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Abstract: Neurological dysfunction following viral infection varies among individuals, largely due
to differences in their genetic backgrounds. Gait patterns, which can be evaluated using measures
of coordination, balance, posture, muscle function, step-to-step variability, and other factors, are
also influenced by genetic background. Accordingly, to some extent gait can be characteristic of
an individual, even prior to changes in neurological function. Because neuromuscular aspects of
gait are under a certain degree of genetic control, the hypothesis tested was that gait parameters
could be predictive of neuromuscular dysfunction following viral infection. The Collaborative
Cross (CC) mouse resource was utilized to model genetically diverse populations and the DigiGait
treadmill system used to provide quantitative and objective measurements of 131 gait parameters in
142 mice from 23 CC and SJL/J strains. DigiGait measurements were taken prior to infection with
the neurotropic virus Theiler’s Murine Encephalomyelitis Virus (TMEV). Neurological phenotypes
were recorded over 90 days post-infection (d.p.i.), and the cumulative frequency of the observation of
these phenotypes was statistically associated with discrete baseline DigiGait measurements. These
associations represented spatial and postural aspects of gait influenced by the 90 d.p.i. phenotype
score. Furthermore, associations were found between these gait parameters with sex and outcomes
considered to show resistance, resilience, or susceptibility to severe neurological symptoms after long-
term infection. For example, higher pre-infection measurement values for the Paw Drag parameter
corresponded with greater disease severity at 90 d.p.i. Quantitative trait loci significantly associated
with these DigiGait parameters revealed potential relationships between 28 differentially expressed
genes (DEGs) and different aspects of gait influenced by viral infection. Thus, these potential
candidate genes and genetic variations may be predictive of long-term neurological dysfunction.
Overall, these findings demonstrate the predictive/prognostic value of quantitative and objective
pre-infection DigiGait measurements for viral-induced neuromuscular dysfunction.

Keywords: Collaborative Cross; TMEV; gait; DigiGait; QTL

1. Introduction

An individual’s gait—the speed and length of the steps, the degree to which consecu-
tive steps overlap, the angle of each foot, etc.—can be affected by various neurodegenerative
conditions. Several of these conditions can be influenced or precipitated by viral infections
such as Parkinson’s disease (PD) [1–8], amyotrophic lateral sclerosis (ALS) [9–11], and
multiple sclerosis (MS) [12–20]. These diseases can have characteristic gait patterns [21],
such as the shortened, shuffling gait seen in PD [22–24]. However, knowledge of the gait
pattern characteristics of different diseases has often come from comparisons with healthy
controls rather than longitudinal data from the same individual. Because disease-related
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gait changes occur after disease onset, it is difficult to discern which differences were
already present while the individual was still healthy. Moreover, neurological symptoms
such as gait changes can arise gradually over time that, in some cases, can stretch over a
period of years.

Owing to the dearth of pre-diagnosis gait data in humans, animal models are logi-
cal alternatives for identifying which aspects of gait can have the most prognostic value.
In the current study, mice with human-relevant genetic diversity were evaluated via a
computerized treadmill (DigiGait) to determine whether certain pre-infection gait charac-
teristics could be associated with greater long-term disease severity in neurodegenerative
diseases resulting from viral infection. DigiGait provides objective gait measurements for
rodents which are analogous to measurements used for evaluating gait in humans affected
by diseases such as PD [25,26]. These aspects or parameters of gait do not necessarily
have any pathologic influences on their own but could indicate morphometric differences
reflecting pre-existing susceptibilities. In humans, such baseline measurements could be
useful for developing patient-specific treatment plans following viral infections that affect
neurological function.

