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Abstract: Acute pancreatitis is a common gastrointestinal disease with increasing incidence world-
wide. COVID-19 is a potentially life-threatening contagious disease spread throughout the world,
caused by severe acute respiratory syndrome coronavirus 2. More severe forms of both diseases
exhibit commonalities with dysregulated immune responses resulting in amplified inflammation and
susceptibility to infection. Human leucocyte antigen (HLA)-DR, expressed on antigen-presenting
cells, acts as an indicator of immune function. Research advances have highlighted the predictive
values of monocytic HLA-DR (mHLA-DR) expression for disease severity and infectious complica-
tions in both acute pancreatitis and COVID-19 patients. While the regulatory mechanism of altered
mHLA-DR expression remains unclear, HLA-DR−/low monocytic myeloid-derived suppressor cells
are potent drivers of immunosuppression and poor outcomes in these diseases. Future studies with
mHLA-DR-guided enrollment or targeted immunotherapy are warranted in more severe cases of
patients with acute pancreatitis and COVID-19.
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1. Introduction

New insights into the mechanisms of pathology can sometimes arise from similarities
between fundamentally different diseases. This effect can be most pronounced during
the emergence of a new infectious disease, such as the recent COVID-19 pandemic. One
such unlikely pairing is acute pancreatitis (AP) and severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection.

AP is a sterile inflammatory disorder of the pancreas with an increasing global in-
cidence [1] affecting around 2.8 million patients annually [2]. The etiology of AP is di-
verse and includes gallstones, alcohol excess, hypertriglyceridemia, endoscopic retrograde
cholangiopancreatography, certain medicines, and other rarer causes [3]. Most cases of
AP patients are mild and uneventful given that supportive care is in time and appropri-
ate. However, some are more severe, which involve local complications (acute pancreatic
necrosis or fluid collection; moderately severe acute pancreatitis, MSAP) and/or persistent
organ failure (SOFA score of respiratory, circulatory, and renal system equal or more than
2 lasting > 48 h; severe acute pancreatitis, SAP) [4]. Feed-forward auto-amplification of
the initial cellular injury in SAP [5,6] results in persistent systemic inflammatory response
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syndrome (SIRS), multiple organ dysfunction syndrome (MODS), infection, and death. Per-
sistent organ failure [7–10] and infected pancreatic necrosis [11,12], alone or in combination,
are key determinants of severity in AP and contribute to an immune anergy, secondary
infections, and a mortality of > 30%. Currently, there are no specific therapies effectively
targeting the initial cellular injury or determinants that resulting in MODS [13].

COVID-19, on the other hand, is a potentially lethal infectious disease caused by the
enveloped, positive-strand RNA, SARS-CoV-2, affecting over 600 million cases globally [14].
The disease spectrum of COVID-19 is also highly variable, ranging from asymptomatic (test-
positive) disease to critical illness (respiratory failure, septic shock, and/or MODS) [15,16].
SARS-CoV-2 mainly utilizes the angiotensin-converting enzyme 2 (ACE2) as the human host
cell entry receptor [17], which is ubiquitously expressed in the nasal epithelium, lung, heart,
intestine, and kidney and rarely expressed on immune cells [18]. ACE2 is also expressed
on pancreatic ductal cells, acinar cells, and islet cells, making the pancreas vulnerable to
viral infection [19]. Serum pancreatic enzymes are elevated in 25% of patients suffering
COVID-19, which is linked to worsened clinical outcomes including mechanical ventilation
and mortality even in those without AP [20–22]. Patients with COVID-19 who developed
AP during hospitalization also have a more severe clinical course [23], and indeed SARS-
CoV-2 may itself precipitate an episode of AP with marked metabolic derangement even
in the absence of local complications or organ failure [24]. More importantly, however,
patients with severe/critical COVID-19 appear to be increasingly susceptible to secondary
infections [25,26] as a result of immune anergy in a similar manner to SAP.

Dysregulated immune responses in SAP and severe/critical COVID-19 have similar
patterns of cytokine release and share many pathways of cellular immunity, especially
immunosuppression-related monocyte deactivation in the form of downregulated expres-
sion of monocytic human leukocyte antigen-DR (HLA-DR) [27,28]. This review summarizes
the role of monocytic HLA-DR (mHLA-DR) expression in the development of immunosup-
pression and organ failure in both SAP and severe/critical COVID-19.

