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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a major concern for health care systems
worldwide, since its mortality remains unaltered despite the surge in cutting-edge science. The
EPH/ephrin signaling system was first investigated in the 1980s. EPH/ephrins have been shown
to exert bidirectional signaling and cell-to-cell communication, influencing cellular morphology,
adhesion, migration and invasion. Recent studies have highlighted the critical role of the EPH/ephrin
system in various physiologic processes, including cellular proliferation, survival, synaptic plasticity
and angiogenesis. Thus, it has become evident that the EPH/ephrin signaling system may have com-
pelling effects on cell homeostasis that contribute to carcinogenesis. In particular, the EPH/ephrins
have an impact on pancreatic morphogenesis and development, whereas several EPHs and ephrins
are altered in PDAC. Several clinical and preclinical studies have attempted to elucidate the effects
of the EPH/ephrin pathway, with multilayered effects on PDAC development. These studies have
highlighted its highly promising role in the diagnosis, prognosis and therapeutic management of
PDAC. The aim of this review is to explore the obscure aspects of the EPH/ephrin system concerning
the development, physiology and homeostasis of the pancreas.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common histological type of
pancreatic cancer and accounts for approximately 90% of pancreatic malignancies [1]. The
incidence of the disease has progressively increased on a global scale, emerging as the
seventh leading cause of cancer-related deaths worldwide [2]. Early detection remains a
major challenge, since PDAC becomes symptomatic at advanced stages. Patients typically
present with locally advanced disease and/or with distant metastases, thus rendering them
inoperable. Indicatively, patients with early-stage PDAC (stage IA) comprise only 1.8% of
all cases [3].

Whole-genome sequencing has contributed significantly to the deciphering of the
molecular landscape in PDAC. KRAS, TP53, CDKN2A and SMAD4 are the four most fre-
quently mutated genes in PDAC [4]. The BRCA, APOBEC and KDM6A genes are involved
in the stabilization and remodeling of chromatin in tumor cells. The frequency of BRCA
mutations is approximately 5.9–7.2%, and a plethora of emerging data suggests that these
patients would experience clinical benefits with PARP inhibitors [5]. It is apparent that the
aforementioned molecules present as potential therapeutic targets for the precise medical
management of PDAC. Nevertheless, targeted therapies have not achieved significant im-
provement in the overall survival (OS) of patients with surgically unresectable diseases [5].
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Immunotherapy for PDAC is a rapidly developing research field with poor clinical out-
comes so far [6]. Various immune checkpoint inhibitors (anti-CTLA-4, anti-PD-1) have been
studied either as monotherapies, as dual immune checkpoint inhibitors or combined with
chemotherapeutic regimens [6]. Other immunotherapeutic modalities, such as immune
vaccines [7] and tumor stroma modulators [8], are still undergoing preclinical studies.

