic approach could
help to effectively predict individual variances in pharmacokinetics before atorvastatin
administration and stratify individuals into subgroups that are more likely to be responsive
to drug therapy [12]. Consequently, it will be possible to define a better individualized
statin therapy, which means the optimal drug dosing, avoiding adverse drug reactions
by means of the characterization of the metabolic profile of each individual. Of course,
the investigation of biological fluids other than plasma, as well as increasing the coverage
of the metabolome by using other analytical platforms (e.g., LC-MS and NMR) could be
useful to obtain an even more accurate predictive pharmacometabonomic model.

Nowadays, the field of metabolomics includes multiple analytical platforms and
bioinformatics tools for mapping pathways implicated in disease and individual variation
in response to drugs.

Krauss et al. carried out many studies with complementary metabolomics platforms
to characterize the global effects of simvastatin, a semisynthetic derivative, on metabolism
and identify potential markers of the variability in plasma low-density lipoprotein (LDL)
response to statin treatment [58]. They applied three different metabolomic and lipidomic
platforms to analyze plasma samples obtained from the Cholesterol and Pharmacogenetic
(CAP) study, which is a 6-week non-randomized clinical trial of 40 mg/day simvastatin
treatment in a group of African American and Caucasian volunteer subjects [62].

Over 300 lipid species within eight lipid classes were measured by a targeted GC-
based lipidomic platform, demonstrating that baseline cholesterol ester and phospholipid
metabolites correlated with LDL-C response to treatment [63]. Moreover, they showed
statin-induced changes in C-reactive protein, a marker of inflammation and a potential
predictor of CVD risk, that were significantly correlated with baseline concentrations of
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plasmalogens. Since plasmalogens are involved in inflammatory processes, they assumed
a role of plasmalogen metabolism in modifying the well-known anti-inflammatory effects
of statins and resulting in inter-individual variation [63].

A targeted GC-MS sterol and bile acid metabolomics platform also confirmed the
potential role of intestinal bile acid metabolism in modulating simvastatin efficacy through
effects on tissue transport [64], because a single nucleotide polymorphism (SNP) in the
gene encoding a transporter in the liver and intestine (i.e., SLCO1B1 encoding OATP1B1)
has been associated with both statin LDL-C lowering efficacy and risk of statin-associated
myopathy [65,66]. Bile acids and related metabolites regulate the expression of OATP1B1
transporter; thus, using their baseline levels it is possible to better understand the com-
petitive interactions with the drugs transported by OATP1B1, and consequently to allow
a prediction of the pharmacokinetic response to statins [12]. Indeed, the competition be-
tween simvastatin and bile acids for this transporter markedly affects the pharmacokinetics
of simvastatin, and can, thus, greatly impact both the efficacy and safety of this drug.
Finally, using untargeted metabolomics with a GC-time of flight (TOF) instrument, the
same authors measured in the full range responders over 300 metabolites of intermediary
metabolism, and they observed the effects of statins on amino acids and their degradation
products, with changes in cystine, glutamine, urea cycle intermediates, and the dibasic
amino acids ornithine, citrulline, and lysine [67]. The alterations in citrulline and ornithine
concentrations reflect an increased flux through the urea cycle, thus suggesting a change in
amino acid degradation. Moreover, lower baseline levels of xanthine and reduced purine
degradation stimulated a more robust nitric oxide synthase (NOS) signaling. Since NOS
catalyzes the production of nitric oxide (NO) from arginine, and it is also known that statins
increase the expression and activity of endothelial NOS, the upregulation of NO due to
the statin treatment confirmed an increased production of NO with beneficial effects on
endothelial function [68]. This evidence proves the important therapeutic effect of statins
in cardiovascular diseases such as atherosclerosis, heart failure, and hypertension [69]. Fol-
lowing exposure to simvastatin, a strong correlation between alpha and gamma-tocopherol
(vitamin E) and cholesterol metabolism was also reported in all responders, and a significant
decrease was found in their plasma levels [67]. Their reduction in plasma was accompanied
by increased tocopherol content of LDL particles because statin treatment promotes the
LDL capacity to transport lipid-soluble antioxidant vitamins [70] giving greater resistance
to these particles to oxidative stress and reducing their atherogenic potential. In addition to
having antioxidant properties, alpha tocopherols modulate, in a concentration-dependent
mode, the LDL receptor binding activity, which is well known to have a role in plasma
cholesterol homeostasis, as already demonstrated before by Pal et al. [71].

Instead, among the metabolites that were significantly different between good and
poor simvastatin responders at baseline and could be predictive of LDL-C response, the
authors reported lower predose concentrations of purine metabolite xanthine, succinic
acid, stearic acid, and 2-hydroxypentanoic acid, together with higher levels of hexaric
acid. All these metabolites significantly correlated with an increased responsiveness to
simvastatin and, consequently, a greater LDL-C response. The purine metabolite xanthine
is implicated in hydrogen peroxide production, and its lower levels in good responders
are associated with a more expressed NOS signaling that catalyzes the production of NO.
Indeed, xanthine oxidase has an important role as a therapeutic target for cardiovascular
diseases, and xanthine oxidase inhibitors are used for the prevention of major adverse
cardiovascular events [72,73]. 2-Hydroxypentanoic acid shows a reduced production in
good simvastatin responders; therefore, it is very likely that simvastatin, or a metabolite
of simvastatin, inhibits an enzyme that produces 2-hydroxypentanoic acid and reduces
simvastatin degradation, resulting in differential pharmacokinetics. Moreover, altered
levels of shikimic acid, which is an enterobacteria-derived precursor of aromatic- and
indole-containing amino acids, were also observed following treatment with statins in the
good responders, confirming an important influence of the gut microbiome in modulating
the response to statins [64,67].
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All these data show that simvastatin produces a more systemic effect not only focused
on cholesterol metabolism and that it contributes to reducing the risk of CVDs, suggesting
a critical interaction between metabolome, microbiome, and genome in the interindividual
differences in response to statin therapy. The characterization of a pre-treatment metabolic
signature as a panel of predictive markers can improve the classification of individuals
based on the response to a particular drug, thus excluding individuals who are least likely
to derive a clinical benefit. In this way, future clinical trials and pharmacological treatments
will be more feasible and relevant, focusing on participant characteristics to achieve a
personalizing medicine to treat individuals effectively and safely.

3.1.2. Alterations in Gut Microbiota by Statin Therapy

The application of MS-based lipidomics provides a valid integrative approach to
studying pharmacometabolomic changes because it gives information about whole lipid
metabolism pathways that can be closely correlated to the other metabolic networks in the
understanding of all mechanisms mediating statin effects [67,74]. In a recent study, the po-
tential molecular mechanisms underlying the association between metabolic improvement
and microbiota composition following simvastatin treatment were investigated to explain
the gut microbiome involvement in the statin response variability [75]. A metabolomic pro-
filing using an ultra-high-performance liquid chromatography (UHPLC) system coupled
with a hybrid triple quadrupole TOF (Q-TOF) mass spectrometer was performed to study
the interactions of endogenous serum metabolites with the gut microbiota following sim-
vastatin treatment in high-lipid diet-induced hyperlipidemic rats. Differential endogenous
metabolites were identified that affected the metabolism of amino acids (phenylalanine
and tyrosine), unsaturated fatty acids (linoleic acid and 9-hydroxyoctadecadienoic acid),
and the functions of gut microbial metabolism (m-coumaric acid and 3-(2-hydroxyphenyl)
propionic acid) [75]. These data suggested that simvastatin therapy strongly modulates
the serum metabolic profile in hyperlipidemic rats, and, since these metabolic pathways
are involved in gut flora interactions, they could be potential therapeutic targets for the
improvement of simvastatin hypolipidemic efficacy. Indeed, hyperlipidemia is a metabolic
syndrome that is commonly linked to cardiovascular diseases. Phenylalanine is a nutrient
precursor for gut microbiota-generated metabolites, which are known to be associated with
cardiovascular diseases and adverse cardiovascular events, while tyrosine promotes lipid
metabolism, therefore representing a potential biomarker for hyperlipidemia [75]. Both
phenylalanine and tyrosine showed increased levels following statin treatment. In the
same way, levels of both linoleic acid and 9-hydroxyoctadecadienoic acid were significantly
increased after simvastatin therapy, which confirms their beneficial effects against cardio-
vascular risk, including hyperlipidemia and hypertension [75]. The concentration of the
metabolites of the gut microflora, m-coumaric acid and a derivative of phenylpropionic acid,
were also higher in hyperlipidemic rats after statin treatment, showing their antilipogenic
and cholesterol-lowering properties [75].

Another recent study focused attention on the relationship between statin treatment
and gut microbiota variation evaluating, for the first time, the correlations between statin-
associated gut microbiota, serum metabolomic alterations, and clinical outcomes in acute
coronary syndrome (ACS) patients who had or not received chronic statin treatment [76].
No significant differences were observed in the blood lipid profiles (total cholesterol,
triacylglycerol, high-density lipoprotein cholesterol, and LDL cholesterol) between the
ACS-statins patients and the ACS group. Moreover, since the gut microbiota is known to
affect the host metabolism by producing a wide range of small compounds, the authors
performed an untargeted metabolomic analysis using a UHPLC-Q-TOF system to investi-
gate the serum metabolome [76]. Significant changes in the serum metabolomic features
associated with statins therapy were reported, and the correlation analysis of these differ-
entially abundant metabolites with the clinical phenotypes revealed that statin-positive
metabolites (e.g., fatty acyls, steroids, and steroid derivatives) tended to negatively corre-
late with disease severity and adverse outcome events, while statin-negative metabolites
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(e.g., benzene and substituted derivatives, prenol lipids, and acylcarnitines) displayed
opposite trends. Therefore, the authors observed in this study that ACS patients who
had received long-term and standard statin therapies tended to have a better prognosis
because statin therapy was associated with the restoration of gut microbiota homeostasis
and improved outcomes in patients [76]. Certainly, a targeted metabolomic analysis will be
needed to accurately validate the metabolic changes identified, and a larger sample size
will be required to confirm the obtained data.

