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Abstract: Mutations in NPM1, also known as nucleophosmin-1, B23, NO38, or numatrin, are seen in
approximately one-third of patients with acute myeloid leukaemia (AML). A plethora of treatment
strategies have been studied to determine the best possible approach to curing NPM1-mutated
AML. Here, we introduce the structure and function of NPM1 and describe the application of
minimal residual disease (MRD) monitoring using molecular methods by means of quantitative
polymerase chain reaction (qPCR), droplet digital PCR (ddPCR), next-generation sequencing (NGS),
and cytometry by time of flight (CyTOF) to target NPM1-mutated AML. Current drugs, now regarded
as the standard of care for AML, as well as potential drugs still under development, will also be
explored. This review will focus on the role of targeting aberrant NPM1 pathways such as BCL-2
and SYK; as well as epigenetic regulators (RNA polymerase), DNA intercalators (topoisomerase II),
menin inhibitors, and hypomethylating agents. Aside from medication, the effects of stress on
AML presentation have been reported, and some possible mechanisms outlined. Moreover, targeted
strategies will be briefly discussed, not only for the prevention of abnormal trafficking and localisation
of cytoplasmic NPM1 but also for the elimination of mutant NPM1 proteins. Lastly, the advancement
of immunotherapy such as targeting CD33, CD123, and PD-1 will be mentioned.
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1. Introduction

Due to the large proportion of AML patients exhibiting NPM1-mutations, targeting
NPM1 is a constant and ongoing area of research, and the wide variety of drugs available
are dependent on the types of co-mutations present in NPM1-mutants. Despite various
clinical trials and research of new agents targeting NPM1-mutants, about 50% of patients
either relapse or unfortunately die due to the progression of the disease, and this is often the
case in patients who are unable to withstand the clinically aggressive nature of AML, nor
the harshness of intensive chemotherapy required for disease remission. Seeing as various
cellular pathways are affected by NPM1 mutations, various targeted approaches are being
investigated to tackle the challenges in treating relapsed and refractory AML patients. Some
examples of NPM1-targeting approaches include DNA modulation, ribosome biogenesis,
protein deregulation, mitochondrial-mediated cell death, and antibody-mediated treatments.

With the current understanding of NPM1-mutant detection, haematologists and med-
ical governing bodies are implementing the use of MRD, also known as a measurable
residual disease, for AML patients. The use of MRD can act as a prognostic tool for pa-
tients’ treatment, especially during the post-transplantation stage, allowing for a better
understanding of the disease progression and prediction of survival outcomes.

Within this review, an overview of the structural changes influencing the functionality
of cells is given, followed by NPM1-mutated AML risk stratification, monitoring of NPM1
mutants by MRD, and finally targeting NPM1-mutations for treatment of AML patients.

Int. J. Mol. Sci. 2023, 24, 3161. https://doi.org/10.3390/ijms24043161 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24043161
https://doi.org/10.3390/ijms24043161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2450-2008
https://orcid.org/0000-0002-9551-4893
https://doi.org/10.3390/ijms24043161
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24043161?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 3161 2 of 23

2. Functional Role of NPM1
2.1. Genetic Characteristics

NPM1 is localised to chromosome 5q35 and consists of 12 exons. Specifically, NPM1
contains the N-terminal core domain, acidic domain, and nuclear localisation signal domain
are found to be highly conserved among each protein of the NPM family, indicating that
all three proteins have a similar functional role. However, the less conserved C-terminus,
on the other hand, suggests an alternative role for NPM1. It is highly conserved between
metazoans and when mutated can result in leukaemic-initiating activity [1]. The NPM1-
mutated gene is a dominant negative, haploid insufficient mutation that is generally limited
to exon 12 [2,3], although rare occurrences have been reported in other regions such as exon
5, 9, and 11 [4,5]. NPM1-mutated AML is mostly categorized into type A, B, or D according
to a 4 base-pair insertion sequence at the 288th amino acid position (rs587776806) [6]. Type
A (sequence: TCTG) is the most frequent, comprising of approximately 72% of NPM1-
mutated AML cases. Types B (sequence: CATG) representing ~12% and D (sequence:
CCTG) with ~4% are less frequent but more so than all other types which represent less
than 1% of the NPM1 mutated population (Seen in Figure 1) [6,7]. The frameshift resulting
from NPM1 mutant insertions causes a change in the C-terminal domain (CTD) amino
acid sequence from DLWQWRKSL to DLC(L/M)AVEEVSLRK, consequently replacing
one or both tryptophan residues that are required for nucleolar localisation signaling with
a nuclear export signal (NES) motif, i.e., LXXX(V/L/F/C/M)XXVXL, where X stands for
any residue [2,3,6,7]. Since NPM1 proteins interact with a shuttling receptor XPO1, also
known as Exportin, the mutant protein is exported at rates exceeding that at which it is
imported, ultimately leading to the delocalisation of mutant NPM1 to the cytoplasm [3].
Wild type (WT) NPM1 is also shuttled out of the nucleus in the process, as NPM1-mutant
and NPM1-WT form heterodimers to be co-exported [8].

Modulation of the NPM1 structure is governed mainly by post-translational modi-
fications including phosphorylation, SUMOylation, and ubiquitination. NPM1 proteins
are comprised of three different regions: the N-terminal domain (NTD), the central region,
and the CTD, each with a distinct functional role (illustrated in Figure 2) [9]. The NTD is
highly conserved and acts as a core domain due to its structural integrity and NES region.
Post-translational phosphorylation of the NTD region of NPM1 results in instability and the
induction of apoptosis but also limits the ability of cells to prevent DNA damage [10]. The
oligomerisation of NPM1, on the other hand, causes cellular proliferation and localisation
out of the nucleus to the cytoplasm by two weak NES regions [10]. NES interacts with a
shuttling receptor XPO1, also known as Exportin 1 or CRM1 export protein (Chromoso-
mal Maintenance 1), which subsequently causes XPO1 association with NES-containing
proteins that result in cytoplasmic relocation of NPM1; this deviation gives rise to cyto-
plasmic NPM1 (cNPM1) [11,12]. In cases of NPM1 mutants, the additional NES at the
CTD alongside two weak NES at the NTD results in strong associations with XPO1 and
as a consequence, nuclear export to the cytoplasm dominates [3]. Studies have shown
that cNPM1 impedes protein-protein interaction and subsequent nuclear interactions for
example CCCTC-binding factor (CTCF) [13]. Through cNPM1 interactions, CTCF is re-
localised to the cytoplasm, and consequently, gene regulation, RNA splicing, and DNA
looping are reduced; abolishment of this interaction resolves CTCF DNA binding and
nuclear concentrations [13].

The central region of NPM1 contains highly acidic amino acids (aspartic and glutamic
acids) with their negative charge properties allowing mimicry of nucleic acids and thereby
influencing the nuclear localisation signal (NLS). NLS regions interact with importin alpha
and beta causing nuclear translocation of the NPM1 protein. The acidic central region
of NPM1 facilitates histone binding to both core and linker histones for the formation of
perinuclear heterochromatin [14]. Additionally, the central domain contains basic regions,
with both influencing the ribonuclease activity of NPM1 and ribosome biogenesis activ-
ity [15]. Ribosomal RNA (rRNA) processing via NPM1’s endoribonuclease activity converts
pre-rRNA to mature 28S rRNA.