The PDAC’s TME is characterized by its immunosuppressive nature, which is the
end result of several cellular and molecular mechanisms [9]. Granulocyte–macrophage
colony-stimulating factor (GM-CSF), CCL2 [10], CSF18 and BAG3 [11] orchestrate the
infiltration, maturation and differentiation of myeloid cells into myeloid-derived suppres-
sor cells (MDSCs) and tumor-associated macrophages (TAMs), respectively. MDSCs and
TAMs suppress the anti-tumor cellular responses, promoting an epidermal growth factor
receptor (EGFR)/mitogen-activated protein kinase (MAPK)-driven upregulation of pro-
grammed death-ligand 1 (PDL1) [12]. The selective inhibition of myeloid cells targeting
the CSF1/CSF1R signaling sensitized PDAC in immune checkpoint inhibition (ICI) [12].
Concerning the T cell populations, PDAC is considered a “cold” tumor due to a lack of
effector CD8+ T cells [9] and a relative predominance of Foxp3+ regulatory T cells (Tregs).
Tregs exert their immunosuppressive effects on PDAC secreting transforming growth
factor b (TGFb) and interleukin (IL)-10, which have well-described immunosuppressive
functions [9]. Tregs, also downregulates the activation of CD8+ T cells and the genera-
tion of interferon gamma [9]. Thus, a relative increase/decrease in Tregs/CD8+ T cells is
documented during the progression of premalignant pancreatic intraepithelial neoplasias
and intraductal papillary-mucinous neoplasms into PDAC [13]. CXCL13 [14] and Bruton
tyrosine kinase (BTK) [15] guide the aggregation of B-cells into TME and hypoxia-inducible
factor 1a (HIF-1a) and exert the opposite effects [16]. While evidence has suggested that B
cell infiltration promotes PDAC progression [16], currently, its clinical significance has not
been exhaustively elucidated. Despite the fact that CXCL12-CXCR4 signaling influences
a pancreatic stellate cell (PSCs)-mediated activation of CD8+ T cells and, consequently,
sensitization to ICI [17], the above effects are context-specific and more evidence is needed
to shed light on the pathogenic mechanisms. Aside from the above-mentioned cellular
immunosuppressive population, there are molecular suppressive mechanisms in PDAC’s
TME. Focal adhesion kinase (FAK) drives the accumulation of fibrosis in preclinical mouse
models and limits CD8+ T-cell augmentation. FAK targeting shrinks the accompanying
fibrotic stroma, limits the infiltration of myeloid cells and enhances the response to ICI [18].
In parallel, components of the extracellular matrix, such as hyaluronic acid, increase the
interstitial pressure and restrict tumor vasculature-restraining drug delivery [19].

Given the fact that the EPH/ephrin signaling system in the pancreas comprises an
increasingly studied pathway, the aim of our review was to investigate its implication in
the pathogenesis of PDAC as well as its possible contribution to the management of disease,
either as biomarker to guide therapeutic decision or as therapeutic target.

Molecular Characteristics of the EPH/Ephrin Signaling Pathway

Erythropoietin-producing hepatocellular receptors (EPHs), named for the liver cancer
cell line from which they were cloned, represent the largest subfamily of receptor tyrosine
kinases (RTK) [20]. Unlike other RTKs, EPHs interact with membrane surface-associated
ligands called ephrins. The EPHs and their ligands, the ephrins, are divided into two
subclasses (A and B) with five ephrin-A ligands, three ephrin-B ligands, nine EPHA
and five EPHB receptors in the human genome [21,22]. The confirmed combinations of
EPH/ephrin are the nine EPHA receptors, which bind five ephrin-A ligands, and the five
EPHB receptors, which bind three ephrin-Bs. Additionally, EPHA4 and EPHB2 can bind
ephrins of a different class. The EPH/ephrin family is present in a multitude of tissues,
showing a combinatorial nature as well as dynamically changing expression patterns [20].

The modus operandi of EPHs and ephrins typically includes cell-to-cell adhesion and
communication. More specifically, the EPH/ephrin system mediates contact-dependent
interaction between the same or different cell types in order to control physiological cell
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activities during development, such as cell morphology, adhesion, movement, proliferation,
survival and differentiation. Interestingly, all the aforementioned physiological functions
are cornerstones in the complicated and multifactorial route of carcinogenesis and cancer
progression [23]. In particular, angiogenesis and lymphangiogenesis are two of the most
significant mechanisms that malignant tumors exploit in order to achieve rapid growth
and distant metastatic dissemination [24]. The EPH/ephrin signaling establishes borders
between different compartments and helps in the remodeling process by regulating the
effects of vascular growth factors [25].