3.1.3. Adverse Effects of Statins

The understanding of the adverse effects associated with statin treatment is another
important aspect that has attracted the attention of many experts in the field.

Statins are highly effective and safe for most people, but they can cause minor or
severe side effects that should never be neglected. Statin-related myotoxicity, for exam-
ple, can range from mild muscle pain up to rhabdomyolysis, which is a serious and fatal
disorder that sometimes occurs in patients following pharmacological treatment [77]. Statin-
associated rhabdomyolysis risk has been reported as dose-dependent and concentration-
dependent [78]. Patients on intensive statin therapy must be monitored closely for muscle-
related adverse effects because it is important to have an individualized statin therapy
approach. The detection of myotoxicity at an early phase is essential for risk evaluation in
clinical practice and several studies on rats and humans have been conducted for monitor-
ing statin-induced skeletal muscle toxicity. Therefore, biomarkers with high sensitivity and
specificity are required for early muscle injury detection.

Metabolomics provides an accurate signature of all metabolite changes in biological
fluids, cells, and tissues that can be a source for biomarker discovery. A metabolomic
analysis of skeletal muscle and plasma using LC-MS and GC-MS was performed on a rat
model treated with two myotoxicants, cerivastatin and tetramethyl-p-phenylenediamine, to
induce a skeletal injury and identify candidate biomarkers for skeletal muscle toxicity [79].
They observed in skeletal muscle a significant increase in 2-hydroxyglutarate in cerivastatin-
treated rats and hexanoylcarnitine in both types of treated rats. These increases were also
measured in plasma samples at different times after dosing, demonstrating the possibility
to use plasma 2-hydroxyglutarate and hexanoylcarnitine as valid and easily detectable
biomarkers for the early detection of skeletal muscle toxicity in rats, with better sensitivity
than the conventional markers creatine kinase and aspartate aminotransferase whose utility
in clinics is limited due to their low diagnostic power [80]. Moreover, this study confirmed
the importance and benefit of metabolomics for biomarker discovery in toxicological stud-
ies. Since plasma levels of acylcarnitines are linked to impaired fatty acid oxidation in
skeletal muscle [81,82], it is reasonable to think that increased levels of hexanoylcarni-
tine observed in this study were due to altered β-oxidation activity, also supported by
higher muscular levels of 3-hydroxybutyrate that is generally obtained from acetyl-CoA
conversion. In addition, the mitochondrial oxidation of tetramethyl-p-phenylenediamine is
crucial for its myotoxic action because muscle is rich in mitochondria and dependent on
aerobic metabolism; thus, an increase in 2-hydroxyglutarate likely caused by mitochondrial
dysfunction contributes to muscular dysfunction and causes redox stress [79]. More than
ten years ago, based on global and targeted metabolomic profiling, Kumar et al. performed
a study to discover safety urinary biomarkers for the adverse effects of atorvastatin in
hyperlipidemic rats [83]. Atorvastatin is widely used and well-tolerated, but it can in-
crease some toxicity factors such as hepatic enzymes. In this study, the authors reported
liver toxicity in hyperlipidemic rats after 7 days of atorvastatin treatment based on serum
biochemical parameters and histopathological tests of the liver tissue. Global metabolic
profiling was obtained using LC-TOF-MS with multivariate data analysis, and several
candidate biomarkers that included various steroids and amino acids were then validated
by targeted metabolic profiling using GC-MS and CE-MS [83]. The authors measured
low molecular weight metabolites in urine that are simple and non-invasively collected
samples, and suggested estrone, cortisone, proline, cystine, 3-ureidopropionic acid, and
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histidine as potential biomarkers of the atorvastatin-induced hepatotoxicity. To evaluate
and confirm their feasibility as potential safety biomarkers, these molecules were also
quantified by GC-MS for urinary steroids and by CE-MS for amino acids. In particular, the
urinary levels of proline, 3-ureidopropionic acid, and histidine increased significantly in a
dose-dependent manner following atorvastatin treatment. Although it was a pilot study,
these data contributed to additional insights into the role of metabolic alterations in liver
toxicity of atorvastatin [83].

Among the potential statin-related adverse events, there is also an increased incidence
of type II diabetes mellitus that can lead to premature discontinuation of treatment. There-
fore, it is important to evaluate a correlation between statin-induced metabolic changes and
statin-induced hyperglycemia and insulin resistance, to identify pre-drug treatment metabo-
lites predictive of increased diabetic risk [84]. In this regard, a pharmacometabolomic study
was performed by GC-TOF-MS on plasma pre- and post-treatment with simvastatin for
6 weeks from patients enrolled for the CAP study [84] to measure changes in intermediary
metabolism and the associated high plasma glucose levels as a potentially adverse response
to simvastatin. Some patients developed hyperglycemia and pre-diabetes, as well as a
dysfunction of beta cells and insulin resistance in more than 50% of patients following
statin therapy. An initial metabolic profile of simvastatin-induced insulin resistance was
identified, including ethanolamine, hydroxylamine, hydroxycarbamate, and isoleucine,
which can be predictive biomarkers of individuals at risk of developing a statin-induced
new onset pre-type II diabetes mellitus [84]. In particular, the metabolite ethanolamine
was identified as the most likely to predict simvastatin-induced diabetic risk, indicat-
ing that decarboxylation and oxidation were significantly associated with statin-induced
hyperglycemia and insulin resistance. Therefore, this study demonstrates that the oral
administration of simvastatin for 6 weeks increased the risk of developing elevated plasma
glucose mostly in susceptible individuals [84]. Pharmacometabolomics allows having a
baseline metabolic signature before starting the drug therapy that can be then used to find
predictive biomarkers able to stratify patients and to identify subjects who are at higher risk
of adverse side effects, enabling personalized selection of the most appropriate medication
for each patient and personalized monitoring of their prognosis.

Another study highlights the importance of having patient-specific metabolomic and
lipidomic profiles that can be used as valid predictive markers for the understanding of
the adverse effects associated with statin treatment [85]. Lee et al. performed an analy-
sis combining metabolomics and lipidomics in hyperlipidemic patients after rosuvastatin
administration for 3–8 weeks [85]. Plasma and urine metabolic profiles between healthy sub-
jects and patients with hyperlipidemia were compared to evaluate the metabolic changes
following drug administration. A non-targeted global metabolomic and lipidomic anal-
ysis was performed in plasma and urine samples and led to the identification of 73 and
87 metabolites in healthy subjects and hyperlipidemia subjects, respectively. Among the
identified metabolites, several molecules were found to be significantly altered between
controls and patients, and they were absolutely quantified through a targeted analysis.
The authors also successfully quantified 188 metabolites using a targeted approach by
MRM with a UHPLC-triple quadrupole mass spectrometer, including amino acids, bio-
genic amines, glycerophospholipids, and sphingolipids [85]. In particular, they observed
significantly decreased levels of L-carnitine, diacylglycerol, and acylcarnitines after rosu-
vastatin administration both in controls and patients, suggesting the lowering effect of
rosuvastatin on the level of carnitines with a consequent reduction in the accumulation of
acylcarnitine into the mitochondria that is important for the synthesis of fatty acyl-CoA
involved in β-oxidation. Increased levels of fatty acids and lysophosphatidylcholines were
only ever detected in patients with rosuvastatin, where instead a decrease in the levels of
phosphatidylcholines was measured. In addition, the production of polyunsaturated fatty
acids such as arachidonic acid and linoleic acid significantly increased only in hyperlipi-
demic patients, suggesting a decrease in β-oxidation and the consequent lower synthesis of
acetyl-CoA, which could generate a mitochondrial homeostasis failure [85]. The upregula-
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tion of myristate and palmitate and the alteration of amino acids in hyperlipidemic patients
after rosuvastatin treatment may also lead to a statin-induced mitochondrial dysfunction,
and this could be a possible reason for the specific mild myopathy in patients.

Due to the large use of statins, their potential impact on metabolome has also been
considered in big metabolomic studies, such as a large collaborative study performed by
Sliz et al. [86]. They investigated the associations between circulating metabolites and
multiple lipid measures with white matter hyperintensities volume, which is an index of
small vessel disease and a risk factor for all-cause mortality. Indeed, the authors stratified
the population on the basis of statin treatment, considering that statin-treated individuals
had the highest volume and lowest cholesterol levels.

3.1.4. Beneficial Effects of Statins

Although the possible side effects of therapy with statins are unpleasant, it is important
not to forget the considerable benefits of taking them for the treatment of several pathologies.
Metabonomics is used not only for clinical diagnosis, but also for evaluating the clinical
course of a disease, prognosis, and treatment effect of drugs, such as statins [87].