Int. J. Mol. Sci. 2023, 24, 3161 3 of 23

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 2 of 24 
 

 

NPM1 mutants by MRD, and finally targeting NPM1-mutations for treatment of AML 
patients. 

2. Functional Role of NPM1 
2.1. Genetic Characteristics 

NPM1 is localised to chromosome 5q35 and consists of 12 exons. Specifically, NPM1 
contains the N-terminal core domain, acidic domain, and nuclear localisation signal do-
main are found to be highly conserved among each protein of the NPM family, indicating 
that all three proteins have a similar functional role. However, the less conserved C-ter-
minus, on the other hand, suggests an alternative role for NPM1. It is highly conserved 
between metazoans and when mutated can result in leukaemic-initiating activity [1]. The 
NPM1-mutated gene is a dominant negative, haploid insufficient mutation that is gener-
ally limited to exon 12 [2,3], although rare occurrences have been reported in other regions 
such as exon 5, 9, and 11 [4,5]. NPM1-mutated AML is mostly categorized into type A, B, 
or D according to a 4 base-pair insertion sequence at the 288th amino acid position 
(rs587776806) [6]. Type A (sequence: TCTG) is the most frequent, comprising of approxi-
mately 72% of NPM1-mutated AML cases. Types B (sequence: CATG) representing ~12% 
and D (sequence: CCTG) with ~4% are less frequent but more so than all other types which 
represent less than 1% of the NPM1 mutated population (Seen in Figure 1) [6,7]. The 
frameshift resulting from NPM1 mutant insertions causes a change in the C-terminal do-
main (CTD) amino acid sequence from DLWQWRKSL to DLC(L/M)AVEEVSLRK, conse-
quently replacing one or both tryptophan residues that are required for nucleolar locali-
sation signaling with a nuclear export signal (NES) motif, i.e., LXXX(V/L/F/C/M)XXVXL, 
where X stands for any residue [2,3,6,7]. Since NPM1 proteins interact with a shuttling 
receptor XPO1, also known as Exportin, the mutant protein is exported at rates exceeding 
that at which it is imported, ultimately leading to the delocalisation of mutant NPM1 to 
the cytoplasm [3]. Wild type (WT) NPM1 is also shuttled out of the nucleus in the process, 
as NPM1-mutant and NPM1-WT form heterodimers to be co-exported [8]. 
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Figure 1. Genetic and functional characteristics of wild-type NPM1 protein. NES: Nuclear export
signals, NLS: nuclear localisation signal, NoLS: Nucleolar localisation signal. Type A, B and D NPM1
mutations (denoted as NPM1-mut A, B, and D) with corresponding frequencies found in patients
with NPM1-mutated AML: CDS mutation (the change that has occurred in the nucleotide sequence)
leads to a frameshift, therefore, abolishing tryptophan (W) W288 and W298 at the c-terminal domain
(usually present in wild-type NPM1 protein). AA mutation: amino acid mutation of W288Cfs*12
(tryptophan 288 to cysteine frameshift at exon 12).

The CTD contains predominantly basic and positively charged amino acids influ-
encing its role in binding to nucleic acids. At the CTD, the nucleolar localisation signal
(NoLS) domain allows the localisation of NPM1 to the nucleolus with aromatic residues
(tryptophan 288 and 290) forming a three-helix structure and stabilises NoLS due to its
hydrophobic core. The lack of aromatic residues is common in NPM1 mutant proteins and
results in the unfolding of its helical structure which inhibits nuclear import and nucleolus
import of NPM1. Aberrant localisation of NPM1 is typical amongst AML patients.

2.2. Functions of NPM1
2.2.1. Ribosome Biogenesis

NPM1 is a multifunctional protein influencing processes involved in ribosome biogen-
esis, mRNA transcription, embryonic development, DNA repair, chromatin remodelling,
and apoptosis. The most well-studied function of NPM1 is its involvement in directing
ribosome biogenesis [16].

A mechanism known as liquid-liquid phase separation (LPS), has been proposed to
explain the effects of NPM1 localisation in the nucleolus on ribosome biogenesis. Modu-
lation of LPS occurs via homotypic and heterotypic interactions of the three key regions
(NTD, central region, and CTD) of the NPM1 protein [17]. Three types of interactions are
interplayed for the LPS mechanism to occur: (1) homotypic oligomerisation, (2) heterotypic
interaction with rRNA, and (3) heterotypic interaction of R-motif-rich proteins.
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Figure 2. NPM1 wild-type protein, and NPM1-mutant protein structural influences in nucleo-
cytoplasmic relocation. Acidic regions influence binding to histone proteins, NLS: nuclear localisation
signal binds to importin alpha and beta causing nuclear localisation, NoLS: Nucleolar localisation
signals transport NPM1 to the nucleolus, W288, W298: Tryptophan stabilises NoLS and form a C-term
helix structure, NES: Nuclear export signals interact with XPO1/CRM1 (chromosomal maintenance 1)
protein resulting in an increase in cytoplasmic NPM1.

The nucleolus subcomponent—the fibrillar centre (FC), is responsible for rRNA tran-
scription. In the initiation of rRNA gene transcription, two components of the FC are
formed: the dense fibrillar component (DFC) and the granular component (GC) [18]. The
GC is dominated by homotypic interactions, which refer to NPM1-NPM1 interactions
via electrostatic charges that result in the formation of a pentamer. Associations occur
primarily through the NTDs and the intrinsically disordered regions (IDR) of NPM1 [19].
Heterotypic interactions with rRNA predominate at the DFC. The physicochemical proper-
ties of the nucleoplasm are altered, affecting surface tension and translocation out of the
nucleolus [17,20]. Ribosomal proteins and pre-rRNA components (e.g., CDK1) interact with
nucleolar scaffolds to allow for NPM1 sequestration and the formation of pre-ribosomal
particles to be transported from the nucleolus to the nucleoplasm [21]. The most well-
studied NPM1 interactions are the heterogenic interactions amongst R-motif-containing
proteins. Direct interaction of ribosomal protein L5 (rpL5) with NPM1 allows shuttling
and colocalisation of 5S rRNA, premature 60S rRNA, 80S ribosomes, and polysomes. Co-
immunoprecipitation of NPM1 potential partner proteins such as RPL23, RPS7, RPL35, and
RPS20 indicate its role as a scaffold in ribosome biogenesis within the nucleolus. NPM1
concentrations are particularly high in proliferating cells and were essential for ribosome
maturation in the nucleolus [22].
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2.2.2. RNA Processing

DNA damage causes defects in mRNA processing, which leads to potential transla-
tion errors downstream; however, this is often remedied by translesion synthesis which
is employed as a DNA repair mechanism by Polymerase Eta (Poly eta), a low-fidelity
polymerase [23,24]. NPM1 is a key regulator of Poly eta by protecting it from degradation,
as evidenced by the increased rate of Poly eta degradation in cells with higher mutant
cytoplasmic NPM1 copies [24]. Therefore, translesion maintenance is important to consider
when determining the prognosis of patients with NPM1-mutated AML.

A recent study also noted the impact of long noncoding RNA (lncRNA) increasing
NPM1 mutant samples. Analysis using genome-wide RNA sequencing concluded that
the introduction of lncRNA led to an increase in cell differentiation proteins; THSB1,
MAFB, and ASB2. In addition, in vivo experimentation on mice confirmed decreased
survival and accelerated AML pathogenesis in the presence of lncRNA. Decreased levels of
lncRNA increases sensitivity to the chemotherapy drug, cytarabine, thus affecting treatment
outcome [25]. Overall, an increase in cytoplasmic NPM1 mutants causes an increase in
nuclear retention of lncRNA, ultimately contributing to the AML disease course [26].