There are two types of interactions between EPHs and their ligands: trans-interaction,
where the expression of ephrin and EPH is located in opposing cells; this activates bi-
directional signaling, triggering a response in the cytoplasm of the receptor-expressing cell
(forward signaling) as well as in the ephrin-expressing cell (called reverse signaling). The
second is cis-interaction, in which both EPH and ephrin are expressed in the same cell [22].
In more detail, cis-binding occurs via the N-terminal region of the tyrosine kinase domain
(e.g., EPHA4/FGFR1), the tyrosine kinase domain (e.g., EPHA2/Dvl2), the extracellular
(e.g., EPHA2/Meltrinβ) or intracellular domain (ephrinB1/RhoGDI1) and through the
intercession of intermediate proteins (e.g., EPHB2/ADAM10/E-cadherin) [26]. These less-
mentioned interactions play a key role in important cellular processes. Mounting evidence
has linked cis-interactions with cell cycle control. One such example is EPHA2, which
may interact with members of the EGFR family or cytoplasmic proteins (such as Dvl2 or
YAP) and thus lead to cell proliferation in an ephrin-independent, yet Ras/ERK-mediated
manner [27,28]. In addition to cell proliferation, cell adhesion and migration may also
be influenced by cis interactions. In this context, ephrin-A1/EPHA2 union leads to Src
recruitment, which, in turn, engages with intergrin and facilitates cell motility [29]. Finally,
cis-interactions are implicated in cell-sensing (the ability of cells to adapt to the topography
of their environment). This feature is crucial to the development of the nervous system
and axon guidance. Relative to this, activated EPHA4 interacts with alpha2-chimaerin,
which leads to RhoA activation and Rac1 inhibition. This cascade eventually results in
growth cone collapse [30,31]. Generally, EPH-dependent cellular interactions are involved
in cytoskeletal rearrangements, such as the collapse of the cytoskeleton, by exerting their
action on the equilibrium between the activation and inactivation of small GTPase. EPH
forward signaling leads to cell repulsion, whereas ephrin reverse signaling evokes either
cell repulsion or adhesion [32]. Forward signaling is determined by the interplay of EPHs
and ephrins with a variety of signaling pathways, e.g., Rho and RasGTPases, phosphoinosi-
tide 3-kinase (PI3K), focal adhesion kinases (FAK) and Janus kinase (JAK)-signal transducer,
which is an activator of transcription (STAT) [33]. Concerning backward signaling, the
signal transmission is conducted through proteins that contain Src Homology 2 (SH2) or
PDZ domains, such as Grb4, which bind with ephrins and result in their phosphoryla-
tion [21]. The widespread expression of EPH and ephrins in various cell types leads to
their participation in many different physiological functions, which are, at the same time,
scaffolds in cancer development. The morphology of the EPH/ephrin system is illustrated
in Figure 1.



Int. J. Mol. Sci. 2023, 24, 3015 4 of 13
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 1. Basic molecular structure of the EPH/ephrin signaling compartment. In the plasma 
membrane, ephrin-A ligands are hooked by a glycosylphosphatidylinositol (GPI) anchor, although 
they can also activate distant EPH receptors. On the other hand, ephrin-B ligands contain a 
transmembrane domain and a cytoplasmic segment. EPHs/ephrin interaction results in the 
beginning of a molecular series of events. Forward signaling is triggered by EPH–ephrin binding as 
well as through EPH interplay with various biomolecules and signaling pathways. Reverse 
signaling is stimulated by the EPHs in the ephrin-expressing cells. Cis-signaling is the interaction of 
EPHs and ephrins with molecules on the same cell membrane. Proteins that encompass Src 
Homology 2 (SH2) or PDZ domains participate in the transmission of the downstream signal 
through their interaction with ephrins. Created with BioRender.com. 