Many years ago, Ooga et al. performed [88] a metabolic analysis in Watanabe heritable
hyperlipidemic (WHHL) rabbits as a model of hypercholesterolemia to obtain a determi-
nation of all metabolite concentrations and a characterization of the metabolic imbalance
of their pathological condition. Numerous metabolites were measured in plasma and
several tissues from WHHL and healthy control rabbits using CE-TOF-MS and LC-TOF-MS
systems. Several significant metabolic differences between the healthy and the pathological
conditions were observed, and the metabolomic features observed in the pathological
rabbit model including the modulation of glutathione and phosphatidylcholine metabolism
showing advanced oxidative stress in several tissues, especially in the liver [88]. In addition,
the extensive reduction in the levels of purine metabolites associated with an accumulation
of uric acid suggested the enzymatic activation of xanthine oxidase. The authors also
evaluated changes in the metabolomic profile induced by short-term simvastatin adminis-
tration and they demonstrated significant pathophysiological alterations in a portion of
tissue metabolome suggestive of restoration to the healthy condition [88]. These metabolic
changes were most likely due to the pleiotropic effects of statin treatment, including antiox-
idant action. Although these results were only an initial overview of the metabolic anatomy
and further studies are required, this study showed the applicability of metabolomics for
non-targeted screening to explain several aspects of hypercholesterolemia.

Shifting the attention to human subjects with hypercholesterolemia, comprehensive
cross-sectional profiling of lipids and metabolites was performed by Christensen et al. in
children with and without familial hypercholesterolemia (FH) aiming to characterize the
alterations associated with elevated LDL-C in FH patients [89]. Elevated plasma cholesterol
is the most important risk factor for atherosclerosis and cholesterol-lowering treatment
with statins is required to stop or slow down atherosclerotic development in FH children.
Plasma metabolites were measured by high-throughput NMR spectroscopy to compare
the differences between statin-treated and non-statin-treated FH children, and healthy
children [89]. It is important to investigate hypercholesterolemia-associated metabolic
aberrations in HF children to better understand the disease, and thereby improve the
treatment of hypercholesterolemia in children and, more in general terms, the treatment
of atherosclerotic processes. The authors observed increased levels of atherogenic ApoB-
containing lipoproteins and lipid fractions in both statin-treated and non-statin-treated
FH children compared to healthy children. In addition, FH children showed alterations
in HDL subfractions, and in particular, their small HDL particles were characterized by
a higher content of cholesteryl esters, and lower levels of free cholesterol and phospho-
lipids [89]. Therefore, these metabolic changes caused by hypercholesterolemia suggested
an impaired reverse cholesterol transport system. Increased levels of plasma fatty acids,
such as polyunsaturated fatty acids (PUFAs) and linoleic acid, were also reported in
non-statin-treated hypercholesterolemic children, whereas acetoacetate and acetate were
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lower compared with healthy children. No significant differences were then detected in
beta-hydroxybutyrate, glycoprotein, creatinine, albumin, or any glucose or amino acid
metabolites between the groups.

In summary, the authors demonstrated that many lipid-related and metabolic species
were positively or negatively associated with hypercholesterolemia in FH children and
healthy children, and statin-treated FH children showed a pattern of lipid-related and
metabolic signatures closer to healthy children, compared with non-statin-treated FH chil-
dren, confirming the beneficial effect of statins as a treatment for hypercholesterolemia [89].
Of course, this should be considered a pilot study, and the need to extend the number of par-
ticipants is evident to confirm the observed differences, but the present study showed how
NMR-based metabolomics and lipidomics have the potential to become future powerful
tools for risk stratification and treatment evaluation in children with hypercholesterolemia.

It is well known that statins cause not only lipid reduction but also several pleiotropic
effects, such as antioxidant properties, anti-inflammatory effects, and immunomodula-
tion [90]. In addition, statins show antimicrobial activity, as has been shown in several
studies [91–93]. In a recent study, for the first time, the antimicrobial effect of simvastatin
was evaluated on proteome and metabolome in Escherichia coli by LC-MS-based label-free
proteomic analysis and GC-MS-based metabolomics [94]. Differentially expressed proteins
and metabolites between control and simvastatin-treated groups were measured to find
altered molecules under the simvastatin stress condition. The authors demonstrated that
simvastatin treatment affects both metabolome and proteome structures. In particular,
the biosynthesis of amino acids was changed under statin stress, tricarboxylic acid cy-
cle and glyoxylate shunt were altered, and pyruvate metabolism was downregulated in
the simvastatin-treated group. Moreover, various metabolites in purine and pyrimidine
metabolism were altered by the effect of simvastatin. Therefore, simvastatin caused in-
creased reactive oxygen species (ROS) production and a significant change in the energy
metabolism of Escherichia coli to adapt to stress conditions. These integrated metabolomics
and proteomics data allowed a global evaluation of the simvastatin effects on the phenotype
of Escherichia coli suggesting some important antimicrobial targets and cellular pathways
involved in the response to stress conditions, thus providing more details in the compre-
hension of the mechanisms of action for simvastatin on various biological pathways [94].
This paper is an example of the use of metabolomics for drug repurposing, also known
as drug repositioning, which is an efficient strategy for identifying new pharmacological
activities or therapeutic purposes for already-approved or investigational drugs that are dif-
ferent from the original medical indications [95,96]. Metabolomics, together with advanced
bioinformatic tools and pathways analysis, has successfully contributed to improving drug
repurposing for identifying new uses for existing drugs through the generation of large-
scale metabolic databases mapping molecular alterations under a specific drug treatment
in disease conditions [16]. Indeed, the repositioning of statins has been also suggested
for age-related macular degeneration, which is characterized by altered lipid homeostasis,
even if a conclusive result is still lacking [97]. The beneficial systemic effects of the use
of statin therapy on many lipids and other circulating metabolic biomarkers of cardio-
vascular risk were also investigated by conducting a metabolomic profiling at two-time
points in four population-based cohorts using a high-throughput NMR platform [98]. In
this multicenter study, the concentration changes in the serum or plasma levels of several
lipids and metabolites during follow-up were compared between subjects who started
statin therapy and persistent non-users. In addition, to confirm that the observed lipopro-
tein, fatty acid, and metabolite alterations were due to the effects of statins, the authors
applied Mendelian randomization by using a genetic variant in the HMG-CoA reductase
(HMGCR) gene, known to affect hepatic HMGCR expression and circulating LDL-C, as a
proxy for the pharmacological action of statins [98]. Thanks to this HMGCR gene variant
mimicking the effect of statins, the authors were able to compare the genetic association
pattern to the metabolic changes observed. Starting statin therapy was associated with
several lipoprotein and fatty acid variations consistent with their cardioprotective effects,
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among which a pronounced decrease in remnant cholesterol in a similar extent as ApoB
(80% relative to the LDL-C-lowering effect) and a modest lowering of VLDL and total
triglycerides. Omega-6 fatty acids, such as linoleic acid, showed the most evident reduc-
tion associated with the use of statin. Instead, no significant changes were measured for
circulating amino acids, ketones, and glycolysis- and gluconeogenesis-related metabolites
both at the metabolic and genetic levels, suggesting minimal pleiotropic effects of statin
use on these non-lipid biomarkers [98]. This study highlighted a close match between the
metabolic changes associated with statin use and the genetic association pattern with the
variant in the HMGCR gene, demonstrating that the observed metabolic modulations were
a consequence of the mechanism-based effect of statins. These findings confirmed how
metabolomics in combination with genetic proxies for drug mechanisms can explain the
molecular effects of known targets, evaluate the pharmacological mechanisms, and suggest
an appropriate drug therapy or novel drug targets [98].

Another common application of metabonomics is the study of the development and
progression of diseases following a specific pharmacological treatment.

Luo et al. applied metabonomics to study the influence of atorvastatin on the metabolic
pattern of rats with pulmonary arterial hypertension (PAH) [99]. NMR was used to detect
and analyze the serum metabolites and, thus the relationship between metabolic changes
and pulmonary artery remodeling. This study aimed to better understand the changes
in pulmonary artery remodeling and pulmonary arterial pressure in rats with PAH at
different time points after atorvastatin treatment, and the authors found differential serum
metabolites able to distinguish the groups of patients [99]. Moreover, a significant increase
in carnitine was observed only in the group of patients treated with atorvastatin for one
week, indicating that the β-oxidation of fatty acid was significantly inhibited by the drug.
This was also confirmed by the inhibition of the Warburg effect [100] which was not ob-
served after the second week of treatment. A significant alteration of the levels of glycogen
synthase kinase-3β (GSK-3β), hexokinase 2 (HK-2), sterol regulatory element-binding
protein 1c (SREBP-1c), and carnitine palmitoyltransferase I (CPT-1) was also observed in
the lung tissues [99]. In particular, GSK-3β and SREBP-1c were decreased, whereas HK-2
and CPT-1 were increased in PAH patients. Therefore, the results indicated that atorvas-
tatin significantly improved pulmonary artery remodeling and reduced pulmonary artery
pressure. This study provides novel information on the potential mechanisms involved in
PAH development and progression, as well as evidence of the beneficial effects of statin
treatment in patients.

3.2. PCSK9 Inhibitors

PCSK9 inhibitors are pharmacological agents used to reduce blood LDL-C levels and
improve cardiovascular outcomes both in primary and secondary prevention [101]. They
are human monoclonal antibodies that bind PCSK9 protein with high affinity to lower
LDL-C concentrations by blocking the degradation of cholesterol receptors available on
the hepatocyte cell surface, which are responsible for removing LDL-C from blood [102].
PCSK9 inhibitors seem to show a more effective lipid-lowering profile than statins [103],
even if the efficacy and safety among PCSK9 inhibitors and statins are still a subject of
intensive study. Recently, a network meta-analysis performed by Zhao et al. reported that
pharmacological treatments with statins and PCSK9 inhibitors offered a nearly identical
decrease in cardiovascular events in patients with hypercholesterolemia, but PCSK9 in-
hibitors were the most effective agent in improving lipid levels and not associated with
any increased risk of statin-related side-effects [101]. Therefore, PCSK9 inhibitors can be
considered as an alternative lipid-lowering therapy for patients with hypercholesterolemia,
especially for those with statin intolerance or resistance.