2. Pathogenesis and Immunopathology in AP and COVID-19
2.1. Pathophysiological Mechanisms in AP and COVID-19

Diverse stimuli evoke inflammatory cascades with apparently analogous patterns and
clinical manifestations, implying similarities in the pathogenesis and symptomatology of
AP and COVID-19 [29]. Cytokines and damage-associated molecular patterns (DAMPs),
such as histones, high-mobility group box-1 protein, hyaluronan fragments, mitochon-
drial DNA, and heat-shock proteins are released from dying or injured cells in the injured
pancreas or SARS-CoV-2 infected tissues—particularly lungs. This is associated with and
results from a series of molecular events, including premature trypsinogen activation,
calcium overload, mitochondria failure, endoplasmic reticulum stress, impaired autophagy,
or by SARS-CoV-2 proliferation and release, respectively [6,30–33]. Interaction of DAMPs
with pattern-recognition receptors (PRRs), including Toll-like receptors and NLRP3 in-
flammasome of the adjacent parenchymal cells or immune cells, promotes the production
of various pro-inflammatory cytokines and chemokines [31,34–36]. Of note, cell death
pathways (e.g., autophagy, NETosis, pyroptosis, apoptosis, necroptosis, and ferroptosis) in
surrounding immune cells and stromal cells are activated, fueling the cytokine storm and
cultivating a positive cell death-inflammation feedback loop [30,37,38]. In COVID-19, virus
particles themselves act as pathogen-associated molecular patterns (PAMPs), which could
also be identified by PRRs and activate local inflammation and an innate immune response,
evoking the cytokine storm and assembling those induced by DAMPs [29,39]. Activated
circulating leukocytes, particularly monocytes, are then recruited to the inflamed pancreas
or infected lungs, provoking systemic inflammation and organ failure in AP and COVID-19
alike [29,40–43]. Moreover, monocytes/macrophages could be infected by SARS-CoV-2,
triggering massive inflammatory responses in COVID-19 [44].

The involvement of adaptive immunity in AP has been recognized, but its precise
role in the sterile inflammatory response seen in AP remains poorly characterized [45].
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In contrast, SARS-CoV-2 directly activates specific T cell subsets, initiating an adaptive
immune response [46]. Persistent viral stimulation, however, leads to T cell exhaustion,
with reduced effector functions and proliferative capacity [47]. This T cell exhaustion
phenomenon can also be observed in AP patients [48].

Levels of several circulating pro-inflammatory cytokines are dramatically elevated
and closely correlate with the development of SAP or severe/critical COVID-19 [49–52].
Patterns of cytokine alterations in AP and COVID-19 were shown to be remarkably similar
in a recent meta-analysis, with tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6,
IL-8, and IL-10 concentrations significantly higher in more severe forms than non-severe
forms of the two diseases [53]. The crosstalk between excessive inflammatory cytokines,
platelet activation, complement activation, and endothelial injury forms a deleterious
hyper-inflammatory and hyper-coagulopathy environment which is associated with life-
threatening complications (i.e., coagulopathy and vascular immune-thrombosis) of AP and
COVID-19 [51,54–58].

Systemic lipotoxicity deserves to be highlighted in this context. In severe/critical
COVID-19, lipotoxicity can trigger multiple organ failure and mortality resembling SAP [59].
SARS-CoV-2 can directly infect adipose tissue and promotes the release of several inflamma-
tory cytokines [60]. The pancreas itself is a target of SARS-CoV-2, resulting in the interstitial
leakage of pancreatic lipase which induces lipolysis of intrapancreatic adipose tissue and re-
lease of excess unsaturated fatty acids (UFAs). These toxic UFAs in turn further directly lead
to parenchymal cell injury and provoke the release of pro-inflammatory mediators, driv-
ing the cytokine storm and organ failure in SAP and severe/critical COVID-19 [59,61,62].
Lipase inhibitors have been shown to ameliorate lipolysis-induced cytokine storms and
mortality [61–64].

In summary, the pathophysiological mechanisms of AP and COVID-19 share many
similarities including cell death-inflammation cascade, cytokine storms, enhanced lipolysis,
and dysregulated immune responses. These immune responses will be discussed in the
next section.

2.2. Altered Immune Responses in AP and COVID-19

Immune anergy, evidenced by the failure of delayed hypersensitivity responses, corre-
lates with the development of sepsis and mortality in trauma and surgical patients [65–67],
as well as in SAP [68]. In the first stage of SAP, an excessive pro-inflammatory burst
is rapidly followed by an anti-inflammatory reaction that may result in a generalized
inflammatory response in sites remote from the initial pancreatic injury site and gives
rise to SIRS [69–71]. There is a compensatory response to counteract the overwhelming
pro-inflammatory state [72], which may ultimately result in immune suppression [73]. In
1996, Bone termed this immunological phenomenon as “compensatory anti-inflammatory
response syndrome” (CARS) [65,66,72].