2. The Role of EPH/Ephrin System in the Pancreas 
2.1. The EPH/Ephrin System in Pancreatic Embryology and Physiology 

The EPH/ephrin system has been associated with numerous processes involving the 
embryologic integration of the pancreatic parenchyma and the positioning of the islets of 
Langerhans [34], which represent a major endocrine component in the regulation of 
insulin secretion [35]. Transcriptomic analyses of the main exocrine and endocrine 
pancreatic cells demonstrated that the sophistication of the system is determined by 
compounded heterotypic cellular interactions. The EPH/ephrin system, in tandem with 7-
Transmembrane receptors (7-TM receptors) and ligands from the TGF-b class, compose 
the main regulators of the heterotypic synergy among the aforementioned cellular 
compartments [36]. The alpha and beta endocrine cellular populations are characterized 
by the overexpression of EFNA5 and EFNB3, while EFNA1 and EFNB2 predominate in 
the small and large ducts and acinar cells. A more in-depth presentation of those 
interactions has been given elsewhere, and this goes beyond the scope of our manuscript 
[36]. Class B of the EPH/ephrins orchestrate the pancreatic morphogenesis. They appear 

Figure 1. Basic molecular structure of the EPH/ephrin signaling compartment. In the plasma mem-
brane, ephrin-A ligands are hooked by a glycosylphosphatidylinositol (GPI) anchor, although they
can also activate distant EPH receptors. On the other hand, ephrin-B ligands contain a transmem-
brane domain and a cytoplasmic segment. EPHs/ephrin interaction results in the beginning of a
molecular series of events. Forward signaling is triggered by EPH–ephrin binding as well as through
EPH interplay with various biomolecules and signaling pathways. Reverse signaling is stimulated
by the EPHs in the ephrin-expressing cells. Cis-signaling is the interaction of EPHs and ephrins
with molecules on the same cell membrane. Proteins that encompass Src Homology 2 (SH2) or PDZ
domains participate in the transmission of the downstream signal through their interaction with
ephrins. Created with BioRender.com.

2. The Role of EPH/Ephrin System in the Pancreas
2.1. The EPH/Ephrin System in Pancreatic Embryology and Physiology

The EPH/ephrin system has been associated with numerous processes involving the
embryologic integration of the pancreatic parenchyma and the positioning of the islets of
Langerhans [34], which represent a major endocrine component in the regulation of insulin
secretion [35]. Transcriptomic analyses of the main exocrine and endocrine pancreatic cells
demonstrated that the sophistication of the system is determined by compounded het-
erotypic cellular interactions. The EPH/ephrin system, in tandem with 7-Transmembrane
receptors (7-TM receptors) and ligands from the TGF-b class, compose the main regulators
of the heterotypic synergy among the aforementioned cellular compartments [36]. The
alpha and beta endocrine cellular populations are characterized by the overexpression of
EFNA5 and EFNB3, while EFNA1 and EFNB2 predominate in the small and large ducts
and acinar cells. A more in-depth presentation of those interactions has been given else-
where, and this goes beyond the scope of our manuscript [36]. Class B of the EPH/ephrins
orchestrate the pancreatic morphogenesis. They appear earlier than class A molecules, at
embryonic day 12.5, and regulate the alignment of the pancreatic epithelium, branching and
lumen formation. The interplay among the epithelium-expressed EPHB2 and EPHB3 and
their concomitant ligands in the pancreatic arteries and mesenchyme [35–37] mediates
the expression of several cell adherence molecules, such as junctional b-catenin and E-
cadherin [38]. Roughly, EPHB3 comprises the only EPH/ephrin molecule that is expressed
in mesoderm. Its interplay with the endodermal ephrin-B1 guides the formation of the extra-
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hepatic bile duct, the gallbladder and the common bile duct. The EPHB3-EPHB4 interaction
contributes to gallbladder formation, the EPHB3-ephrinB2 regulates the development of
the gallbladder and common bile duct and the EPHB3-EPHB3 in the endoderm directs the
composition of the extrapancreatic duct [39]. Since pancreatic morphogenesis emerges as a
summation of consecutive processes, e.g., the arrangement of the epithelium into distinct
layers, the periodic loss of apical–basal polarity and epithelial tubule reconstruction, it is
highly dependent on EPHB signaling. Contrarily, several findings have suggested that the
class A EPH/ephrins comprise a central regulator of insulin secretion. It is well-established
that the metabolism of glucose in β-cells stimulates basal insulin secretion [40], while the
interactions between β-cells shape insulin secretion in response to glucose [41]. This process
is essential to achieving the suppression of insulin secretion during starvation and adequate
amounts of insulin during feeding [42]. Presently, it is common knowledge that blood glu-
cose levels regulate insulin secretion, exerting their effects on class A EPH/ephrins. At high
glucose levels, the dephosphorylation of EPHA5 by protein tyrosine phosphatases (PTPs)
suppresses the EPH forward signaling. The unopposed ephrin-A5 backward signaling
results in insulin secretion. On the other hand, at low glucose concentrations, the forward
signaling outweighs the reverse signaling, inhibiting the insulin secretion. Insulin secretion
could result either from the suppression of EPHA signaling or from the enhancement of
ephrin-A reverse signaling [42]. Analogously, in α-cells, the enhancement of EPHA4 for-
ward signaling suppresses the glucagon secretion [43]. All of the above indicate that the
shaping of pancreatic morphology and physiology are interconnected and the EPH/ephrin
system exerts major influence on their configuration.