2.2.3. Chromatin Remodelling

Centrosome duplication influences the activation of chromatin and thus microtubule
distribution. Correct chromatin remodelling allows a smooth transition of the cell cycle
from interphase to metaphase [27]. The formation of CRM1/Exportin 1 contributes to
the translocation of centrosomes and ribosomes with NES-bearing proteins. NPM1 con-
tains two weak NES regions and interacts with the Ran-Crm1 complex. The formation
of bipolar spindles requires regulation by the Ran-Crm1 network to ensure centrosome
duplication [28,29]. Therefore, centrosome localisation to NPM1 is promoted by Ran-Crm1
complexes; the mutation T95D at the NES region of NPM1 inhibits centrosome duplica-
tion [30]. Histone chaperone activity is similarly affected by NPM1 mutations. Assembly of
the histone octamers, removal of DNA from histones, and transfer of histones from other
chaperone proteins or enzymes are all roles of histone chaperones that are associated with
NPM1 [31]. Collectively, the acidic and basic characteristics of the structural components of
NPM1 allow the binding of nucleic acids and histones [32,33].

2.2.4. Regulation of Apoptosis and Cellular Growth

Within healthy cells, NPM1 has the capacity to trigger either cell proliferation or
apoptosis. However, a shift in homeostasis can affect NPM1 translocation to the cytoplasm,
which in turn affects protein interactions in the cytoplasm profoundly. NPM1-induced
activation of p53 stress-response mechanisms leads to a mitochondrial-associated release of
extrinsic factors such as caspase and cytochrome c [34]. Mouse double minute 2 homolog
(MDM2) is a negative regulator of p53, thus preventing its role as a tumour suppres-
sor [35,36]. NPM1 directly binds to MDM2, hindering its inhibitory role on p53. Notably,
this NPM1 mechanism indirectly affects p53 activity as indicated by studies on NPM1-
negative mice and embryo cell lines that still express p53. The cysteine 275 to serine NPM1
mutant is incapable of undergoing S-glutathionylation, resulting in the release of nucle-
olar nucleic acids from NPM1. Consequently, nucleolar stress prevents translocation of
NPM1 to the cytoplasm and binding to MDM2; this leads to the limited activation of p53
which is suggestive of nucleolar oxidation. The release of p14ARF by NPM1 allows binding
to MDM2 via rpL5. ARF-binding partners, such as MDM2 and NPM1, associate with
ribosomal proteins, which implicates its role in p53 homeostasis [37]. Studies have also
implicated direct interactions of NPM1 with p53 [38]. Therefore, NPM1 protein activity
in apoptotic initiating pathways such as p53 are involved in both its roles in nucleolar
stress and ribosome production [39]. Recent studies have also suggested that p53 mutated
AML patients display distinct molecular signatures compared to p53 wild-type plus NPM1
mutation-positive AML patients [40]. Therefore, the data strongly suggests that specific
molecular pathways are involved between NPM1 and p53.
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2.2.5. Genome Instability

DNA repair response mechanisms are key to maintaining proper cell differentiation
and genome stability. Post-translational modification of NPM1 regulates cell cycle pro-
teins and promotes stability. DNA double-stranded lesions caused by UV results in the
initiation of the nucleotide excision repair pathway (NER) which is overexpressed in NPM1-
mutated AML, and this increases its activity as a chromatin-binding factor by upregulating
proliferating cell nuclear antigen (PCNA), a NER protein. Subsequently, PCNA forms a
homo trimer, interacts with cell cycle regulator p21 in the nucleus, and promotes DNA
repair [32,41]. Release of retinoblastoma tumour suppressor (pRB) is also initiated by
UV, causing dephosphorylation of NPM1 at Threonine 199, 234, and 237 by protein phos-
phatase 1 β (PP1β). Subsequently, pRB causes activation of E2F1-dependent DNA repair
mechanisms [42]. NPM1-mutants, therefore, prevent fine tuning of DNA repair pathways
by direct protein-protein interaction such as with apurinic/apyrimidinic endonuclease 1
(APE1) protein. Consequently, a break in equilibrium leads to an increase in DNA repair
proteins translocation to the nucleus thus, cell proliferation is halted and normal ribosome
biogenesis is impaired [43]. As mentioned above, the ARF-binding proteins also influence
the endonuclease activity of NPM1, which in turn modulates the apoptotic and genome
stability of cells [44,45].

3. NPM1 Mutations in AML and Other Malignancies

According to the current WHO classification of hematopoietic malignancies, NPM1-
mutated AML has been acknowledged as a distinct entity [46]. Nonetheless, it is usually
accompanied by concomitant mutations, including but not limited to FLT3-ITD (FMS-like
receptor tyrosine kinase-3 internal tandem duplication), DNMT3A (DNA methyltransferase
3 alpha), IDH1/2 (isocitrate dehydrogenase 1

2 ), and TET2 (Tet Methylcytosine Dioxygenase),
raising speculation of synergistic interactions that promote AML transformation and pro-
gression [3,47–49]. Indeed, mutated NPM1 is a driver mutation and often a secondary event
to pre-existing mutations generated by clonal hematopoiesis of indeterminate potential
(CHIP) [2,7,47,50]. The most recognized risk stratification system for AML is the European
LeukemiaNet (ELN) genetic risk classification at diagnosis. The ELN risk classification
states that cytogenetically normal NPM1-mutated AML, without FLT3-ITD, belongs to a
favorable risk group. Cytogenetically normal NPM1-mutated AML with FLT3-ITD belongs
to an intermediate risk group exhibiting adverse outcomes, especially in the presence of
the aforementioned co-mutations [51]. It must be noted that 85% of NPM1-mutated AML
cases exhibit normal karyotypes, with the remaining cases showing various cytogenetic
abnormalities e.g., del (9q), +21, +8, and +4 in AML [52].

NPM1 insertional mutations have also been found in myeloid neoplasms includ-
ing myelodysplastic syndrome (MDS), myeloproliferative neoplasm (MPN), and chronic
myelomonocytic leukaemia (CMML). In lymphoid neoplasms, translocation events are
reported. Accounting for about 2% of NPM1-mutant-related diseases, NPM1-mutation in
MDS has been associated with a higher risk of secondary AML and is most commonly
found in MDS with an excess blast (MDS-EB) [53,54]. Molecular diagnosis of MPN oc-
curs from the presence of mutant JAK2-V617F and associated diseases include essential
thrombocythemia (ET) and myelofibrosis (MF) of which NPM1-mutations have been found
on a rare occasion [55,56]. This shows the high sensitivity of NPM1-mutant cells seen in
MPN and possible regimens without the need for stem cell transplantation. Contributing
to 3% of NPM1 mutant cases, CMML with NPM1 mutation shows chemosensitivity to
anthracyclines and cytarabine (7 + 3 induction chemotherapy), and hypomethylating drugs
have promising effects in maintaining remission [55,57]. On the other hand, for translo-
cation events of NPM1, treatment has been associated with the elimination of the fusion
protein directly. This includes anaplastic large-cell lymphoma with NPM1-ALK (anaplastic
lymphoma kinase) and T-cell lymphoma with NPM1-TYK2 (tyrosine kinase 2) [58,59]. It
must be noted that only a small proportion of patients who exhibit NPM1 mutations outside
of AML can be found.
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4. Measurable-residual monitoring in NPM1-mutated AML

With the advent of modern technology and improved molecular techniques, MRD
has become indispensable for AML patient management and monitoring of mutant NPM1
before, after, and during the course of treatment [3,60–63]. MRD positivity has been defined
by the ELN as either the conversion of CRMRD− to CRMRD+, or the increase of PB/BM-MRD
by ≥1log10 between two positive samples [60]. For better harmonization of NPM1-mutated
AML data, log reduction of MRD should be the preferred choice for reporting, as multiple
studies have shown that MRD kinetics are reliable prognostic indicators of the outcome,
but not absolute MRD levels [62,64]. Technical aspects and sample collection for MRD
monitoring are extensively stated in the ELN guideline [51].