Unlike SIRS, which is clearly defined by clinical parameters, CARS lacks clinical
manifestations and can only be defined molecularly by a combination of immunological
alterations. In the landmark paper of Volk’s group in 1997, it was described that many septic
patients who died from nosocomial infections had associated downregulation of mHLA-
DR [74]. Monocytes from these patients had reduced capacity to act in a pro-inflammatory
manner by producing TNF-α following stimulation of lipopolysaccharide (LPS) in vitro,
termed “immunoparalysis” [74,75]. Where CARS was once thought to follow sequentially
from SIRS, current thinking views CARS responses as concomitant to SIRS; balance in both
responses restores homeostasis, but an overshoot of the mechanisms of either SIRS or CARS
leads to further injury by excessive inflammation or secondary infection and, ultimately,
organ failure and death [67,76–83]. Development of CARS results in lymphocyte apoptosis,
T lymphocyte anergy, and deactivation of monocytes resulting in reduced mHLA-DR
expression. Furthermore, CARS is associated with elevated levels of circulating IL-10,
transforming growth factor-beta (TGF-β) and other anti-inflammatory cytokines, which
contribute to the risk of secondary infection.
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Immune response to SARS-CoV-2 is characterized by the failure of robust type I
and type III interferon response and high expression of pro-inflammatory cytokines and
chemokines [17]. Like AP, immune alterations, including severe lymphopenia and func-
tional monocyte deactivation, are indicative of immunosuppression in severe/critical
COVID-19 patients [84]. Indeed, monocytes exhibit heterogeneous, dynamic, and severity-
dependent alterations of transcription and immune phenotype upon acute pathological
insults which appear similar in both SAP and severe/critical COVID-19 patients (Figure 1).
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Figure 1. Pathogenesis of inflammation in AP and COVID-19. Acute pathological insults of SARS-
CoV-2 infection and pancreatic acinar cell injury elicit local inflammation mediated by cytokines,
unsaturated fatty acids (UFAs), damage-associated molecular patterns (DAMPs), and/or pathogen-
associated molecular patterns (PAMPs). The pro-inflammatory reaction induces an anti-inflammatory
response to restrict inflammation. When the pro-/anti-inflammation is unbalanced and dysregulated,
systemic inflammatory response syndrome (SIRS) or compensatory anti-inflammatory response
syndrome (CARS) occurs. During SIRS, monocytes are hyperactivated in response to high levels
of pro-inflammatory cytokines and chemokines. In contrast, during CARS, monocytes are deacti-
vated, exhibit reduced mHLA-DR expression, and are incapable of presenting antigens to activate
CD4+ T lymphocytes.

Inflammatory monocytes are enriched in the lungs of severe/critical COVID-19 pa-
tients and are also the most altered pancreatic immune cells during progression and
recovery of AP [85,86]. Decreased monocytic expression of HLA-DR has a predictive value
for the poor prognosis of patients with sepsis [87,88], and the level of mHLA-DR expression
may identify patients who are susceptible to the development of infectious complications
after trauma [89], major surgery [90], and burns [91]. Here, we review the utility of mHLA-
DR in assessing the state of the immune response in AP and COVID-19 and detail-relevant
implications for therapy.

3. Structure and Expression of mHLA-DR

HLA-DR is a type of major histocompatibility complex (MHC) II molecule [92]. It is a
heterodimeric glycoprotein composed of the 33–35 kD heavy/α chain and the 27–29 kD
light/β chain, assembling into a structure comprising a peptide binding site on top of two
immunoglobulin domains [92]. Encoded by adjacent genes, the β chain is polymorphic
around the amino acid residues of the peptide-binding site in contrast to the invariant α
chain [93].
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HLA-DR is mostly expressed on antigen-presenting cells (APCs) such as monocytes,
macrophages, dendritic cells, and B cells. The primary function of HLA-DR is to present
peptide antigens to the immune system for the purpose of eliciting or suppressing T-
(helper)-cell responses, eventually leading to the production of antibodies against the same
peptide antigen. HLA-D/DR-controlled antigens play an essential role in the cell-to-cell
interactions required to generate an immune response [94,95].

The biosynthesis, trafficking, and recycling of HLA-DR are regulated by multiple fac-
tors affecting cell surface expression. Consequently, the tightly regulated level of HLA-DR
expression on the surface of monocytes is thought to be an indicator for monocyte function
and the state of the immune response, with high levels of mHLA-DR associated with
enhanced antigen presenting capacity and immune activation, and low levels associated
with immune suppression.