A randomized, double-blind, placebo-controlled trial, known as FOURIER study,
involved about 27,000 patients with atherosclerotic cardiovascular disease and high LDL
cholesterol levels (a median of 92 mg per deciliter at baseline) who received statin therapy
and were randomly assigned to receive also evolocumab or placebo as subcutaneous
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injections [104]. Evolocumab is a PCSK9 inhibitor that, in combination with a statin,
reduced LDL-C levels by approximately 60% in comparison to a placebo, with a median of
30 mg per deciliter that was maintained over time. Moreover, evolocumab significantly
reduced related atherogenic lipid measures, such as the levels of non-HDL cholesterol by
52% in comparison with a placebo, and ApoB concentration by 49%. Moreover, this trial
had a relatively short duration of follow-up because it was stopped after only 2.2 years
of follow-up; thus, it would be advisable to evaluate both the longer-term benefits and
longer-term safety to extend and confirm the evidence that emerged in this study [104].

A Mendelian randomization study by Ference et al. also compared the effects of lower
LDL-C levels mediated by variants located in HMG-CoA reductase (HMGCR), the gene
encoding the target of statins, or in PCSK9 on the risk of cardiovascular events and the risk
of diabetes [105]. The results showed that variants in PCSK9 had a nearly identical effect
as statin therapy on the risk of cardiovascular diseases and diabetes per unit decrease in
plasma LDL-C level. Of note, the clinical benefit of PCSK9 and HMGCR variants increased
when presented together.

Based on evidence from the two major clinical trials on PCSK9 inhibitors, the FOURIER [104]
and the ODYSSEY [106] outcome trials that used evolocumab and alirocumab, respectively, as
fully humanized monoclonal antibodies against PCSK9, a recent paper by Gallego-Colon et al.
underlines that the 2019 European Society of Cardiology/European Atherosclerosis Society
guidelines for the management of dyslipidemias establish the use of PCSK9 inhibitors to
very high-risk atherosclerotic cardiovascular disease patients who are unresponsive to a
maximum tolerated dose of statins and ezetimibe [107]. Therefore, the discovery of PCSK9
inhibitors has defined a new era of lipid-lowering therapies for patients with atherosclerotic
cardiovascular disease which can change future clinical practice.

Sliz et al. evaluated the potential differences between metabolic effects of PCSK9
inhibitors and statins, performing the lipid and metabolite profiling of a large randomized
statin trial and comparing the obtained results with the effects of genetic inhibition of PCSK9
in large population studies, acting as a naturally occurring trial of PCSK9 inhibitors [108].
The authors quantified about 200 circulating lipids and metabolites by high-throughput
NMR, including lipoprotein subclasses, their lipid concentrations and composition, fatty
acids, and amino acids, in 5359 blood samples from the PROSPER (PROspective Study
of Pravastatin in the Elderly at Risk) trial at 6 months post-randomization [109], and in
more than 70,000 samples from eight population cohorts using PCSK9 rs11591147 as a
loss-of-function mutation that mimics the therapeutic effects of PCSK9 inhibitors (i.e., lower
LDL-C levels and reduced cardiovascular risk). PROSPER is a double-blind, randomized
placebo-controlled study investigating the benefit of pravastatin in elderly individuals
with a history of, or risk factors for, cardiovascular disease and stroke [109]. The effects
of genetic inhibition of PCSK9 and statin treatment on the measured metabolic markers
were comparable [108]. PCSK9 rs11591147 also displayed similar effects as statin therapy
for alterations in lipoprotein lipid composition and fatty acid distribution. However,
some differences were observed for VLDL lipids, and genetic inhibition of PCSK9 had
a weaker effect on lowering VLDL-C compared with statins for an equivalent lowering
of LDL-C [108]. This could potentially contribute to smaller reductions in cardiovascular
disease risk. Genetic inhibition of PCSK9 showed no significant effects on amino acids,
glycolysis-related metabolites, ketone bodies, and the inflammation marker glycoprotein
acetylation (GlycA), whereas statin treatment caused minor effects on these metabolites
and weakly lowered GlycA and isoleucine levels [108]. Therefore, this study highlights
the importance of large-scale metabolomic profiling in combination with genetics and
randomized trials to evaluate the differences in many circulating metabolic biomarkers
and to clarify the potential therapeutic differences in the molecular mechanisms to reduce
cardiovascular risk.

A recent study by Zhang et al. showed that the inhibition of PCSK9 with evolocumab
significantly reduced VLDL particle concentrations depending on the baseline lipoprotein(a)
(Lp(a)) level, as well as lowering LDL-C [110]. Indeed, the authors demonstrated an
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important effect of evolocumab on VLDL metabolism in subjects with elevated Lp(a),
which is known to have an increased cardiovascular risk. The extent of VLDL reduction
was dependent on the baseline Lp(a) level, thus subjects with higher baseline Lp(a) showed
a tendency to have a larger reduction in VLDL concentration. Detailed NMR metabolomics
was performed on plasma samples from subjects with elevated Lp(a), which were randomly
divided into two groups treated with placebo and evolocumab, at baseline and 16 weeks
after treatment [110]. Quantification of 225 metabolic measures was performed focusing
on multiple metabolic pathways including lipoprotein subclasses, fatty acids, amino acids,
and glycolysis intermediates. Evolocumab treatment caused a 17% reduction of circulating
Lp(a), together with a significant decrease in VLDL, intermediate-density lipoprotein
(IDL), and LDL particles, and their lipid contents. Moreover, the inhibition of PCSK9 was
associated with a 30% reduction of total fatty acids, in particular docosahexaenoic acid
levels. No differences were observed in concentrations of other circulating metabolites
such as amino acids, glycolysis, and ketone bodies [110]. Certainly, further studies are
required to verify if evolocumab has a similar effect on VLDL in individuals without
elevated Lp(a) concentration.

An untargeted metabolomics approach was also performed to obtain a global view of
metabolic and lipidomic pathways and characterize metabolites and lipids that were modi-
fied in plasma from patients with FH who received treatment with PCSK9 inhibitors [111].
Familial hypercholesterolemia causes extremely high circulating LDL-C levels, which are
due to mutations of different genes involved in LDL-C metabolism, such as PCSK9. After
12 weeks of treatment with evolocumab, the authors observed a significant reduction
of LDL-C levels compared to baseline, together with increments in creatine, indole, and
indoleacrylic acid concentrations. Instead, a significant decrease in choline and phos-
phatidylcholine levels, as well as a reduction in platelet-activating factor 16, were reported.
This study highlighted for the first time a reduction in inflammation and platelet activation
metabolites in FH patients after therapy with PCSK9 inhibitors [111]. Moreover, due to the
small sample size, further studies are required to clarify the underlying mechanisms and
the impact on cardiovascular events, confirming data in a larger number of participants
with targeted analysis.

In the same FH patients examined in this study [111], the authors have already shown
a decrease in small dense LDL, known to be more susceptible to oxidative modification
and widely recognized as predictors of atherosclerosis, coronary heart disease, and stroke,
suggesting an association between their reduction and changes in oxidation markers and
endothelial function in FH patients receiving PCSK-9 inhibitors [112]. Indeed, they reported
a significant decrease in the urinary excretion of 11-dehydro-thromboxane, a major index
of in vivo platelet activation, and 8-isoprostaglandin-2alpha, which is a biomarker of lipid
peroxidation, following a 12-week treatment with evolocumab. In this study, they also
noticed a significant reduction of Lp(a) levels after therapy, and Lp(a) is known to be
a highly atherogenic lipoprotein [112]. Therefore, besides the evolocumab-related lipid-
lowering effect in FH patients, the treatment improved endothelial function which is a
documented predictor of cardiovascular events.

3.3. Fibrates

Fibrates are activators of peroxisome proliferator-activated receptor alpha (PPARα),
used to prevent and treat hyperlipidemia often in combination with statins, thanks to their
ability to increase fatty acid β-oxidation, fatty acid transport, and HDL metabolism, leading
to a global reduction of triglyceride and cholesterol levels [50,113].

Patterson et al. identified pantothenic acid and acylcarnitines as specific potential
indicators of PPARα activation of fatty acid β-oxidation induced by fibrates using a
metabolomic approach [114]. They treated healthy volunteers with fenofibrate (200 mg/day)
for 14 days and analyzed urinary metabolites at time 0, after 2 days, and after 14 days,
by LC-MS, using an ultra-performance liquid chromatography (UPLC) system coupled
to a high-resolution mass spectrometer (Q-TOF). They evidenced a dramatic decrease in
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urinary pantothenic acid (>5 fold) and acylcarnitines (>20 folds), and to confirm that these
molecules could be biomarkers of PPARα activation, they treated wild-type and Ppara-null
mice with 0.1% fenofibrate for 7 days. Of note, only wild-type mice exhibited a reduction
of both urinary pantothenic acid (40 folds) and acylcarnitines (88 folds), suggesting that
the effect is strongly associated with the activation of PPARα and transcends species [114].
Considering that it has also been demonstrated that enzymes involved in the metabolism of
pantothenic acid (i.e., pantothenate kinase) and short-chain acetyl carnitine (i.e., carnitine
palmitoyltransferase) are upregulated by PPARα activation to increase beta oxidation in
mitochondria, their reduction in the urine can be justified and can be considered a more spe-
cific marker of fibrate activity with respect to cholesterol levels. Despite being performed
on 10 healthy volunteers, this study highlights the biological variability of metabolic re-
sponse in different subjects due to genetic or environmental (i.e., diet) differences because
abnormal behaviors were shown in two of them.