4.1. Conventional Technologies for MRD

Conventional technologies for MRD detection include flow cytometry and molecular
MRD assessments by qPCR and ddPCR. In AML patients receiving hematopoietic stem
cell transplantation (HSCT), MRD positivity at pre-HSCT by flow cytometry is strongly
correlated with worsened overall survival and leukemia-free survival (LFS) than MRD-
negative patients. Pre-HSCT MRD negativity is also associated with a reduced incidence
of relapse supporting the predictive significance of MRD monitoring on survival and
post-HSCT relapse [65]. Similarly, in high-risk AML patients with normal karyotype,
flow cytometric MRD positivity is strongly associated with relapse-free survival in these
patients [66].

When evaluating MRD using multiparametric flow cytometry specifically in NPM1-
mutated patients, a unique immunophenotype of AML patients was identified [67]. Leukaemic
cells in patients with type A NPM1 mutation strongly expressed myeloperoxidase (MPO)
and CD33 with dim expression of other myelomonocytic antigens commonly expressed
in AML including CD13, CD65, CD15, and CD14. Its utility in the MRD monitoring of
NPM1-muated AML in general is yet to be confirmed. Therefore, molecular MRD strategies
targeting these specific mutations are crucial for more specific analyses of MRD kinetics
and clonality.

As per the latest MRD guidelines from the ELN, molecularly defined groups such
as NPM1-mutated AML should be monitored by qPCR and ddPCR; the implication of
both approaches have been extensively published and reviewed [2,6,60,61,68]. Patients
that fail to achieve a 4-log reduction of MRD have a significantly higher risk of relapse
as well as shorter survival [64]. NPM1 mutations are commonly monitored using RNA
normalized to ABL transcripts, a technique that is used to monitor other fusion genes
in a similar fashion. Meanwhile, recent studies and in-house data (data not published)
have shown that quantification of NPM1 mutation allele frequency at the DNA level is a
good alternative to RNA-based assay. In spite of lower sensitivity than RNA-based assays,
clinical correlation with DNA mutation allele frequencies are also observed. This permits
flexibility of the MRD protocol and alleviates the need to normalize to ABL1 which has a
significantly slower expression rate than NPM1 [68,69].

4.2. Advanced Technologies for NPM1 MRD Monitoring

Application of NGS for MRD monitoring can be conducted at bulk tumour level and
single-cell level, although none of them are routinely applied. Bulk tumour sequencing is
most commonly adopted at the early stages of AML as screening tools that allow simul-
taneous screening of a vast number of mutations. Whole exome sequencing (WES) can
detect NPM1 mutations months prior to the onset of de novo AML even though coverage
is generally lower than gene panel sequencing [70]. NGS also permits the sub-classification
of NPM1 mutations as non-type-A mutations that are reported to confer shorter survivals
and inferior clinical outcomes than wild-type or type A mutations [71–73]. Despite the
demanding nature of NGS bioinformatic analyse and interpretation, its application in MRD
detection is beneficial especially when most PCR-based assays detect NPM1 type A mutants
but not other NPM1 mutation subtypes.
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Similarly, the application of single-cell technology is continuously under development
for MRD monitoring for improved resolution. Both DNA and conventional RNA single-cell
sequencing have been employed in MRD monitoring in AML but are not routinely used
due to cost and the high requirement for sample preparation [74,75]. With the inclusion
of surface marker staining, single-cell multi-omic analysis further increases the resolution
of the MRD in NPM1 mutated AML patients [76]. In these studies, clonal heterogeneity
of the NPM1 mutant clone has been revealed, and serial monitoring has shown that the
population changes dynamically with the acquisition of NPM1 and FLT3 mutations during
the intermediate stages of the disease. Clonal switch of NPM1 co-mutation with PTPN11
to WT1 is also resolvable at relapse, demonstrating the benefits of high resolution NGS.
The ultra-sensitivity of single-cell technology is demonstrated with <1% of mutant cells
carrying NPM1 or other SNPs out of as few as 7000 cells being sequenced per time point [74].
When single-cell analyses are coupled with mass cytometry and further supplemented by
bulk tumour sequencing, dynamic monitoring of AML responses to chemotherapy can
be achieved [77]. In a cohort of 32 AML patients, 36-plex mass cytometry has been used
to monitor 24 h responses to standard 7+3 induction chemotherapy. The employment of
machine learning analysis of the cell population has further identified high p-ERK1/2 in
blast cells at 24 h being a predictive marker for poorer MRD and five year survival. While
the majority of the p-ERK1/2low patient achieved CR, the MRD positivity observed in a
few p-ERK1/2low patients is due to the presence of NPM1 mutations. This provides a novel
method that deciphers the effect of intracellular signalling on MRD dynamics [77]. This
also envisions the significance of early evaluation of MRD adopting a multi-omic approach.

5. Targeting NPM1-Mutated AML

At least one-third of AML cases are NPM1-mutated, so developing treatment ap-
proaches for this population is becoming crucial. Upon initiation of treatment, a risk
assessment is recommended by the ELN for diagnosis and management [51]. Primary
determinants of the therapeutic approach are age, comorbidities, and diagnostic molecular
profile [78]. Standard treatment protocol for young and fit NPM1-mutated AML patients
involves induction with intensive chemotherapy followed by consolidation chemotherapy.
Co-occurrence of FLT3-ITD and/or DNMT3A mutation is found in approximately 66% of
NPM1-mutated AML, which portends an inferior prognosis [79–83], constituting an indica-
tion for allogeneic haematopoietic stem cell transplantation (HSCT) in eligible patients. The
persistence of NPM1 mutant transcripts following induction or consolidation chemotherapy
is associated with high relapse rates [64,84]. Patients with the persistence of NPM1-mutant
transcripts in the peripheral blood after the second cycle of chemotherapy were associated
with a higher risk of relapse compared to those with absent NPM1 mutant transcripts (82%
versus 30%) after three years of follow-up [85]. In the United Kingdom National Cancer
Research Institute (NCRI), an AML17 study that involved 107 patients with NPM1-mutated
AML receiving allogeneic HSCT, the estimated two year overall survival was 83%, 63%,
and 13% in patients with negative, low (<200 copies per 105 ABL in the peripheral blood
and <1000 copies in the bone marrow aspirate), and high levels of MRD respectively after a
median follow-up of 4.9 years [86]. In patients who were FLT3-ITD positive with low-level
MRD pre-HSCT, the two year overall survival was only 17% [86]. In NPM1-mutated AML
patients undergoing allogeneic HSCT, positive measurable residual disease (MRD) prior
to transplantation was associated with high risk of post-HSCT relapse [86]. The one year
relapse-free survival post HSCT in patients with positive MRD pre-HSCT is 45% [86]. In
another study, the two year cumulative risk of relapse was 65% in patients who were
MRD-positive before allogeneic HSCT [87]. On the other end of the spectrum, patients
who are unfit or over 75 years of age are given Venotoclax with either HMA or low dose
cytarabine (LDAC). As a result of the variety of treatments available, the current review
will outline current and novel agents, as well as the mechanisms involved in targeting
NPM1-mutated AML (Figure 3).
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Figure 3. Targeted therapy for NPM1-mutated AML. (1) Anthracycline, (2) Cytarabine, (3) FLT3 in-
hibitors, (4) Gemtuzumab ozogamicin (GO), (5) Venetoclax, (6) Hypomethylating agents (Azacitidine),
(7) Actinomycin D/Dactinomycin, (8) Arsenic trioxide and ATRA, (9) XPO1 inhibitors (Leptomycin)
with cytoplasmic NPM1 (cNPM1), (10) Menin inhibitors disruption of Menin with histone methyl-
transferase MLL1 (KMT2A), Immunotherapy located on cell membrane: (11) HLA-dependent T cell
immunotherapy, (12) CAR-T immunotherapy, (13) Anti-PD-1 immunotherapy, and (14) SYK inhibitor.