3.1. Measurement of mHLA-DR

Several reviews [67,96,97] have emphasized the importance of flow cytometry as an
indicator of immune function in clinical practice. The unit of measurement of HLA-DR
via flow cytometer can be the percentage of HLA-DR positive monocytes (%), the mean
fluorescence intensity (MFI), the fluorescence unit relative to the monocyte population
(RFU), or antibodies per cell (AB/c). Due to the dynamic nature of HLA-DR expression
and recycling, it is critical that measurement of expression is standardized. We support the
process published by Docke’s and Monnaret’s groups [98–100], which have been widely
tested and published and appear to result in a strong correlation between transcription and
cell surface expression of mHLA-DR. It should be highlighted that a percentage of HLA-
DR+ monocytes less than 30% or values of AB/c below 5000 represents immunoparalysis,
and values greater than 80% or 15 000 AB/c indicate immunocompetence [99]. The critical
features for the sampling and measurement of mHLA-DR from human plasma samples are
summarized in Figure 2.
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3.2. Regulation of mHLA-DR Expression

The transcription of mHLA-DR is complex and heterogeneous, mediated by a series
of conserved cis-acting regulatory promoter elements and interacting transcription fac-
tors [102]. Among these, class II transactivator (CIITA) is the master regulator of HLA-DR
transcription [103]. Polymorphisms of CIITA promoter are associated with decreased
mHLA-DR expression in patients with septic shock [104]. Besides biosynthesis, the ex-
pression of mHLA-DR can be post-translationally regulated by exocytosis, stability, and
recycling. The class II-associated Ii peptide (CLIP), generated from cleavage of CD74 (MHC
class II invariant chain, Ii) via members of the cathepsin family, is critical for the transport
of HLA-DR to the cell surface [105]. In CD74 knockout mice, MHC II molecules are mainly
retained in endoplasmic reticulum with reduced levels on the cell surface [106]. Reducing
CLIP generation by blocking cysteine protease activity reduced surface MHC II expression,
including HLA-DR to 60% on human monocytes in steady state [107]. HLA-DM, the key
accessory molecules in the MHC class II loading compartment, catalyzes the dissociation of
CLIP in exchange for more stably binding peptides [108]. MHC II molecules on the cell sur-
face are normal in amounts but mainly loaded with CLIP in HLA-DM-deficient mice [109].
HLA-DR loaded with high-affinity peptides are postulated to be more stable than those
with CLIP, indicating the role of HLA-DM in regulating mHLA-DR expression [107]. Of
note, surface HLA-DR could be internalized, exchanged from lower affinity peptides into
other peptides, and rapidly recycled back to the cell surface [110]. In summary, expression
of mHLA-DR is finely regulated by multiple steps, including biosynthesis, peptide-loading
via cathepsin-induced CLIP and HLA-DM, vesicular transport to the cell surface, and
recycling (Figure 3).
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Figure 3. Regulation of mHLA-DR expression. Figure referenced from [105,111]. The transcription of
HLA-DR is tightly regulated by a set of cis-acting regulatory promoter elements and transcription
factors. Class II transactivator (CIITA) is the master transcriptional regulator. The α- and β-chains of
HLA-DR assemble in the endoplasmic reticulum (ER) and then bind with the invariant chain (Ii). The
Ii–HLA-DR complexes transport through Golgi complex to the MHC class II compartment (MIIC),
directly or via the internalization of the plasma membrane. Ii is degraded into class II-associated Ii
peptide (CLIP) via members of cathepsin family. In the aid of chaperone HLA-DM, CLIP is exchanged
for antigen peptide. Peptide-HLA-DR complexes are then transported to the plasma membrane
for further T cell activation. Interfering with the expression and activity of CIITA, Ii, cathepsins,
HLA-DM, as well as the associated vesicle traffic, all result in alteration of the mHLA-DR expression.
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Multiple pro- and anti-inflammatory cytokines are reported to dynamically control the
expression of mHLA-DR [112]. The main mechanisms of cytokines modulating HLA-DR
expression are summarized in Table 1. However, the detailed regulatory mechanisms of
various cytokines on mHLA-DR expression remain largely unknown.

Table 1. Cytokine Modulation of HLA-DR Expression.

Cytokines HLA-DR Expression Regulatory Mechanisms References

IL-10 ↓ Downregulation of CIITA; Altering vesicular
traffic of HLA-DR in exocytosis and recycling [112,113]

TGF-β ↓ Inhibition of CIITA and downregulation of
HLA-DR transcription [114,115]

IFN-β ↓ Downregulation of CIITA [116]

IFN-γ ↑ Promotion of HLA-DR and CD74 transcription [117,118]

GM-CSF ↑ Promoting exocytosis and reducing
internalization [119]

TNF-α, IL-1 ↑ Boosting biosynthesis and stability of HLA-DR
increasing half-life from about 10 h to over 100 h [120]

IL-4 ↑ Upregulation of CIITA [113]
Abbreviations: IL, interleukin; CIITA, class II transactivator; TGF-β, transforming growth factor-beta; IFN,
interferon; GM-CSF, granulocyte-macrophage colony-stimulating factor; TNF-α, tumor necrosis factor-alpha.