2.2. The EPH/Ephrin System in PDAC—Preclinical Data

EPHA2 and EPHA4 are the most important targets in the field of PDAC transla-
tional research [44]. EPHA2 has attracted the attention of the research community due
to its involvement in tumor capillary formation [45]. Despite the fact that the initial at-
tempts to target EPHA2 in order to enhance the specificity of adenoviral vectors were
not fruitful [46], the development of EPHA2-specific antibody agonists and ephrinA1 an-
tagonists suppressed tumor growth and metastatic disease, inhibiting angiogenesis in
mice with orthotopical transplantation of MiaPaCa2 cells [47]. In their groundbreaking
study, Markosyan et al. analytically investigated the role of EPHA2 in PDAC [48]. The
CRIPSR-Cas9-mediated generation of Epha2-KO congenic mice by 6419c5 and 6694c2 cell
lines, which have low T-cell infiltration levels, exhibited substantially modified immune
microenvironment in comparison with the wild-type cell lines. They documented, in
Epha2-KO tumors, enhanced infiltrates of CD4 + and CD8 + T-cells, with diminished pres-
ence of myeloid and myeloid-derived suppressor cells (MDSCs) and unaltered numbers of
antigen-presenting cells, such as macrophages and dendritic cells. The therapeutic combi-
nation of gemcitabine, nab-paclitaxel, anti-CD40 agonists, anti–CTLA-4 and anti–PD1-1 in
EPHA2-KO tumors achieved results that were more efficacious than those for EPHA2-wild-
type tumors, but comparable with those for high T-cell-infiltrating ones. Altogether, the
above strongly suggest that EPHA2 exerts modifying properties over the immune tumor
microenvironment (TME) [48]. A series of sophisticated experiments unfolded the exis-
tence of the EPHA2/TGF-β/PTGS2 pathway. The prostaglandin endoperoxide synthase 2
(PTGS2) gene encodes the cyclooxygenase-2 (COX-2). The tumor-accelerating properties
of PTGS2 are owed to its efficacy in activating downstream signaling pathways such as
the RAS [49], PI3K/AKT [50] and ERK [51]. The identification of this pathway could offer
novel therapeutic avenues in the medical management of PDAC, since the COX-2 inhibition
could sensitize PDAC to immunotherapy [52]. Finally, there is an auspicious perspective
that the utilization of EPHA2 as a surface marker to increase the sensitivity of exosomal
collection and assortment will provide an invaluable source of clinical data [53]. Recent
evidence implicated ephrin-A5 in the development of fibrotic stroma [54]. Nakajima et al.
documented a significant reduction in collagen density (type I, III and IV collagen) upon
exposure to neoadjuvant therapy (NAT). In human-derived PDAC cell cultures, it was
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evident that ephrin-A5 signaling regulated the expression of several genes implicated
in collagen synthesis. Collectively, NAT inhibited the expression of CAFs, shaping the
PDAC microenvironment, and indirectly inhibited PDAC cells, reducing the fibrotic stroma
through EFNA5 downregulation [54].