5.1. Current Agents or Standard Treatment
5.1.1. Anthracycline

NPM1-mutated AML patients are commonly treated with the “7 + 3” regimen which
is a combination of cytarabine for 7 days and anthracycline for 3 days. The favourable
response of “7 + 3” has enabled it to become the standard of care for AML due to its CR
rate of 60–80% in younger patients and 40–60% in older adults (>60 years) [88,89]. Anthra-
cyclines are a group of potent chemotherapeutics that lack selectivity due to their aromatic
ring and attached amino-sugar, thus may warrant unwanted side effects such as cardiac
abnormalities in the elderly AML population [90,91]. The chemical structure allows for
the transfer of electrons between structures, causing an increase in free radical formation
that results in the peroxidation of lipids within the cell [92]. The most clinically used an-
thracyclines include Daunorubicin (daunomycin), Doxorubicin, Epirubicin, and Idarubicin.
Various mechanisms have been suggested, one being a DNA intercalator. The minor groove
of DNA has been found to interact directly with Daunorubicin at sequence CGTACG to
form a “daunorubicin-d(CGTACG)” complex [93]. A stable structure determined by X-ray
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crystallography shows the complex involves water molecules, anthracyclines, and DNA
forming hydrogen bonds [93]. Next, doxorubicin has been shown to cause double-strand
breaks (DSB) by the inhibition of DNA topoisomerases II [94,95]. During replication, nor-
mal DNA topoisomerase II prevents DSB by performing DNA catenation and knotting.
Anthracyclines prevent the formation of the intermediate DNA-Topoisomerase II cleav-
age complex (Top2cc), resulting in apoptosis due to a DSB in the DNA [96]. However, it
should be emphasised that due to the high potency of anthracyclines, cardiotoxicity is
frequently observed and likely attribute to chromatin damage by histone removal [95],
which is believed to cause apoptosis or necrotic events.

Another mechanism of anthracyclines is via the immunostimulatory pathway STING,
which is a common immune response pathway upon pathogen entry [97]. STING mod-
ulates the release of dead-cell antigens contributing to the cascade of immunogenic cell
death [98]. Caspases and ATP are released allowing stress-like signals to initiate an im-
mune response. Innate immunity is manifested in cells through the activation of interferon
regulatory factors (IRFs), with a focus on IRF1 genes and IRF3 phosphorylation [99]. IRF3
has been shown to contribute to the transcription of type I interferons and is linked via the
activation of toll-like receptor (TLR)-3 and TLR-4 signalling [100]. Thus, the activation of
the STING pathway, which causes IFN upregulation, is a key mechanism of anthracycline
that activates immune responses [101,102].

5.1.2. Cytarabine

Cytarabine is used with anthracycline (7 + 3 regimen) during the remission induction.
High-dose cytarabine (HDAC) is used in the consolidation of AML. LDAC is prescribed
for patients unfit for intensive induction chemotherapy. Cytarabine (arabinosylcytosine,
ARA-C) is a pyrimidine analogue that competes with the base pair cytidine in both DNA
and RNA. Therefore, by limiting DNA polymerase beta and base excision repair, inhibition
of DNA replication occurs, particularly at the S phase [103,104]. In 2014, CPX-351, a new
encapsulated drug with a 5:1 ratio of cytarabine and daunorubicin was run in parallel with
the standard treatment protocol (7 + 3 regimen) in newly diagnosed elderly NPM1-mutated
AML individuals. Notably, older adults showed longer remission rates in the CPX-351
arm and had a similar safety profile as the intensive standard chemotherapy arm [105].
This suggests the significance of cytarabine and the appropriate isoform of anthracycline
to be administered to both the elderly and the young. In NPM1-mutated AML patients,
cytarabine efficacy is comparable to anthracycline efficacy due to cytarabine’s role in
inhibiting DNA replication and the capacity of NPM1 to regulate transcriptional processes.
As a result, it is highly effective against rapidly diving cells regardless of the subtype of
mutated NPM1 [106,107].

5.1.3. FLT3 Inhibitors

As a large proportion (about 25%) of NPM1-mutated patients carry FLT3 mutations,
initial screening of patients with FLT3-ITD or FLT3-TKD (tyrosine kinase domain with
missense point mutation) benefit greatly from FLT3 inhibitors in combination with various
chemotherapy [78]. Under normal circumstances, FLT3 receptor activation occurs upon
binding of FLT3 ligand and the subsequent rotational change of amino acids—aspartate,
phenylalanine, and glycine into an active conformation, which causes dimerization and ty-
rosine autophosphorylation [108]. Subsequently, TKD is activated and initiates a signalling
cascade of pathways—JAK/STAT, RAS/MAPK, and PI3/AKT/mTOR signalling [109,110].
The most commonly used and researched FLT3 inhibitor, first-generation Midostaurin,
has the capability of targeting a wide range of receptor tyrosine kinases (RTK), including
FLT3 [111,112].

FLT3-ITD mutants exhibit persistent activation in the absence of ligand binding, re-
sulting in the formation of its dimeric form and downstream cell proliferation [113]. Mi-
dostaurin acts by binding on the ATP binding pocket of FLT3, preventing activation and
autophosphorylation [114]. Second-generation FLT3 inhibitors, Gilteritinib and quizartinib,
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are commonly used for relapsed/refractory FLT3-ITD positive AML cases [115]. Collected
from in vitro analysis, Midostaurin shows possible off-target inhibition on platelet-derived
growth factor receptors (PDGFRs), cyclin-dependent kinase 1, spleen tyrosine kinase, and
vascular endothelial growth factor receptor [116]. Second-generation FLT3 inhibitors have
greater specificity for FLT3 but lack inhibition of other RTK mechanisms, which may help
to amplify anti-leukemic effects. However, because of the lack of specificity, first-generation
FLT-3 inhibitors are both more potent and toxic, thus unsuitable for the elderly and unfit.
In addition, it must be noted, recently the acknowledgment of FLT3-ITD-positive MRD pre-
transplant has been associated with higher rates of relapse. A recent study has shown better
overall survival within double positive FLT3-ITD and NPM1 mutations in both younger and
older patients, signifying NPM1’s influence on using FLT3-ITD inhibitors [117]. Therefore,
studies relating the efficacy of FLT3 inhibitors still require further investigation of the po-
tential risk of how FLT3-ITD mutants play in NPM1-mutated AML patients. Some studies
also show combination with venetoclax show molecular clearance of FLT3 mutations [118].