4. The Role of mHLA-DR in AP and COVID-19

Monocytic HLA-DR expression alters dynamically in response to the variation of
immune responses in the body during the disease course of AP and COVID-19. Evaluating
the dynamic expression of mHLA-DR provides indicative information for diagnosis and
prediction of disease severity, infectious complications, and prognosis (Figure 4).
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Boosting biosynthesis and stability 

of HLA-DR increasing half-life 

from about 10 h to over 100 h 

[120] 

IL-4 ↑ Upregulation of CIITA [113] 

Abbreviations: IL, interleukin; CIITA, class II transactivator; TGF-β, transforming growth factor-
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Figure 4. Immune response in AP and COVID-19. Figure referenced from [121,122]. Pro- and
anti-inflammatory response are both activated after acute insults of either AP or COVID-19. The
initial generalized inflammation is individually heterogeneous. Patients with less intense generalized
inflammatory response may survive and restore the immune balance. When inflammation markedly
outpaces anti-inflammation, monocytes are hyperactivated, leading to increased systemic release of
pro-inflammatory cytokines and resulting in systemic inflammatory response syndrome (SIRS). This
cytokine storm and hyperinflammation is associated with multiple organ failure (MOF) and mortality
in AP and COVID-19. Conversely, compensatory anti-inflammatory response syndrome (CARS)
happens when the anti-inflammatory response is overwhelming. mHLA-DR is an indicator of this,
and expression below 15,000 AB/c or 80% characterizes immunosuppression and below 5000 AB/c
or 30% characterizes immunoparalysis. In addition to pronouncedly reduced mHLA-DR expression,
monocytes are deactivated with TNF-α production upon lipopolysaccharide (LPS) stimulation in
CARS. Lymphocytes are depleted, accompanied by a massive release of anti-inflammatory cytokine.
This dysregulated and persistent immunosuppression contributes to MOF, death, and infections.
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The expression of mHLA-DR on admission was downregulated in AP patients com-
pared to healthy controls; it further decreased on days 1 and 2 with differential degrees
depending on severity [123–125]. While mHLA-DR expression recovered rapidly at day 3
and became normal after day 7 in less severe patients, it persisted at low levels for 1–2 weeks
in more severe cases [124,126]. Indeed, mHLA-DR expression displays an inverse relation-
ship with severity throughout at least the first three weeks of disease [127], with the lowest
expression of mHLA-DR in SAP consistently recorded between 48 and 72 h of disease
onset [127,128].

Overall, mHLA-DR expression either increases or decreases slightly in mild COVID-19
patients compared with healthy controls [129,130]. However, a marked and persistent
decrease in expression is described in severe/critical COVID-19 patients in most stud-
ies [129,131–140]. The immune response to severe COVID-19 can be categorized into
three groups according to the kinetics of mHLA-DR expression: (i) hyperactivated mono-
cytes/macrophage phenotype (persistently high mHLA-DR > 30,000 AB/c)—strongly
associated with mortality; (ii) prolonged immunodepression (persistently low mHLA-DR
< 15,000 AB/c after days 5–7)—strongly correlating with secondary infection; (iii) tran-
sient immunodepression (early mHLA-DR < 15,000 AB/c, rising above 15,000 AB/c after
5–7 days)—at risk of secondary infection [141]. Patients with acute respiratory distress syn-
drome (ARDS) secondary to COVID-19 exhibit either immune dysregulation evidenced by
very low mHLA-DR expression (i.e., lower than 5000 AB/c) and depletion of lymphocytes,
or macrophage activation syndrome characterized by elevated ferritin, where associated
HLA-DR levels might be reduced [142], or comparable to healthy controls [143]. Expres-
sion of mHLA-DR may be able to provide some information on disease course and has
been observed to normalize upon recovery from critical illness in patients with COVID-19
(from 1–3 days to over 10 days after admission), but continued to fall in a patient who
died [136]. Critically ill COVID-19 patients with long hospital stays (>25 days) presented
with a more profound reduction in mHLA-DR expression than patients with short hospital
stays (<25 days) [140]. Furthermore, convalescent COVID-19 patients exhibit mHLA-DR
levels which are higher than those of healthy controls at 6 months, and equal to healthy
controls at 9 and 12 months following discharge from the hospital [140,144].