Further, a combined transcriptomic and metabolomic approach has been applied
to compare in a mouse model 2 weeks of fenofibrate treatment with respect to fish oil
treatment [115]. Fish oil is indeed rich in eicosapentaenoic acid and docosahexaenoic acid,
fatty acids that act through PPARα activation and suppress the activity of the prolipogenic
transcription factor SREBP-1. Fish oil specifically decreased the levels of various phospho-
lipid species, while fenofibrate specifically increased the levels of Krebs cycle intermediates
(i.e., fumaric acid, isocitric acid, malic acid, succinic acid and α-ketoglutaric acid) and most
amino acids. These data correlate well with the induction of genes involved in the Krebs
cycle and in the urea cycle or in the metabolism of amino groups. Comparing both plasma
metabolome and hepatic transcriptome, it emerged that despite being similarly potent
toward modulating plasma lipids, fish oil caused only modest changes in gene expres-
sion likely in comparison to fenofibrate, reflecting the activation of multiple mechanistic
pathways with fish oil, typical of nutritional interventions [115].

Despite the established protective effect of fibrates and their general safe use in hu-
mans, there is some evidence in rodents of peroxisome proliferation and hepatocarcinogen-
esis, whose mechanism is not completely understood. Ohta et al. applied an untargeted
metabolomic approach, using GC-MS and LC-MS, as a tool to evaluate the toxicology of
fenofibrate in rats treated with fenofibrate 300 mg/Kg/day or vehicle for a total of 14 days,
and they compared both plasma and urinary metabolites at two time points (2 days and
14 days) [113]. In addition, confirming the canonical effects of fibrates, such as the reduction
of β-oxidation with the reduction of urinary levels of carnitine and the increase in plasma
3-hydroxybutanoic acid, they identified novel metabolic changes. Indeed, they evidenced
the alteration of a panel of metabolites involved in liver dysfunction (i.e., bile acids increase)
and renal dysfunction (1-methylguanidine), suggesting them as potential biomarkers of
fibrate toxicity. Regarding the issue of carcinogenesis, the authors focus their attention
on the perturbation of glutathione biosynthesis and oxidative stress [113]. Of note, in
their conditions they demonstrated a reduction of tricarboxylic acid cycle intermediates,
opposite to the effects shown in mice by Lu et al. [115].

Combination Therapy of Statins and Fibrates

Fibrates are frequently used in combination with statins, working in synergy to reduce
plasma lipids, even if this type of treatment is associated with a higher incidence of fatal
side effects, such as acute tubular necrosis and rhabdomyolysis. Several hypotheses have
been formulated including pharmacokinetic interference, displacement of statins from their
binding sites, synergistic action on skeletal muscle, or inhibition of statin glucuronidation
by fibrates [116]. Strauss et al. used a metabolomic tool to disentangle this issue in healthy
rats treated for 4 weeks with monotherapy or a binary combination of fibrates (fenofibrate
or clofibrate) and statins (atorvastatin or pravastatin). They integrated targeted GC-MS
and LC-MS to analyze plasma polar and non-polar metabolites at different time points. No
drug accumulation was shown, suggesting the absence of pharmacokinetic interferences. In
general, combination therapy led to under-additive effects. Indeed, many metabolites were
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also modulated with monotherapy, but they identified additional metabolites modulated
by combined therapy, which are related to the control of vascular tone and antioxidant
status, such as higher levels of 5-oxoproline, glutamine, and glycine involved in glutathione
activity and synthesis, which anticipate an altered redox status that might affect muscle,
or lower levels of tryptophan, the precursor of serotonin, a known vasoconstrictor [116].
Of note, when analyzing the effects of monotherapies, the authors confirmed the effect of
fenofibrate on kynurenic acid, pantothenic acid and glycine observed by Ohta et al. at urine
levels [113].

While Strauss et al. designed their study in healthy rats to evidence mainly the
side effects of combined therapy [116], Xu et al. performed a GC-MS-based metabolomic
study of plasma in a diet-induced hyperlipidemia rat model treated with simvastatin
or fenofibrate in monotherapy [50]. They successfully identified many potential targets
changed by hyperlipidemia and normalized by both drugs, such as cholesterol, beta-
hydroxybutyric acid, linoleic acid, creatinine, and ornithine. Of note, the reduction of
plasma levels of tyrosine was recovered only by fenofibrate.

More recently, Han et al. evaluated in human subjects with combined hyperlipidemia
the effects of atorvastatin escalation with atorvastatin/fenofibrate combination [117]. Serum
metabolite profiling revealed distinct metabolite clustering with the combined therapy with
respect to statin escalation, including the reduction of acylglycerols and many ceramides,
and the increase in serum levels of sphingomyelins and L-carnitine. On the other hand,
only atorvastatin escalation decreased lysophosphatidylcholines [117].

3.4. Nutraceutical and Dietary Habits

In the past decades, an increasing number of studies have suggested that nutraceuticals
and dietary habits may be also effective for CVD prevention [118–120], with significant
effects on reducing CVD risk and population mortality [121].

In particular, natural micronutrients and non-nutrient components in these foods, such
as polyphenols, have been shown to modulate cholesterol metabolism [121]. Sommella et al.
focused their attention on Malus pumila Miller cv. Annurca, an apple native to southern Italy,
containing high levels of procyanidin B2, a dimeric procyanidin, with favorable biochemical
effects against metabolic disorders and atherosclerosis [121]. They demonstrated that
800 mg/day of Annurca apple polyphenolic extract (AAE) substantially reduced both LDL-
C (37.6%) and increased HDL-C (49.3%), similarly to statin treatment [122], and applied an
untargeted metabolomic approach to depicting the molecular mechanism activated by this
nutraceutical treatment [121]. They used deuterium labeling for 72 h coupled with GC-MS
and Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry to highlight
primary metabolic pathways influenced by AAE in in vitro cultured human hepatocytes,
HuH7 cells. Their results suggested that AAE acts differently from statins, promoting
mitochondrial activity, reprogramming fatty acid metabolism, and inhibiting lipogenesis
and cholesterogenesis. AAE diverts acetyl-CoA to the Krebs cycle to produce adenosine
triphosphate (ATP) and energy for the cell, instead of becoming HMG-CoA. Glutamine
levels are also reduced by AAE suggesting that glutamine can be indeed one of the sources
of increased mitochondrial activity. Furthermore, AAE stimulates glycolysis ultimately
increasing mitochondrial respiration. Thus, inhibition of lipogenesis and cholesterogenesis
could be ascribed to a modulation of the entire metabolic process connected with the use of
citrate. Of note, no deuterium incorporation could be measured in any of the fatty acids
over-represented in AAE treated cells, indicating that the apple polyphenols induce their
release from intracellular lipid stores, probably triglycerides (TGs) and plasma membrane
lipids, instead of increasing de novo synthesis [121].

A serum metabolomic study was performed by Xu et al. using an LC-MS-based ap-
proach to study the effects of 45 days of oat supplementation on serum lipids in adults with
mild hypercholesterolemia and to understand the underlining mechanisms [123]. They
showed the reduction of total cholesterol (TC) (−8.41%) and LDL-C (−12.9%) and identi-
fied 7 upregulated metabolites and 14 reduced metabolites, suggesting regulation of glyc-
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erophospholipid, alanine, aspartate, glutamate, sphingolipid, and retinol metabolism [123].
The negative association between CVD and whole-grain consumption has been widely
demonstrated and ascribed to the ability of the functional compound beta-glucan to prevent
the absorption of cholesterol in the intestine, but metabolomic studies revealed alteration
of fatty acid biosynthesis, amino acid biosynthesis, and metabolism [124–126].

In addition, the beneficial effects of probiotics to improve lipid profiles have
been demonstrated in animal models and humans. Ding et al. studied the effects of
Lactobacillus plantarum LP3, from traditional fermented yak milk, on the plasma lipid pro-
file, gut microbiota, and cecum metabolome, by LC-MS, in rats treated with a high-fat
diet [127]. Together with a significant reduction of TC, TG, and LDL-C, they evidenced
adjustments in the biosynthesis of fatty acids, steroids, and bile acids, and the metabolism
of linoleic acid, linolenic acid, and arachidonic acid were the main metabolic pathways in
obese rats. The ability of Lactobacillus plantarum LP3 to reduce the ratio of Firmicutes to
Bacteroidetes in obese rats could explain the reduction in metabolites associated with the
biosynthesis of fatty acids [127].

Dietary plant-derived polyphenols are another class of molecules with protective
effects against cardiovascular diseases [128]. Zhou et al. used a metabolomic approach
based on GC-MS analysis of extracts from liver tissues to evaluate the synergistic protec-
tive effects of quercetin and resveratrol in mice that were fed a high-fat diet [129]. The
integration of metabolomic and transcriptomic results clearly showed the enhancement of
glycolysis, fatty acid oxidation, and gluconeogenesis. The metabolites that were reduced
due to the high-fat diet resulted in being restored by quercetin or resveratrol treatment,
such as 4-aminobutyric acid, ornithine, histidine, and lysine [129].