5.1.4. Gemtuzumab Ozogamicin

The CD33 antibody-drug conjugate (ADC)—gemtuzumab ozogamicin (GO (CMA-
676); Wyeth Laboratories, Mylotarg®, Philadelphia, PA, USA) is the next FDA approved
drug for AML. According to the national comprehensive cancer network (NCCN), GO
administration should be given to either CD33-positive patients as post-remission therapy
or patients placed in the favourable and intermediate cytogenetic risk groups [119]. In
combination with intensive induction chemotherapy, GO has been shown effective in
NPM1-mutated AML. In terms of NPM1 influence on GO treatment effect, CD33 cells are
abundant among NPM1-mutated AML patients [120]. Several trials involving the antibody
conjugate approach conclude that standard intensive chemotherapy compared with the
addition of GO leads to a reduction in relapse and a better benefit/risk ratio [119,121,122].
In addition, a prospective study (AMLSG 09-09 Phase III trial) showed benefits in patients
less than 70 years old with NPM1-mutated/FLT3-WT genotype [123].

GO is useful due to its conjugated cytotoxic antibiotics, calicheamicin. Calicheam-
icin (N-acetyl-γ-calicheamicin 1,2-dimethyl hydrazine dichloride) inflicts double-stranded
cleavages on DNA which result in apoptosis [124]. The CD33 IgG4 antibody prompts
action against CD33 antigen-presenting leukemic myeloblasts due to its specificity. The
use of IgG4 is critical because (1) its chemical structure allows a longer half-life amongst its
isoforms, and (2) a poor Fc region limits the initiation of antibody-mediated cytotoxicity
and thus improves the safety profile as an antibody-drug conjugate [125]. CD33 expression
occurs at all stages of myeloid differentiation but is particularly abundant in NPM1-mutated
AML [120]. Calicheamicin is internalized when IgG4 binds to CD33, causing endocytosis
and lysosome entry into the endosome. As a result of lysosome C release, the reduction of
pH from 7.4 to 4 causes hydrolysis of covalently AcBut linker-bound calicheamicin to be
released [126]. Next, glutathione reduction produces active forms of the organic compound
enediyne, allowing it to directly bind to the minor groove in DNA, causing double-strand
breaks [124].

5.1.5. Venetoclax

The standard treatment protocol for newly diagnosed NPM1-mutated AML patients
who are unfit and/or elderly (>60 years), is a combination of venetoclax and HMA or LDAC.
The small FDA approved molecule, venetoclax, targets the NPM1 apoptotic pathway by
inhibiting B-cell leukaemia/lymphoma-2 (BCL-2). BCL-2 is a key anti-apoptotic protein that
sequesters BAX/BAK, thereby regulating mitochondrial outer membrane permeabilization
(MOMP) [127]. BAX/BAK are key regulators of apoptosis which shuttle out of the cytosol
in response to stress, initiating MOMP and causing cell death. Release of BAX/BAK occurs
via binding of BCL-2 homology 3 (BH3) containing proteins (such as apoptotic BIM, PUMA,
and BID) to BCL-2 [128,129]. Venetoclax inhibits BCL-2’s ability to bind to BAK/BAX as a
“BH3-mimetic” because of its structural similarity to a BH3-containing protein, resulting
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in competitive inhibition [130]. Studies on the human monocytic leukaemia cell line
THP-1 with NPM1 mutation reveal an increase in sensitivity to chemotherapy drugs
through suppressing NF-κB activity and BCL-2/BAX expression, which is pertinent to the
efficacy of venetoclax seen in NPM1-mutated AML [131]. Predictive markers for venetoclax
sensitivity show that relapsed/refractory AML or untreated AML patients exhibiting high
BCL2 protein concentrations show better outcomes [132]. However, this is not the case
in all patients. A possible reason is the presence of FLT3-ITD or loss of TP53 causing a
mitochondrial defect in NPM1-mutated AML patients. Additionally, IDH1/2 mutations
occur in NPM1-mutated AML with increasing age influencing the efficacy of venetoclax-
based therapy [133].

5.1.6. Hypomethylating Drugs

The use of HMA drugs in standard protocols is due to their proven efficacy and effect
in MDS patients, but it must be noted that AML contains specific clinical characteristics,
making it distinct from MDS. Mechanistically, the influence of NPM1 on DNA methyla-
tion was studied in mouse models with mutant DNA methyltransferase (DNMT3A) and
NPM1. DNMT3A mutants in hematopoietic stem cells (HSC) and commonly associated
as a concomitant gene for NPM1-mutated AML, and precursors for de novo adult AML
cases. Cooperation between the two genes shows the activation of promoters influenc-
ing preleukaemic mechanisms such as PI3K/Akt/mTOR signalling, stem cell pathways,
and HSC cycling. Thus, showing the significance of using demethylating drugs such as
azacytidine and decitabine in treating NPM1-mutated AML [134]. Azacitidine prevents
abnormal growth of cells by targeting DNMT1 causing a reorganisation in the chromatin
structure. It can be easily transported due to its similarities to nucleotide cytidine and
can be easily incorporated into DNA both RNA. Classified as an antimetabolite and a
demethylating agent, trials developed till phase 3, QUAZAR AML-001 trial (NCT01757535),
show good tolerability and outcome in AML, therefore suggesting a good alternative for
elderly patients who are unfit for intensive chemotherapy [135]. HMA’s have also been
used in relapsed/refractory patients due to their ability to sensitise leukemic cells for
further chemotherapy and its utility in maintenance therapy.

5.1.7. Actinomycin D

Another potential target is inducing nucleolar stress on NPM1-mutated cells. Acti-
nomycin D (or dactinomycin) is a low-cost chemotherapy drug that induces nucleolar
stress by targeting RNA polymerase I to inhibit transcription elongation. The structure
of Actinomycin D resembles the ring structure of nitrogenous bases in DNA, therefore
enabling its intercalation into DNA. At low doses, actinomycin D induces stress responses
in the cell by increasing ROS through the activation of cyclic GMP-AMP synthase signalling
and the release of mitochondrial DNA [136]. Mechanistically, NPM1-mutants are involved
in altering the normal activity of mitochondrial biogenesis, and the lack of PML-NB in
NPM1-mutant AML prevents TP53 activation. [136]. Thereby, a change in NPM1-mutants
will alter ROS production via the mitochondria. Thus, actinomycin D is an effective treat-
ment for the elderly in modulating defective mitochondrial function and has been used in
combination with venetoclax to potentiate mitochondrial-induced apoptosis [137].