The reduction of HLA-DR expression in COVID-19 patients has been reported in
both classical monocytes [144,145], as well as intermediate monocytes and/or non-classical
monocytes [132,146,147], although usually in one group or the other, depending on the
respective study. Classical monocytes are the first peripheral immune cell type to recover
HLA-DR positivity during the recovery of critically ill COVID-19 patients [148].

4.1. Severity Prediction Using mHLA-DR in AP and COVID-19

The predictive values of mHLA-DR for severity and mortality of AP and COVID-19
are summarized in Table 2.
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Table 2. Predictive Values of mHLA-DR for severity and mortality in AP and COVID-19.

Disease Prediction Sample Size
(Incidents/Total) Measuring Time Cut-Off Value AUC Sensitivity Specificity Others

AP [149]
MAP from MSAP/SAP 27/50

Admission
<2274 MFI 0.805 70.4% 82.6% Combined with classical monocyte

proportions (AUC, 0.862)

SAP from MSAP 9/23 <1094.5 MFI 0.690 85.7% 55.6% -

AP [150] SAP 19/58

Admission <50.8% 0.728 72% 72% -

Day 2 <43.35% 0.800 84% 80% -

Day 5 <60.8% 0.877 82% 78% -

AP [151] Organ failure 29/310 Admission
<78% 0.78 83% 72% -

<38 RFU 0.81 69% 84% -

AP [152] Mortality 7/25 Day 10 <52.3% 0.944 94.4% 85.7% -

COVID-19 [136] Critical COVID-19 9/32 Days 0–3 <81.55% 0.961 100.00% 80.00% -

COVID-19 [139] Severe COVID-19 48/97 Admission <143 MFI 0.9 89.6% 81.6% Independent predictor of COVID-19
severity (OR = 0.976, 95% CI: 0.955–0.997)

COVID-19 [134] Mortality 35/124
Days 0–3 <11,312 AB/c 0.64 74% 54% -

Days 7–10 <4672 AB/c 0.85 75% 86% -

COVID-19 [153] Mortality 1/12 Admission <270.56 cells/mL 0.875 100.0% 87.5% -

Abbreviations: AUC, area under the receiver operating characteristic curve; MAP, mild acute pancreatitis; (M)SAP, (moderately) severe acute pancreatitis; MFI, mean fluorescence
intensity; RFU, relative fluorescence unit; OR, odds ratio; CI, confidence interval.
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MHLA-DR expression is inversely correlated with surrogate biochemical markers of
severity (C-reactive protein [CRP], TNF-α, and IL-6) [127,128,154–157], clinical scoring sys-
tems (Ranson, Acute Physiology and Chronic Health Evaluation II [APACHE II], and MODS
criteria) [128,154,157,158], and actual severity of AP [125,127,128,150,151,156,158–160], and
AP patients with low mHLA-DR expression had approximately 2.7 times longer ICU stays
than those with normal expression [159]. HLA-DR expressed on classical monocytes was
able to distinguish cases of mild from MSAP/SAP and SAP from MSAP on admission [160].
Indeed, mHLA-DR expression on admission, days 2 and 5 all have been shown to have
predictive value for SAP [150] and/or the subsequent development of organ failure(s) [151].

The utility of mHLA-DR to predict mortality in AP is more controversial. While several
studies have reported differences in mHLA-DR expression between survivors and non-survivors
on days 7 [124,128] or 10 after admission [152], others found no difference [127,158,161]. These
results might be explained by the differences in the design of the respective clinical studies,
or by the heterogeneous and dynamic immune response in the study populations.

Despite one study finding that mHLA-DR expression was irrelevant to severity of
COVID-19 [146], most studies demonstrate an inverse relationship [135–137,139]. Low
or very low mHLA-DR expression has been described in association with ARDS [162],
severe respiratory failure [142], thrombocytopenia, increased antibiotic requirements, and
need for extracorporeal membrane oxygenation [134,135,142,153,162]. Similarly to AP,
lower levels of mHLA-DR expression correlated with length of hospital stay [140], SOFA
score [153], and serum clinical biochemical parameters including D-dimer, lactate dehy-
drogenase, CRP, procalcitonin, ferritin, IL-6, IL-10, granulocyte colony-stimulating factor,
chemokine C-X-C motif ligand 10, chemokine C-C motif ligand 2 (CCL2), and IFN-γ
levels [135–137,144,147,153,163]. Although overall mHLA-DR expression does not appear
to differ between survivors and non-survivors [141], the lowest levels of mHLA-DR expres-
sion can be observed in patients with COVID-19 who died in the ICU [84]. The proportion
of mHLA-DR+ monocytes was also lower in deceased COVID-19 patients compared with
time-matched controls [164]. Expression of mHLA-DR recovers with clinical improvement
but continues to fall in patients who do not survive [134,144].