4. Conclusions

In this review, we reported the most relevant pharmacometabolomic studies investigat-
ing the effects of lipid-lowering therapies with high-throughput approaches, highlighting
the main biomarkers or pathways alterations due to pharmacological treatment (Table 1).
Regrettably, the number of lipid-lowering drugs analyzed from a metabolomic point of view
is limited in respect to the complete panel of treatments that are now available, suggesting
that pharmacometabolomic studies are still in their infancy in this field.

However, it is increasingly evident that metabolomic approaches in pharmacology
could be useful not only in the understanding of drug safety, toxicity, and metabolism,
but also in the prediction of drug response and in the identification of biological mech-
anisms, even if some limitations should be acknowledged. Indeed, there is still a lack
of standardized protocols for both sample preparation (i.e., collection, storage, and pro-
cessing) and data acquisition, which are very important for a clinical application of these
approaches. Data have been obtained in different compartments, both in clinical settings
or animal models, at different times, thus making it difficult to compare them and have
a comprehensive view of the metabolomic effects. Another important issue that should
be taken into consideration is the influence of the environment (i.e., smoking, food, and
physical activity) on the metabolic phenotype, thus requiring a large number of samples
to obtain reproducible results, as well as very accurate experimental design. It would be
important to also perform longitudinal studies increasing the compliance of patients with
the introduction of remote sampling or less invasive collection procedures.
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Table 1. Summary of the main metabolomic studies on the effects of lipid-lowering therapies.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Statins

Atorvastatin Human
healthy subjects

Selection based on medical history
and routine clinical laboratory

tests (i.e., hematology, urinalysis,
biochemistry, serology, and

physical examination).

• History or indication of
renal, gastrointestinal, or
hepatic abnormality;

• Acute or chronic disease.

Plasma
Randomized

open-label
clinical trial

GC-MS Untargeted
Tryptophan, alanine, arachidonic

acid, 2-hydroxybutyric acid,
cholesterol, and isoleucine

[12]

Simvastatin Human
healthy subjects

• African American and
Caucasian individuals;

• Age ≥ 30 years;
• Baseline total serum

cholesterol level of
160–400 mg/dL;

• Selection based on
demographic characteristics,
medical history, risk factors
for coronary heart disease,
physical examination
findings, and
laboratory data;

• Six weeks on simvastatin
therapy (40 mg at bedtime)

• Selection of participants
from the entire population
enrolled: “good and poor
responders” from the top
and bottom 10% tails of the
LDL-C response distribution
(response to therapy defined
as the percentage change in
LDL cholesterol
from baseline).

• Inability to maintain ≥90%
compliance with the
study medication;

• Use of lipid-lowering
medication (or
over-the-counter products
containing sterol or stanol
esters or fish oil fatty acids);

• Change in dietary intake or
a weight change of ≥4.5 kg;

• Use of corticosteroids,
immunosuppressive drugs,
or drugs affecting the
CYP3A4 system;

• Known liver disease or
elevated transaminase levels
more than twice the upper
limit of normal;

• Elevated creatine
phosphokinase
levels > 10 times the upper
limits of normal;

• Uncontrolled
hypertriglyceridemia, blood
pressure, or
diabetes mellitus;

• Abnormal renal or
thyroid function;

• Alcohol or drug abuse;
• Major illness in the

preceding 3 months;
• Pregnancy;
• Known intolerance

to statins.

Plasma
Non-randomized

open-label
clinical trial

GC-MS Targeted

Arachidonic acid and linoleic acid
within primarily

phosphatidylcholine and
cholesteryl esters, plasmalogens

[63]
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Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Simvastatin Human
healthy subjects

• African American and
Caucasian individuals;

• Age ≥ 30 years;
• Baseline total serum

cholesterol level of
160–400 mg/dL;

• Selection based on
demographic characteristics,
medical history, risk factors
for coronary heart disease,
physical examination
findings, and
laboratory data;

• 6 weeks on simvastatin
therapy (40 mg at bedtime);

• Selection of participants
from the entire population
enrolled: (1) “good and poor
responders” from the top
and bottom 10% tails of the
LDL-C response distribution
(response to therapy defined
as the percentage change in
LDL cholesterol from
baseline), (2) “full range
responders” randomly
selected from the entire
range of LDL-C response,
excluding participants who
had been selected for the
extreme range group.

• Inability to maintain ≥90%
compliance with the
study medication;

• Use of lipid-lowering
medication (or
over-the-counter products
containing sterol or stanol
esters or fish oil fatty acids);

• Change in dietary intake or
a weight change of ≥4.5 kg;

• Use of corticosteroids,
immunosuppressive drugs,
or drugs affecting the
CYP3A4 system;

• Known liver disease or
elevated transaminase levels
more than twice the upper
limit of normal;

• Elevated creatine
phosphokinase
levels >10 times the upper
limits of normal;

• Uncontrolled
hypertriglyceridemia, blood
pressure, or
diabetes mellitus;

• Abnormal renal or
thyroid function;

• Alcohol or drug abuse;
• Major illness in the

preceding 3 months;
• Pregnancy;
• Known intolerance

to statins.

Plasma
Non-randomized

open-label
clinical trial

GC-MS Targeted
Lithocholic acid, taurolithocholic

acid, glycolithocholic acid,
and coprostanol

[64]
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Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Simvastatin Human
healthy subjects

• African American and
Caucasian individuals;

• Age ≥ 30 years;
• Baseline total serum

cholesterol level of
160–400 mg/dL;

• Selection based on
demographic characteristics,
medical history, risk factors
for coronary heart disease,
physical examination
findings, and
laboratory data;

• 6 weeks on simvastatin
therapy (40 mg at bedtime);

• Selection of participants
from the entire population
enrolled: (1) “good and poor
responders” from the top
and bottom 10% tails of the
LDL-C response distribution
(response to therapy defined
as the percentage change in
LDL cholesterol from
baseline), (2) “full range
responders” randomly
selected from the entire
range of LDL-C response,
excluding participants who
had been selected for the
extreme range group.

• Inability to maintain ≥90%
compliance with the study
medication;

• Use of lipid-lowering
medication (or
over-the-counter products
containing sterol or stanol
esters or fish oil fatty acids);

• Change in dietary intake or
a weight change of ≥4.5 kg;

• Use of corticosteroids,
immunosuppressive drugs,
or drugs affecting the
CYP3A4 system;

• Known liver disease or
elevated transaminase levels
more than twice the upper
limit of normal;

• Elevated creatine
phosphokinase levels >10
times the upper limits of
normal;

• Uncontrolled
hypertriglyceridemia, blood
pressure, or diabetes
mellitus;

• Abnormal renal or thyroid
function;

• Alcohol or drug abuse;
• Major illness in the

preceding 3 months;
• Pregnancy;
• Known intolerance

to statins;
• Minors.

Plasma
Non-randomized

open-label
clinical trial

GC-MS Untargeted

• Pre- vs. post-treatment: lauric
acid, alpha and
gamma tocopherols,
2-hydroxyvaleric acid,
threonine and oxalic acid;

•
Correlation with LDL-C response
to simvastatin: cystine,
glutamine, urea cycle
intermediates, ornithine,
citrulline and lysine;

• Good vs. poor responders:
xanthine, 2-hydroxyvaleric
acid, succinic acid, stearic
acid, and fructose.

[67]

Simvastatin Hyperlipidemic rats

• Sprague Dawley male rats
who were fed a high-lipid
diet for 4 weeks to induce
hyperlipidemia;

• Approximately 8 weeks old;
• Weighing 180–220 g.

Serum Animal study LC-MS Untargeted

Phenylalanine, tyrosine, linoleic
acid, 9-hydroxyoctadecadienoic

acid (9-HODE), m-coumaric acid,
and 3-(2-hydroxyphenyl)

propionic acid

[75]
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Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Long-term
and

standard
statins (not
mentioned

the type
of statin)

Human healthy
subjects and acute

coronary
syndrome patients

• Male or female patients who
exhibited ≥50% stenosis in
at least one main coronary
artery based on coronary
angiography images;

• The main admitting
diagnosis of patients was
unstable angina, NSTEMI
or STEMI;

• Healthy volunteers who
exhibited no CAD-related
clinical symptoms or signs
or exhibited negative results
upon coronary artery CT or
coronary angiography, and
who had not taken any
statins within 4 weeks
before recruitment.

• Antibiotic treatment for
more than three consecutive
days within 3 months before
enrollment;

• Gastrointestinal diseases or
received gastrointestinal
surgery within 1 year;

• Any malignant tumors,
autoimmune disorders,
infectious diseases or severe
renal dysfunction
(creatine >3.0 mg/dL)

Serum Interventional study
(case vs. control) LC-MS Untargeted

Fatty acyls, steroids, and steroid
derivatives, benzene and

substituted derivatives, prenol
lipids, and acyl carnitines

[76]

Atorvastatin Hyperlipidemic rats

• Sprague Dawley male rats
with hyperlipidemia
induced by intraperitoneal
injections of poloxamer-407
saline solution (1 g kg−1)
every 3 days;

• Six to eight weeks old;
• Weighing 280–325 g.

Urine Animal study
LC-MS,
GC-MS

and CE-MS

Untargeted
and targeted

Estrone, cortisone, proline, cystine,
3-ureidopropionic acid,

and histidine
[83]

Cerivastatin Rat

Fischer male rats at 8 weeks of age
who were fed a diet supplemented

with cerivastatin or commercial
diet only as a control.