EPHB4/ephrin-B2 is signaling pathway which has been the studied in the most
depth with regard to the class B EPH/ephrin system [55]. Initial studies reported that
soluble EPHB4 blockers, inhibiting the ephrin-B2 forward signaling in venous endothelial
cells and the backward signaling in the arterial endothelium, diminish tumor growth.
This became more evident with additional Dll4/Notch inhibition [56]. Aside from its
effects on angiogenesis, ephrinB2 signaling influences cellular proliferation and migration,
exerting its impact on the cell cycle and epithelial–mesenchymal transition (EMT). In more
detail, Zhu et al. demonstrated that the EFNB2 knockdown upregulates p53, inducing a
fixation in the G0/G1 phase and cell cycle arrest. In parallel, an upward trend occurred
in E-cadherin expression with a concomitant downregulation of vimentin, which are
decidedly suggestive of an influence of ephrin-B2 signaling on cellular invasion through
EMT regulation [57]. EPHB4 suggests an attractive cytotoxic target in PDAC. In vivo
data from orthotopic xenografts showed enhanced tumor growth retardation with the
addition of EPHB4 inhibition in combination with gemcitabine [55]. Furthermore, data
associating the EPHB4/ephrinB2 signaling with the modulation of PDAC TME have begun
to emerge [58,59]. Radiotherapy (RT) induces immune infiltration, attracting both anti-
tumorigenic (effector T-cells and interferon I signaling activation) and pro-tumorigenic
(regulatory T-cells (Tregs), tumor-associated macrophages (TAMs) and myeloid-derived
suppressor cells (MDSCs) cellular populations [58]. Lennon et al. documented, both in vitro
and in vivo, that the inhibition of EPHB4/ephrin-B2 signaling in conjunction with RT shifts
the balance towards the anti-tumor responses, reducing PDAC tumor growth and limiting
the fibrotic response [59]. This could have major clinical applications in the therapeutic
management of PDAC. The above are briefly illustrated in Figure 2.
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A1 induce tumor growth. Created with BioRender.com.
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2.3. The EPH/Ephrin System in PDAC—Clinical Data

The significance of the EPH/ephrin system for PDAC became conceivable due to its
overexpression in a multitude of studies [48,55,60,61]. EPHA2 is the most clinically relevant
member of class A EPH/ephrin signaling. Despite the fact that the earliest references in
the literature were restrained regarding its role in PDAC carcinogenesis, only document-
ing association with patients’ age [60], data concerning its actual impact have begun to
emerge [48,61]. Van den Broecket et al. reported that EPHA2 has been overexpressed in
PDAC, with unfavorable clinical outcomes [60]. The above finding is in accordance with a
clinical study by Nakajima et al., which documented that EPHA2 was expressed in the vast
majority of PDAC cases with variable density. EPHA2 was stained principally in the cancer
cells and, to a lesser extent, in CAFs. An association with a more invasive tumor phenotype
was also documented [53]. Markosyan et al. confirmed via human clinical samples that the
EPH/ephrin system is one of the most ubiquitously expressed signaling pathways in T cell
noninflamed PDAC, with EPHA2 being the principally expressed gene. The expression of
CD8A, CD3, PRF1 and GZMB mRNA levels exhibits a negative association with EPHA2,
which collectively suggests that the EPHA2 possesses immune-modifying properties [48].