5.2. Novel Agents and Future Directions
5.2.1. Arsenic Trioxide (ATO) and All-Trans Retinoic Acid (ATRA)

ATO and ATRA are popular molecular targeted treatment strategies that inhibit
downstream phosphorylation pathways and have been implicated in acute promyelocytic
leukaemia (APL) treatment. The myeloid leukaemia cell differentiation protein (Mcl-1)
inhibits apoptosis by promoting the growth of AML cells. Studies have suggested ATO
inhibits AKT and the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade thereby
upregulating Mcl-1. Usually, Mcl-1 is downregulated via the AKT (protein kinase B)
pathway by GSK-3β inhibiting Mcl-1 phosphorylated at Ser159 [138]. In addition, ERK1/2
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inhibits Mcl-1’s phosphorylation at Thr163. The phosphorylation at both regions on Mcl-1
triggers the release of more caspases and starts the destruction of AML cells [138]. With the
use of venetoclax to downregulate Mcl-1, clinical trials show the synergistic effects of ATO
to promote venetoclax activity [138].

As a curative frontline treatment for APL, ATO-ATRA molecularly targets the onco-
genic fusion protein; promyelocytic leukaemia–retinoic acid receptor α (PML::RARA) [139].
By applying the knowledge gained from APL treatment which relies on the degradation
of oncogenic PML-RARA, targeting the mutated NPM1 protein is an obvious choice of
treatment. In APL, ATO targets proteasomal degradation via PML-NB formation and
SUMO-1 association; these results were similar to those observed when using ATO on
NPM1-mutated AML cells [140]. ATO possesses oxidative abilities via the ROS-mediated
p53 pathway activation of NPM1, to which NPM1-mutated AML cells with cysteine 288
are highly sensitive [141]. Arsenic acts as a pro-oxidant drug that induces apoptosis and
anti-leukemic effects. With regards to ATRA on NPM1-mutated AML, a possible explana-
tion for its efficacy is its synergy with ATO as seen in both APL and AML cases. Notably,
daunorubicin sensitivity increases NPM1-mutated AML cells’ post-treatment sensitivity to
ATO-ATRA, showing promise as possible sensitisers for leukemic cells before chemother-
apy [141].

5.2.2. XPO1 Inhibitors

XPO1 is a key protein that interacts with the NES regions of NPM1, resulting in
an increase of cytoplasmic NPM1 proteins due to increased NES signalling. Therefore,
targeting chaperone proteins of NPM1 will limit its activity in the cytoplasm, thereby
sequestering it to the nucleolus/nucleus. Examples of XPO1 inhibitors include leptomycin,
selinexor, and eltanexor. Leptomycin B has shown severe toxicity in vitro as it binds
irreversibly to XPO1, therefore selinexor monotherapy was implemented in NPM1-mutated
AML patients; however, selinexor has shown only temporary and insignificant clinical
benefits due to its high toxicity [142]. The knowledge gained on the mechanisms of both
leptomycin B and selinexor led to the development of second-generation eltanexor. It has
significantly longer-lasting beneficial effects with prolonged survival and terminal AML
differentiation due to a downregulation of HOX as seen in leukemic mice. Mechanistically,
XPO1 inhibition decreases cNPM1, allowing an increase in NPM1 proteins within the
nucleolus for its roles in maintaining ribosome biogenesis [142]. An advantage of eltanexor
is its better tolerability amongst patients, allowing an increased dosing schedule to induce
a greater anti-leukemic effect [143].

5.2.3. Menin Inhibitors

Menin is a scaffold protein involved in many protein-protein interactions and most
notably, it can act as an oncogenic cofactor when bound to KMT2A (histone-lysine-N-
methlytransferase 2A (MLL1)) complexes, resulting in gene transactivation [144]. KMT2A
is an important transcription factor that facilitates histone H3K4 trimethylation [145]. The
involvement of NPM1 mutants in histone modification occurs by indirect interaction of
the MLL1-Menin complex which directly binds to chromatin targets [146,147]. In NPM1-
mutant AML cases, overexpression of HOXA and HOXB genes and cofactor MEIS1 are
often observed. Inhibition of MLL-Menin complex binding results in the downregulation of
HOX cluster genes, specifically HOXA9 (leukemogenic homeobox A9) and MEIS1 (myeloid
stem progenitor homeobox transcription factor) [145]. This HOX/MEIS1 complex allows
the recruitment of MLL3/MLL4 and CEBPα to further promote leukemogenesis. Recent
studies show NPM1-CRM1 complexes are guided by distinct binding motifs but vary
between NPM1 subsets and cell types (OCI-AML3 and 293T). Suggesting multiple path-
ways influencing the transcriptional effect of NPM1 on histone binding and contributing
to specificity towards active chromatin binding [146]. As proven, one pathway involves
HOXA and HOXB cluster genes, thus implying menin inhibitors have a potential indirect
influence on histone binding.
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Currently, a few drugs are undergoing early-phase clinical trials on relapsed/refractory
AML patients with KMT2Ar/NPM1 to evaluate efficacy as either an MLL-Menin com-
plex inhibitor (KO-539 (NCT04067336), SNDX-5613 (NCT04065399), and JNJ-75276617
(NCT04811560)) or menin inhibitor (DS-1594b (NCT04752163) and BMF-219 (NCT05153330)).
However, due to the targeted nature of therapy, the careful identification of biomarkers
indicating patient suitability for the use of menin inhibitors would be beneficial and a
key strategy in overcoming unwanted leukemic activity. The clinical trial, SNDX-5613
(NCT05326516), is currently underway to evaluate the potential of using menin inhibitors
with chemotherapy drug cocktails [148].

5.2.4. HLA-Dependent T-Cell Immunotherapy

Another targeted-therapy approach on the rise is cancer immunotherapy treatments.
As mentioned previously, NPM1 is a highly specific and stable mutation with relapses
usually detected by increasing MRD [149]. Due to the nature of NPM1-mutated AML,
with the driving factor being an oncoprotein, immunotherapy is an ideal approach that
focuses on either targeting mutant NPM1-derived neoantigens or genetically engineering T
cells specific for NPM1-mutated peptides. Various studies have attempted to determine
ideal NPM1-derived immunogenic peptides suitable for HLA- (Human leukocyte antigen)
induced T cell response. Efficient HLA presentation has been seen targeting 11 residues
of the NPM1-mutated C-terminus due to the distinct amino acid sequence not normally
found in human tissues. Specifically, HLA class I ligandomes: AIQDLCLAV, AIQDL-
CVAV, AVEEVSLRK 9-mer, CLAVEEVSL, LAVEEVSLR, and CLAVEEVSLRK have been
studied [149–152]. Single-cell RNA sequencing has exhibited upregulation of immune re-
sponses and major metabolic pathways caused by increased cytokine-induced memory-like
NK cells; the pathways activated relate to mitochondrial maintenance and show similar
activity upon IL-15 activation of NK cells. However, it must be noted that peptide-HLA
complex recognition is successful only in cells that express the target neoantigen. Occa-
sionally, immuno-editing can occur, whereby the immune system constrains and promotes
cancer growth in an attempt to control immune escape mechanisms; this is more common
in cells with a higher mutational load.

5.2.5. CAR-T Therapy

Another immunotherapy approach targeting NPM1 is the use of chimeric-antigen
receptor T cells (CAR-T) and TCR-engineered T cell therapies. The most successful antibody
therapy is the monoclonal antibody, GO, which shows promise in targeting the myeloid-
specific transmembrane CD33. From this knowledge, bispecific CAR-T cells were designed
that targeted CD33 as well as CD123, an IL3 receptor found overexpressed in leukemic
neoplasms for example AML. Dual CAR targeting the CD33 and CD123 allows specificity
to AML leukemic cells; this strategy is effective as a single expression of CD33 or CD123
by healthy cells will result in no or attenuated CAR-T cell response. The anti-CD123 first-
generation CAR is attached to a CD3ζ domain, whilst anti-CD33 contains only CD28 and
41BB costimulatory domains [153].