Plasma and
skeletal

muscle tissue
Animal study LC-MS

and GC-MS Untargeted 2-Hydroxyglutarate
and hexanoylcarnitine [79]
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Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Simvastatin Human
healthy subjects

• African American and
Caucasian individuals;

• Age ≥ 30 years;
• Baseline total serum

cholesterol level of
160–400 mg/dL;

• Selection based on
demographic characteristics,
medical history, risk factors
for coronary heart disease,
physical examination
findings, and
laboratory data;

• Six weeks on simvastatin
therapy (40 mg at bedtime);

• Selection of participants
from the entire population
enrolled: 60 years of age.

Plasma
Non-randomized

open-label
clinical trial

GC-MS Untargeted Ethanolamine, hydroxylamine,
hydroxycarbamate, and isoleucine [84]

Rosuvastatin
Human healthy

subjects and hyper-
lipidemic patients

• Healthy Korean volunteers
in the age range of
20–50 years;

• Subjects abstained from
consuming caffeine, alcohol,
and tobacco during
hospitalization;

• Hyperlipidemic patients in
the age range of 20–55 years
whose LDL level was over
130 mg·dL−1.

• Any past medical or
medication history or any
abnormal findings based on
a physical examination,
clinical laboratory tests or
vital signs;

• High LDL levels;
• Taking any lipid-lowering

agent within the previous
6 weeks.

Plasma
and urine

Interventional study
(case vs. control) LC-MS Untargeted

and targeted

L-carnitine, diacylglycerol,
acylcarnitines, fatty acids,
lysophosphatidylcholines,

phosphatidylcholines, arachidonic
acid, linoleic acid, myristate

and palmitate

[85]

Simvastatin Hyperlipidemic
rabbits

Japanese White male rabbits and
Watanabe heritable hyperlipidemic

rabbits aged 11 months.

Plasma and
tissues

(liver, aorta,
cardiac
muscle,

and brain)

Animal study CE-MS
and LC-MS Untargeted

Glutathione and
phosphatidylcholine metabolism,
purine compounds, and uric acid

[88]
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Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Atorvastatin,
rosuvas-
tatin and

simvastatin

Children with and
without familial hy-
percholesterolemia

• Healthy control children
within a normal range of
plasma LDL-C (divided into
normal-high and
normal-low LDL-C, with
respect to the median LDL-C
2.13 mmol/L);

• Children with a definite
familial
hypercholesterolemia
diagnosis based on clinical
or genetic diagnosis;

• Some familial
hypercholesterolemia
children were on statin
treatment, while other were
non-statin users at the time
of blood sampling;

• Healthy control children
and FH children were
similar with respect to
gender, HDL-C,
triglycerides, glucose and C
reactive protein.

Plasma Cross-
sectional study NMR Untargeted

Cholesteryl esters, free cholesterol
and phospholipids in small HDL,

polyunsaturated fatty acids,
linoleic acid, acetoacetate

and acetate

[89]

Simvastatin Escherichia coli Escherichia coli ATCC 25922
cultured on tryptic soy agar. Cell lysate In vitro study GC-MS Untargeted

Biosynthesis of amino acids,
tricarboxylic acid cycle, glyoxylate

shunt, glycolysis, pyruvate
metabolism, purine and
pyrimidine metabolisms

[94]

Statin

Human subjects who
started statins and

persistent nonusers
during follow-up

Individuals with metabolomic
profile measured at both baseline
and a follow-up visit and free of

statin medication at baseline.

• Individuals on non-statin
lipid-lowering
monotherapy;

• Pregnant women.

Serum
and plasma Longitudinal study NMR Untargeted

Remnant cholesterol, omega-6
fatty acids, glycoprotein acetyl

and acetate
[98]

Atorvastatin
Rats with

pulmonary
arterial hypertension

• Sprague Dawley male rats;
• Weighing 200–230 g;
• Pulmonary arterial

hypertension animal model
was treated with
Monocrotaline (60 mg/kg)
through
intraperitoneal injection.

Serum Animal study NMR Untargeted
Carnitine, glucose, glycerol,
acetone, leucine, isoleucine,

pyruvate, acetate and choline
[99]
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Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Pravastatin
and genetic
inhibition
of PCSK9

Human
healthy subjects

• Elderly individuals at risk of
cardiovascular disease with
70–82 years old;

• All individuals had above
average plasma total
cholesterol concentration
(4.0 to 9.0 mmol/L)
at baseline;

• 50% of individuals had prior
vascular disease.

• Pregnant women;
• Individuals on

lipid-lowering treatment.
Serum

and plasma

Randomized clinical
trial (randomized
placebo-controlled

study vs. large
population studies)

NMR Untargeted
Lipoprotein subclasses, their lipid
concentrations and composition,

fatty acids, and amino acids
[108]

PCSK9 inhibitors

Evolocumab Patients with
elevated Lp(a)

A selection of patients from the
ANITSCHKOW trial:

• Male or female, ≥50 years of
age at the time of informed
consent;

• Fasting Lp(a) ≥ 125 nmol/L
(50 mg/dL);

• Fasting
LDL-C ≥ 2.6 mmol/L
(100 mg/dL);

• For patients receiving
lipid-lowering therapy,
lipid-lowering therapy,
including statin dose, must
be unchanged for ≥8 weeks
prior to screening TBRmax
above 1.6 (either right
carotid, left carotid or
thoracic aorta)
on FDG-PET/CT.

• Diagnosis of diabetes
mellitus or screening fasting
serum glucose ≥ 7 mmol/L
or glycated hemoglobin
(HbA1c) ≥ 6.5%;

• History of homozygous fa-
milial hypercholesterolemia;

• Cardiovascular event within
3 months prior to
randomization, or planned
cardiac surgery, PCI or
carotid stenting, or planned
major noncardiac surgery
during the course of the
study period;

• Currently undergoing
lipid apheresis;

• Autoimmune
disease/vasculitis, active
inflammatory diseases,
proven or suspected
bacterial infections;

• <1 month prior to screening
or ongoing serious infection
requiring intravenous
antibiotic therapy;

• <6 weeks prior to screening
or current treatment with
medications that may have a
significant effect on
plaque inflammation;

Plasma
Randomized

placebo-controlled
clinical trial

NMR Untargeted
VLDL, IDL and LDL particles and

their lipid contents, Lp(a), fatty
acids (e.g., docosahexaenoic acid)

[110]
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Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

• <6 weeks prior to screen-
ing or current treatment with
aspirin or nonsteroidal anti-
inflammatory drugs;

• Systemic disorders such as
hepatic, renal, hematologic,
and malignant diseases;

• History of malignancy
within the last 5 years;

• Prior treatment with
evolocumab or any other
therapy to inhibit PCSK9;

• Pregnant or breastfeeding
or planning to become
pregnant or breastfeed dur-
ing treatment with study
drug and for an additional
15 weeks after the last dose
of study drug.

Evolocumab
Patients with

familial
hypercholesterolemia

• Patients with a diagnosis of
familial hypercholesterolemia;

• Levels of LDL-C > the
95th percentile;

• Eligibility of patients to start
treatment with PCSK-9i
according to guidelines and
criteria identified by
Agenzia Italiana
del Farmaco;

• All patients enrolled were
on lipid-lowering therapy
prior to study entry.

• Age < 18 years;
• High level of transaminases

(>3x upper normal limit);
• Hypertriglyceridemia

(>150 mg/dL);
• End-stage renal failure

(filtration
rate <30 mL/min/m2);

• Current malignant disease
or a diagnosis of malignancy
in the 2 years prior to the
first visit;

• Previous exposure to
PCSK-9i;

• Hypercholesterolemia
secondary to other causes
(hypothyroidism, hormone
therapies,
corticosteroids, etc.).

Plasma Interventional study LC-MS Untargeted
Creatine, indole, indoleacrylic acid,
choline, phosphatidylcholine, and

platelet-activating factor 16
[111]
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Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Evolocumab
Patients with

familial
hypercholesterolemia

• Patients with a diagnosis of
familial hypercholesterolemia;

• Levels of LDL-C > the
95th percentile;

• Eligibility of patients to start
treatment with PCSK-9i
according to guidelines and
criteria identified by
Agenzia Italiana
del Farmaco;

• All patients enrolled were
on lipid-lowering therapy
prior to study entry.

• Age <18 years;
• High level of transaminases

(>3x upper normal limit);
• Hypertriglyceridemia

(>150 mg/dL);
• End-stage renal failure

(filtration
rate <30 mL/min/m2);

• Current malignant disease
or a diagnosis of malignancy
in the 2 years prior to the
first visit;

• Previous exposure
to PCSK-9i;

• Hypercholesterolemia
secondary to other causes
(hypothyroidism, hormone
therapies,
corticosteroids, etc.).

Serum
and urine Interventional study LC-MS Targeted

Small dense LDL, Lp(a),
11-dehydro-thromboxane,
8-isoprostaglandin-2alpha

[112]

Fibrates

Fenofibrate Human
healthy subjects

No medication 28 days prior
enrollment and during the study.

Urine
(24 h)

Interventional study
(fenofibrate 200 mg;

0, 7 and 14 days)
LC-MS Untargeted Pantothenic acid

and acetylcarnitine [114]

Fenofibrate Mice
• C57Bl/6 mice wild type

and Ppara-null;
• Standard diet NIH31.