EPHA2 also displays clinical usefulness as a biomarker; Koshikawa et al. documented
an 89.0% sensitivity and 90.0% specificity of soluble EPHA2 fragments in PDAC diagnosis,
in opposition with the respective 88.9% and 72.0% of the Ca19-9 [62]. Wei et al. suggested
that the combination of serum exosomal EPHA2 with Ca19-9 could potently distinguish
early-stage pancreatic cancer (stage I, II) from benign pancreatic disease [63]. The above
could reshape the diagnostic management of pancreatic cancer, constituting useful alterna-
tives for population screenings. Finally, monoclonal antibodies against EPHA2 are under
clinical investigation without evidences of dose-limiting toxicity or adverse events [64].

Regarding the class B EPH/ephrin system, its importance has been also recognized in
human clinical studies. The EPHB4 and ephrin-B2 overexpression shape, in conjunction
with several other genes, a more malignant clinical phenotype [61], which is partially
parallel to the fact that ephrin-B2′s expression correlates with the TNM Classification of
Malignant Tumors (TNM) staging [57]. Ephrin-B2 seems to possess a predictive capacity
for patients with a PDAC prognosis who respond to therapy [65]. Analogously, Lu et al.
demonstrated that the overexpression of EPHB2 and ephrin-B2 clinically correlated with
more aggressive PDAC behavior, as well as with abdominal and back pain [66]. In a recent
phosphoproteomics analysis, which mirrored the activation of a multitude of signaling
pathways, Renuse et al. reported the existence of 709 proteins with, overall, 1199 loci.
EPHB4 in parallel with EPHA2 were identified as the molecules with the most kinase-
regulating sites among the EPH/ephrin system [55]. The above points are summarized
in Table 1.

Table 1. Published clinical data regarding the EPH/ephrin signaling system.

EPH/Ephrin Study Material Result References

EPHA1/A2/A4/A5/A7 Neoplastic tissue

EPHA1 staining intensity was
significantly associated with

• Ki67 expression
• pathologic staging

[60]

EPHA2 Neoplastic tissue EPHA2 was associated with poor
outcome and aggressive disease [54,61]

EPHA2 Soluble
EPHA2 fragments

May be applicable as a diagnostic
biomarker [62]

EPHA2 Neoplastic tissue
The expression of EPHA2 was inversely

correlated with the degree of T cell
infiltration in PDAC

[48]

EPHA2 PC patients Dasatinib (inhibition of EPHA2) did not
show clinical activity in metastatic PDAC [67]
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Table 1. Cont.

EPH/Ephrin Study Material Result References

EPHA4 Neoplastic tissue EPHA4 positivity was associated with
lower overall survival [68]

EPHB2/ephrin-B2 Neoplastic tissue

Overexpression of EPHB2 and
ephrin-B2 was associated with:

• histologic differentiation
• pathologic TNM

[66]

ephrin-B2 Neoplastic tissue
High ephrin-B2 expression correlated with:

• poor survival in PDAC (median OS
15.80 vs. 22.83 months)

[65]

ephrin-B2 Neoplastic tissue

Lower expression of ephrin-B2 and
ADAM10 after neo-adjuvant therapy was
associated with better:

• overall survival (OS)
• disease-free survival (DFS)

[69]

EPHB4 PDAC patients Significant expression of EPHB4 in >70%
of patients with PDAC [50]

Despite the fact that the above findings may not be urgently transferable to clini-
cal practice, several clinical trials in humans have begun to emerge [64,70,71]. To date,
EPHA2 has been the only targeted molecule. Shitara et al. utilized DS-8895a, a humanized
IgG1 EPHA2-targeting antibody with the capacity to augment antibody-dependent cellular
cytotoxicity, in a phase I study. They demonstrated its safety at the doses utilized, as well
as the activation of NK cells [70]. Regardless of the limited drug uptake from normal tissue,
further clinical studies did not succeed due to poor biodistribution results [64]. Two more
Phase I clinical studies including PDAC patients are currently recruiting. Weston et al. are
currently investigating the effects of siRNA-EPHA2 in tumor metabolism and perfusion,
utilizing diffusion weighted MRI and 18FDG-PET [72], while Huang et al. explored the
efficacy of EPHA2-specific taxane-loaded immunoliposomes [71].