5.2.6. Immune Checkpoint Inhibition

Another T-cell immune response strategy involves targeting the programmed death
1 antibody (PD-1). PD-1/PD-L1-directed immunotherapy shows potential due to its ex-
pression in NPM1-mutated patients and absence in NPM1-WT. The ligand PD-L1, which
inhibits the activation of T cells via PD-1 receptors downstream, is commonly overexpressed
in tumour cells and is frequently associated with poor clinical outcomes [154]. Nivolumab,
an anti-PD-1 antibody, is one example. It inhibits the immune checkpoint PD-1, which
stimulates leukaemia-associated antigen (LAA) activity in both mutant and WT cytotoxic
T lymphocytes but only in the presence of the NPM1 mutant peptide proliferation [155].
Nivolumab, in particular, targets leukemic progenitor/stem cells (LPC/LSC), a population
thought to be responsible for AML relapse [155]. Studies show mixed conclusions, some
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suggest that PD-L1 expression does not directly influence T cell activation, while others
show that inhibiting PD-1 signalling causes Treg expansion to be delayed. Anti-PD-L1 anti-
body limits Treg cell expansion in murine AML models, limiting disease progression [154].
According to the research, AML patients with higher levels of PD-1+ Treg cells have a better
prognosis when undergoing anti-PD-1 medication. Therefore, due to the heterogeneity of
AML patients, this new selective targeted immunotherapy may be advantageous for the
prevention of relapse in PD-1+/NPM1mut patient subgroups.

5.2.7. SYK Inhibitor

Another target of interest is non-receptor spleen tyrosine kinase (SYK). Under normal
circumstances, Lyn (tyrosine kinase protein) auto-phosphorylates Syk at Tyr518 and gener-
ates binding sites for the BCR signalling pathway regulators CBL, VAV1, and phospholipase
C-gamma [156]. SYK inhibitors for NPM1-mutated AML are currently undergoing clinical
trials, and these include entospletinib (GS-9973) and mivavotinib (TAK-659). The second-
generation SYK inhibitor, entospletinib, is a reversible competitive small molecule with
higher sensitivity to JAK-2, c-KIT, FLT 3, and RET [157]. Clinical trials (NCT05020665) on
entospletinib for NPM1-mutated AML patients are still ongoing. Mivavotinib, a heteroaro-
matic SYK inhibitor, inhibits both SYK and FLT3 by competitively binding at the adenosine
triphosphate-binding site. To note, AML patients with HOXA9/MEIS1 overexpression
show improved survival with entospletinib, suggesting its involvement with menin-MLL
complex inhibition [158]. In vitro AML cell studies have shown that SYK inhibition per-
turbated AML growth via pathways similar to FLT3 pathway inhibition. Demonstrated
in vivo, SYK interacts with and activates FLT3 directly, making FLT3-ITD more sensitive to
SYK inhibition, further supporting the screening of FLT3-ITD as an important determinant
of prognosis in AML patients [159]. Thus, clinical trials conclude that combination therapy
with standard chemotherapy drugs (i.e., cytarabine and daunorubicin) show a better thera-
peutic response for NPM1-mutant AML with a better-predicted response rate for FLT3-ITD
positive patients [158].

5.2.8. Stress Inducing AML

Recent studies show the significance of stress in the promotion of AML due to the ac-
cumulation of IL-1β. One possible mechanism is via the activation of the NLR family pyrin
domain containing 3 (NLRP3) inflammasomes leading to the progression of AML cells.
Studies conducted on chronically stressed mice showed upregulation of NLRP3 mRNA and
further downstream analysis on AML cell lines saw the presence of high mobility group box
1 (HMGB1) protein. This suggests the influence of stress on the HMGB1-NLRP3 axis and is
a potential target for preventing AML progression [160]. In addition, as previously noted,
the cooperation between mutated NPM1 and DNMT3A shows an increased expression of
HMGB1, similar to what is hypothesised on mice exhibiting chronic stress. Thus, showing
an overlap between the various suggested concepts. Another suggested mechanism for tar-
geted therapy involves diverting immune escape by preventing the release of the immune
suppressor protein galectin-9, which limits the release of cytokines. The stress-related hor-
mone cortisol triggers the upregulation of neuronal receptor latrophilin 1 (LPHN1), and the
upregulation of fibronectin leucine-rich transmembrane protein 3 (FLRT3). Subsequently,
the release of galectin-9 causes immune escape [161]. With regards to stress management
of AML, new studies show targeting stress-induced inflammation signalling pathways
can further sustain current cancer treatment strategies. This includes pharmacological and
psychosocial interventions preventing the upregulation of noradrenaline, adrenaline, and
glucocorticoids showing potential in decreasing the overall survival of cancers such as
non-small cell lung cancer [162,163]. Though further studies still need to be conducted on
the effects of stress on haematological malignancies.

Altogether, it is evident that the genetic diversity of NPM1-mutated AML should
be examined in terms of its mutational landscape and clonal evolution for better patient-
specific treatment needs. Likewise understanding the immunophenotypic markers (e.g.,
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CD4, CD34, and CD56) of patients can better understand immune resistance and escape
mechanisms in AML [164,165]. One possible non-conventional strategy is meditation,
which has been linked to 68 genes modulating interferon signalling [166]. With continued
understanding of the clinical implications of stress and the immune system, modulation
could support current AML treatment options to bolster LFS and overall survival.

6. Conclusions

Targeted therapy has become an important treatment strategy in targeting NPM1-
mutated AML. Research focusing on understanding the functional biology of mutated
NPM1 showed numerous mechanisms contributing to disease progression. However,
the underlying molecular pathways driving NPM1-mutated AML pathogenesis have yet
to be elucidated. Therefore, conducting further research into the molecular drivers of
NPM1-mutated AML pathogenesis can lead to new targeted strategies. As recommended,
mutational screening of FLT3-ITD, DNMT3A, IDH1/2, and TET2 could help guide clinicians
in selecting the appropriate targeted treatment strategies for patients.

Currently, there are many targeted therapies, but due to the heterogeneity of NPM1
mutants, treatment options will differ. Although the standard of care currently for AML is
the “7 + 3” regimen, consideration is needed for NPM1-mutated AML co-mutated with;
FLT3-ITD, for which FLT3 inhibitors are used or SYK inhibitors may also be used as in vivo
studies have inferred SYK involvement in FLT3 activation. Other current treatment strate-
gies include venetoclax and hypomethylating agents, Actinomycin D, and GO. Novel
treatment strategies worth investigating is the use of daunorubicin, a popular anthra-
cycline, in tandem with ATO and ATRA, menin inhibitors (due to the commonly seen
overexpression of HOX cluster gene and XPO1 inhibitors linked to prolonged survival
in mice studies. Lastly, immunotherapeutic approaches such as HLA-dependent T cell,
CAR-T, and anti-PD-1 immunotherapy, should also be explored.

In addition, due to the wide array of suggested treatment strategies potential unwar-
ranted side effects can occur. Therefore, further research on MRD monitoring strategies
such as single-cell NGS and CyTOF on top of the typical qPCR and ddPCR may benefit in
overall survival of patients and treatment management.
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