Urine
Animal study (0.1%
fenofibrate in diet,

for 7 days)
LC-MS Targeted Pantothenic acid

and acetylcarnitine [114]

Fenofibrate
and fish oil Mice C57Bl/6 mice 12 weeks old. Plasma

Animal study (0.03%
fenofibrate or fish oil
in diet, for 2 weeks)

LC-MS and
GC-MS Untargeted

Krebs cycle intermediates (fumaric
acid, isocitric acid, malic acid,

succinic acid and α-ketoglutaric
acid); amino acids

[115]

Fenofibrate Rats Fisher 344 male rats 9 weeks old Urine

Animal study
(300 mg/kg/day

fenofibrate or
vehicle for 2 and

14 days)

LC-MS and
GC-MS Untargeted

Acetylcarnitine,
3-hydroxybutanoic acid, TCA

cycle intermediates (i.e., malate,
fumarate, alpha-ketoglutarate),

glutathione metabolism
(i.e., gamma glutamyltyrosine),

tryptophan
metabolism (kynurenine)

[113]



Int. J. Mol. Sci. 2023, 24, 3291 32 of 41

Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Fenofibrate,
clofibrate,
atorvas-

tatin and
pravastatin

Rats Wistar (Crl:WI(Han)) rats in
standard diet. Plasma

Animal study: two
fibrates (100 mg/kg
bw/d fenofibrate,
50 mg/kg bw/d

clofibrate) and two
statins (70 mg/kg
bw/d atorvastatin,
200 mg/kg bw/d

pravastatin) in
monotherapy as well
as each combination

of a fibrate and
a statin

LC-MS and
GC-MS Untargeted 5-Oxoproline, glutamine, glycine

and tryptophan [116]

Fenofibrate
and

atorvastatin

Hyperlipidemic
patients

• Men and women with
combined hyperlipidemia;

• >20 years;
• Triglyceride levels ranging

from 150 to 499 mg/dL;
• HDL-C < 50 mg/dL;
• LDL-C levels requiring

lipid-lowering therapy;
• LDL-C levels < 100 mg/dL

in patients with coronary
heart disease or its
equivalent, including
diabetes mellitus, or LDL-C
levels < 130 mg/dL in all
other patients, after 4 weeks
of Atorvastatin 10 mg.

• History of cerebrovascular
or cardiovascular events in
the past 3 months;

• Uncontrolled hypertension
(systolic ≥180 mmHg or
diastolic ≥110 mmHg);

• Uncontrolled diabetes
mellitus (hemoglobin A1c
levels >9%);

• Serum creatinine or
transaminase >2× the upper
limit of normal;

• Gall bladder disease;
• Thyroid dysfunction;
• Heavy alcohol drinking;
• Infection;
• Acute or chronic

inflammatory disease;
• Cancer;
• Pregnant or

breast-feeding women;
• History of adverse events

associated with test drugs.

Serum

Randomized trial
(atorvastatin

escalation
20 mg vs. combined

therapy, 10 mg
fenofibrate and

135 mg fenofibrate,
for 12 weeks)

LC-MS Untargeted Acylglycerols, ceramides,
sphingomyelins and carnitine [117]
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Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Fenofibrate
and

simvastatin
Hyperlipidemic rats

• Sprague Dawley male rats
4 months old;

• Normal diet and high
lipid diet.

Plasma

Animal study:
simvastatin

(10 mg/kg daily)
and fenofibrate

(150 mg/kg daily)
for 2 weeks

GC-MS Untargeted Creatinine and tyrosine [50]

Nutraceutical treatments

Annurca
Apple

HuH7, hepatoma
cell line Cell lysate In vitro study GC-MS Untargeted Glutamine,

acyl-carnitines, glutathione [121]

Oat Patients with mild
cholesterol elevation

• Individuals with mild
hypercholesterolemia;

• Individuals 18 to 65 years
old with BMI < 28 kg m−2;

• Total serum cholesterol
values ≥ 5.18 mmol L−1 but
≤6.21 mmol L−1;

• TG ≤ 2.25 mmol L−1;
• No diagnoses of a serious

kidney, liver, or digestive
tract disease, or diabetes or
other metabolic diseases;

• No use within the previous
3 months of relevant
medicines characterized as
having
cholesterol-lowing effects.

• Pregnancy or lactation;
• Daily intake of oats or other

foods rich in beta-glucan for
the last 6 months;

• History of heavy smoking
or alcoholism;

• Current use of
weight-los diets;

• Poor compliance.

Serum

Randomized
placebo-controlled
clinical trial (40 g
oats or rice twice

daily (total of 80 g
day−1, 3 g

beta-glucan in the
oats group)

LC-MS Untargeted

Glycerophospholipid, alanine,
aspartate and glutamate,

sphingolipid, and
retinol metabolism

[123]

Lactobacillus
plan-

tarum LP3
Rats

• Sprague Dawley rats;
• Five weeks old;
• Weighing 120–130 g.

Cecum
samples

Animal study to
compare (1) normal

diet (2) high-
fat diet or (3) high-fat
diet + L. plantarum LP3

LC-MS Untargeted Linoleic acid, linolenic acid and
arachidonic acid [127]
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Table 1. Cont.

Treatment Sample Type Inclusion Criteria Exclusion Criteria Matrix Experimental
Design

Analytical
Technique

Type of
Analysis

Main Biomarkers or
Pathways Involved Ref.

Quercetin
and

resveratrol

Mice treated with
high-fat diet C57/6J mice 7 weeks old. Liver tissue

Animal study to
compare normal diet
(Normal) group fed

with normal diet;
high-fat diet, for
26 weeks (HFD)
group; quercetin

(Quercetin) group
fed with HFD and

supplemented with
0.4% quercetin

(4 g/kg diet); resver-
atrol(Resveratrol)

group fed with HFD
and supplemented

with0.4% resveratrol
(4 g/kg diet);

combined quercetin
and resveratrol

(Combined) group
fed with HFD and

supplemented with
0.2% quercetin and

0.2% resveratrol (2 g
quercetin + 2 g

resveratrol
per kg diet)

GC-MS Untargeted 4-aminobutiric acid, ornithine
and histidine [129]

BMI, body mass index; CAD, coronary artery disease; CE-MS, capillary electrophoresis-mass spectrometry; FDG, fluorodeoxyglucose; FH, familial hypercholesterolemia; GC-MS, gas
chromatography-mass spectrometry; HDL, high-density lipoprotein; IDL, intermediate-density lipoprotein; LC-MS, liquid chromatography-mass spectrometry; LDL-C, low-density
lipoprotein cholesterol; Lp(a), lipoprotein(a); NMR, nuclear magnetic resonance; NSTEMI, non ST-segment elevation myocardial infarction; PCSK9, proprotein convertase subtilisin/kexin
type 9; PET/CT, positron emission tomography/computed tomography; STEMI, ST elevation myocardial infarction; TG, triglycerides; VLDL, very-low-density lipoprotein.



Int. J. Mol. Sci. 2023, 24, 3291 35 of 41

In conclusion, this review highlights the importance of pharmacometabolomics studies
as a tool to uncover alterations of metabolic phenotype and we can envisage that the
integration of “omics” approaches, including genomics, proteomics, and metabolomics,
could also help in the definition of a precision medicine approach in the field of lipid-
lowering therapies. Moreover, metabolomics combined with multi-omics strategies and
advanced bioinformatics tools could definitely improve the drug repurposing which has
gained importance in recent years for identifying novel therapeutic indications for already-
registered drugs. Since lipid-lowering drugs have pleiotropic effects beyond their known
mechanism of action, the discovery of repurposed drugs has implications for precision
medicine to treat individual patients providing a decrease in the cost of a new drug
development and benefits for the treatment of cardiovascular diseases [130].
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Abbreviations

AAE Annurca apple polyphenolic extract
ACS acute coronary syndrome
ASCVD atherosclerotic cardiovascular disease
ATP adenosine triphosphate
CAP Cholesterol and Pharmacogenetic
CE capillary electrophoresis
CPT-1 carnitine palmitoyltransferase I
CVD cardiovascular disease
FH familial hypercholesterolemia
FT-ICR Fourier transform-ion cyclotron resonance
GC gas chromatography
GlycA glycoprotein acetylation
GSK-3β glycogen synthase kinase-3β
HDL high-density lipoprotein
HK-2 hexokinase 2
HMG-CoA 3-hydroxy-3-methyl-glutaryl-coenzyme A
IDL intermediate-density lipoprotein
LC liquid chromatography
LDL low-density lipoprotein
LDL-C low-density lipoprotein cholesterol
Lp(a) lipoprotein(a)
MRM multiple reaction monitoring
MS mass spectrometry
NIST National Institute of Standards and Technology
NMR nuclear magnetic resonance
NO nitric oxide
NOS nitric oxide synthase
PAH pulmonary arterial hypertension
PCSK9 proprotein convertase subtilisin/kexin type 9
PPARα peroxisome proliferator-activated receptor alpha
PUFAs polyunsaturated fatty acids
Q-TOF quadrupole-time of flight



Int. J. Mol. Sci. 2023, 24, 3291 36 of 41

ROS reactive oxygen species
SNP single nucleotide polymorphism
SREBP-1c sterol regulatory element-binding protein 1c
TC total cholesterol
TGs triglycerides
TOF time of flight
UHPLC ultra-high-performance liquid chromatography
UPLC ultra-performance liquid chromatography
VLDL very-low-density lipoprotein
WHHL Watanabe heritable hyperlipidemic
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