3. Discussion

Based on the existing literature, it is evident that the EPH/ephrin signaling system
mediates a multitude of diverse physiologic processes, such as the development of pla-
centa [73], the perception of pain [74], neurodegeneration [75] and fibrosis [76], while its
impact in cancer has been extensively reviewed [21,23,33,77]. In fact, in carcinogenesis, the
EPH/ephrin system mediates several pro-tumorigenic processes that comprise hallmarks
of neoplasia [78], such as the interplay with proliferating signaling [79], the promotion of in-
vasion and metastasis [80] and the induction of angiogenesis [81]. As regards the influence
of the EPH/ephrin system in the modulation of immune infiltrates in TME, our knowledge
has been widely extended recently [6]. Data indicate that the EPH/ephrin system exerts its
regulatory effects on immune cellular populations [48,82], with a profound impact on the
patient’s prognosis.

Despite the immense scientific efforts towards deciphering PDAC’s TME [83], PDAC
comprises the seventh most common cause of malignancy-related death. Recent transla-
tional data from human PDAC tissue suggested that the upregulation of 41BB and lym-
phocyte activation gene-3 (LAG-3) expression [84] generates a potent immunosuppressive
environment. The 41BB receptor and its ligand are expressed upon T cell stimulation [85],
and LAG-3 is a T-cell inhibitory co-receptor which could be exploited therapeutically [86].
Clinical studies suggested that the combinational triple targeting with 41BB agonists,
LAG3 antagonists and CXCR1/2 inhibitors could result in a clinical response [84]. Ad-
ditionally, the dense fibrotic stroma generates an immunosuppressive, tumor-promoting
microenvironment, causing further impairment in drug delivery [87]. IL-35 constitutes a
major modulator of the immune response towards PDAC, shaping both T- and B-cellular
reactions. Regarding the T-cells, IL-35 is implicated in the downregulation of the effector
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CD4 cells and the concomitant extension of the Tregs [88]. Analogously, naive B-cells
are inclined towards the Bregs over the plasma cellular phenotype under the influence
of IL-35/STAT3 signaling, and the inhibition of IL-35/BCL6 signaling potentiates the
immunotherapy effects [89]. The above highlight the significance of B-cells in PDAC
carcinogenesis and response to immunotherapy, as knowledge of its effects has recently
begun to emerge [90,91]. Although the immune system exerts fundamental effects during
carcinogenesis in several malignancies [92–94], heretofore, the clinical trials regarding
immunotherapy in PDAC have been discouraging, indicating that further work needs to
be conducted [95]. Moving towards this direction, Markosyan et al. demonstrated that
the therapeutic manipulation of EPHA2 could offer a valuable alternative to enhance the
tumor’s responsiveness to immunotherapy [48]. In parallel, the EPHB4/ephrin-B2 tar-
geting could suppress the pro-tumorigenic immune infiltrates, causing further tumor
regression [59]. Additional research needs to be conducted in order to better unfold the
complex mechanisms that mediate the aforementioned functions.

Irrespective of the great efforts that have been conducted, several drawbacks limit the
transfer of the aforementioned research into clinical practice. Regardless of the fact that
that there have been increasing amounts of research on PDAC, the majority of these studies
are pre-clinical. It is easily perceived that large, prospective clinical trials are necessary in
order to validate the effects of the EPH/ephrin signaling on humans. To date, the existing
clinical studies are of limited clinical efficiency, and additional validation in larger clinical
trials should be achieved in order to gain clinical significance.

4. Conclusions

In conclusion, the EPH/ephrin system seems to regulate embryologic development, as
well as several crucial physiologic processes of the pancreas, such as the secretion of insulin
and glucagon. It could, potentially, be exploited therapeutically in order to target PDAC.
In fact, its implementation into clinical practice could revolutionize the management of
PDAC, introducing a more efficacious immunotherapy therapeutic scheme.
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