4.2. Prediction of Infectious Complications using mHLA-DR

MHLA-DR regulates the interplay between innate and adaptive immunity and repre-
sents an overview of an organism’s capacity for antigen presentation, cytokine production,
and phagocytosis [165]. HLA-DR downregulation is not only limited to the blood com-
partment but can also be observed in lymphatic tissue [166]. With standardization of flow
cytometry-based measurement of mHLA-DR, a multicenter comparison of obtained results
becomes feasible [98]. Therefore, mHLA-DR is now the most frequently utilized biomarker
for assessing the development of immunosuppression in critically ill patients, including
sepsis, stroke, trauma, and burns [167]. Following the rationale of immunosuppression in
severe critical illnesses, mHLA-DR expression levels are predictive of septic complications
in AP and COVID-19 using values shown in Table 3.
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Table 3. Predictive values of mHLA-DR for septic complications in AP and COVID-19.

Disease Prediction Sample Size
(Incidents/Total) Measuring Time Cut-Off Value AUC Sensitivity Specificity Others

AP [154] Sepsis 6/64

Admission

<60%

- 100% 91.3% Superior to Ranson’s score and APACHE II score

Day 7 - 100% 93.2% -

Day 14 - 100% 98.2% -

AP [128] Septic complications 11/74

Day 7

<40%

- 73% 94% -

Day 10 - 82% 98% -

Day 14 - 100% 100% -

AP [152] Septic complications 6/25 Day 10 <58% 0.926 76.5% 100%
Comparable to Ranson and APACHE II scores
and better than CRP levels (AUC, 0.841, 0.869,

and 0.460, respectively)

AP [157] Secondary infection 11/40 Admission <35.8% 0.837 81.8% 82.8% -

COVID-19 [134] Secondary infection 38/124
Days 0–3 <10,523 AB/c 0.70 76% 60% -

Days 7–10 <6804 AB/c 0.62 77% 52% -

Abbreviations: AUC, area under the receiver operating characteristic curve; APACHE, Acute Physiology and Chronic Health Evaluation; CRP, C-reactive protein.
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Failure of the intestinal barrier function is often thought to be responsible for the dys-
regulated systemic inflammation in AP [126,168]. The proportion of HLA-DR+ monocytes
correlated negatively with measures of small intestinal permeability, including the urinary
lactulose/mannitol ratio and D(-)-lactate concentrations [126]. AP patients with infectious
complications, including sepsis or infected pancreatic necrosis, had lower HLA-DR expres-
sion which recovered at a slower rate than those without [127,128,150,152,154,157,169–171].
The relative risk of developing infected pancreatic necrosis in AP patients with low mHLA-
DR expression that persisted into the second week of illness was 11.3 (1.6–82.4) [170], and
persistently low HLA-DR levels have even been shown to be related to multidrug resistant
infection [171]. This ability to identify patients with infectious complications early was as
good or superior to routine biochemical markers and clinical scoring systems including
CRP and APACHE II [152]. Therefore, a persistently low expression of mHLA-DR might be
an effective and reliable indicator of potentially lethal infectious complications in patients
with AP that could perhaps be used to identify patients who might benefit from early
antimicrobial therapy.

As in AP, persistently low levels of mHLA-DR expression are associated with sec-
ondary infection in COVID-19 patients [172]. COVID-19 patients who developed secondary
bacterial infections exhibit lower levels of mHLA-DR expression than those without at
all time points (days 1, 4, and 7 [173], days 5–7, days 8–10 [141]). MHLA-DR expression
(AB/c) on days 0–3 and on days 7–10 have been shown to predict secondary infection in
COVID-19 patients in the ICU [134].

4.3. Regulation of mHLA-DR Expression in AP and COVID-19

Both pro- and anti-inflammatory cytokines, including TNF-α, IL-6, IL-8, IL-10, and
IL-1RA1, can downregulate—and correlate inversely with—mHLA-DR expression in AP
patients [156,160]. IL-6, IL-8, IL-10, and IL-1RA1 inhibit HLA-DR expression on classical
monocytes in vitro [160]. TNF-α enhances IL-10 production of monocytes in vitro and
downregulates levels of HLA-DR, even in the presence of anti-IL-10 monoclonal antibodies,
demonstrating inhibition of mHLA-DR expression via an alternate pathway [156].

The regulatory mechanisms of reduced mHLA-DR expression in severe/critical
COVID-19 patients are less well understood, but IL-6 and IL-10 are similarly thought
to be possible drivers to reduce mHLA-DR expression in the disease. MHLA-DR expres-
sion was strongly reduced by plasma from COVID-19 patients with immune dysregulation
but not healthy controls [130,142]; the effect could be partially restored by the addition of
the IL-6 blocker Tocilizumab [142]. The highly expressed cytokines in COVID-19 patients
included IL-10, IL-6, IL-7, TNF-α, IFN-α, CCL2, and CCL4, but only incubation monocytes
with IL-10 downregulated HLA-DR expression [130].

The altered cytokine profiles in sterile or infectious inflammatory diseases including
AP and COVID-19 are dynamic and complex, which may affect mHLA-DR expression
synergistically or antagonistically. Future studies are needed to investigate the precise
role of cytokines in regulating mHLA-DR so as to develop potential therapeutic targets in
immune regulation.

4.4. Monocytic Myeloid-Derived Suppressor Cells

A proportion of circulating HLA-DR−/low monocytes seen in both AP and COVID-19
patients have been identified as CD14+CD11b+HLA-DR−/lowCD15− monocytic myeloid-
derived suppressor cells (M-MDSCs); these cell types may cloud earlier studies on the
topic, as they could be misidentified as HLA-DR−/low classical monocytes [174–176]. M-
MDSCs are characterized by their potent immunosuppressive effects on other immune cells,
especially T cells, through various mechanisms including secretion of arginase-1 (Arg-1),
and inducible nitric oxide synthase, production of reactive oxygen and nitrogen species,
secretion of cytokines including TGF-β and IL-10, and induction of regulatory T cells [175].

The proportion of M-MDSCs in peripheral blood mononuclear cells correlates with
AP severity as reflected by plasma CRP levels, APACHE II score, and length of stay [174].
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Increased levels of Arg-1 and ROS can further be observed in AP patients, especially those
with a severe clinical course [174]. Similarly, expansion of M-MDSCs was reported together
with increased Arg-1 activity in plasma, and these are associated with severity and fatal
outcome in COVID-19 patients [175].

Therapeutic approaches aimed at reducing the number, function, and accumulation
of M-MDSCs might improve the suppressive state of the immune system and improve
complication-free survival in both SAP and severe/critical COVID-19 patients.

5. Conclusions and Future Prospects

MHLA-DR expression serves as a useful biomarker for immune (dys)function in
patients with AP and COVID-19. The measurement of patterns and dynamics of mHLA-
DR expression in both these diseases can help clinicians to determine the severity and
prognosis, and perhaps guide timing and selection of therapy. Monitoring mHLA-DR
expression appears to help identify and differentiate patients at higher risk of secondary
infections associated with poor outcomes. While immunosuppression in general is thought
to represent later stages of both diseases, in actual fact, time course and immune responses
can be highly heterogeneous and variable [127,177]. MHLA-DR modulation occurs over
several days [178], necessitating multiple, consecutive mHLA-DR measurements following
a standardized assessment procedure of flow cytometry in patients from point of admis-
sion. MHLA-DR measurement should be prioritized for patients with clinically severe
presentations with rapidly worsening organ dysfunctions or who are in need of invasive
treatments or are at high risk of infectious complications with poor prognosis [179–181].

Examples of potential mHLA-DR-directed interventions that could find utility in AP
and COVID-19 include several immunostimulatory agents, including IFN-γ [155,182–184],
recombinant IL-7 [185], and granulocyte-macrophage colony-stimulating factor [155]. Thy-
mosin alpha 1 (Tα1), a peptide hormone used to stimulate the T-cell mediated immune
response, has been tested in patients with predicted for necrotizing pancreatitis (presumably
immunocompromised), but results are so far disappointing [186]; thus far, there has been no
demonstrable reduction in the incidence of infected pancreatic necrosis, new-onset organ
failure, or any other complications. Defining immunosuppression, for example, by using
the measurement of mHLA-DR expression to guide participant selection and/or tailor the
treatment dose, may be required to demonstrate effective immune-stimulatory therapy.

The complex and highly variable immune alterations seen in severe acute inflam-
mation and infection warrant stratified immunotherapy. MHLA-DR expression provides
supportive information in determining the timing and strategies of individual immune
treatments, including anti-inflammatory, immune-stimulatory or immune-modulatory
agents at different disease stages, something that has been demonstrated in both acute
pancreatitis and COVID-19. The emergence of a new global pandemic disease has provided
valuable insights into the mechanisms of a long-established illness, with considerable po-
tential to draw insights into one disease from the other. There is a need for a simple, cheap,
and effective universal immune assessment tool, combining mHLA-DR with established
clinical markers of disease severity and possibly other circulating immune cell profiles to
aid assessment of the disease course of illnesses with a systemic inflammatory component
in order to predict outcomes and to guide treatment decisions.
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