A well-known mouse model of multiple sclerosis, known as Theiler’s murine en-
cephalomyelitis virus (TMEV)-induced demyelinating disease, was utilized to model hu-
man neurodegenerative outcomes in response to viral infection. For several decades, TMEV
infection in various inbred mouse strains, especially SJL/J, has been studied as a viral
model of MS. More recently, the roles of genetic diversity in TMEV-induced neurological
outcomes have been evaluated. By infecting recombinant-inbred mice of the Collaborative
Cross (CC) resource, we found that TMEV can cause symptoms similar to PD and ALS,
along with MS and other neurodegenerative human diseases. These CC mice were the
result of 20+ generations of crossbreeding eight inbred (“founder”) mouse strains. After
no more recombination could be detected in the offspring, each distinct line of CC mice
continued to be propagated by inbreeding, resulting in many genetically distinct CC mouse
strains that are both inbred and highly diverse, capturing 90% of all the variation found
in the original eight founder mouse strains [27–29]. Therefore, it is reasonable to view
CC mouse strains as reflecting different human populations that are genetically distinct
from each other, each having maximum genetic diversity contributing to highly divergent
outcomes to the same event (such as infection with the same virus).

Previously, our laboratory established a phenotyping pipeline to categorize the neu-
rological outcomes of CC mice infected with TMEV [30,31]. Limb weakness, balance,
coordination, and paralysis among other clinical signs were evaluated. Gait changes have
been previously shown to correspond to disease outcomes during TMEV [31–33]; therefore,
the objective quantitative DigiGait treadmill platform (Mouse Specifics, Boston, MA, USA)
was employed to capture outcomes not easily noticed by the human eye. The applicability
of DigiGait has been demonstrated in rodent models of human conditions such as ALS
and PD (e.g., [34–37]). Accordingly, in this study, gait parameters measured by DigiGait
were associated with long-term neurological disease severity in different CC mouse strains.
Furthermore, associations were found between genomic regions and some of these mea-
surements, thereby identifying parallels between the mouse gait parameters correlated
with disease severity and human gait characteristics.

2. Results
2.1. DigiGait Parameters Provided Objective Measures of Gait and Motor Function

The hypothesis for this study was that pre-infection gait characteristics could predict
long-term neurological symptoms following a viral infection. DigiGait parameter mea-
surements quantify multiple aspects of gait and motor function that could be affected
differently by challenges to motor neuron function, such as TMEV infection. Therefore,
quantitative and objective pre-infection DigiGait measurements with predictive or prog-
nostic capabilities were sought.
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Previous work by the authors described post-infection DigiGait measurements taken
at the juncture between acute and chronic infection (21 days post-infection [d.p.i.]), and
just prior to sacrifice (90 d.p.i.) [31]. This work demonstrated the utility of DigiGait for
discerning between subsets of mouse strains with bradykinetic gait, which tended to have
Parkinsonian-type phenotypes following TMEV infection, as opposed to mice with other
gait profiles that exhibited relatively normal phenotype profiles following TMEV infection.
For the current study, however, pre-infection, baseline (0 d.p.i.) DigiGait measurements
were used. To normalize inherent differences in body size between mouse strains, the
weight of each mouse at the time of assessment was included in the DigiGait algorithm. In
this way, gait profiles were developed showing the natural strain differences prior to the
introduction of the viral infection (Table S1).

After this initial gait assessment, the mice were infected with TMEV as previously
reported [38,39], and their neurological phenotypes were recorded daily throughout the acute
phase (first two weeks post-infection), and weekly thereafter up to 90 d.p.i. Sham-infected
control mice were included for every strain and both sexes, and all phenotypes were evaluated
relative to those of the relevant control mice. The more often a given phenotype (paresis,
paralysis, piloerection, kyphosis, seizures, limb clasping, and delayed righting reflex) was
observed, the higher the cumulative score was for that phenotype at the end of the study.
Paralysis and paresis were scored for each limb individually and therefore had a larger
effect on the overall cumulative score. The “90 d.p.i. phenotype score” accounted for all
phenotypes [31], and because many phenotypes were somewhat interdependent (for example,
paralysis would impede righting reflex), this overall score accurately reflected the differences
in severity of disease expression between each strain. Indeed, it was found that this scoring
system reliably tracks TMEV-induced central nervous system (CNS) damage [38]. For this
study, previously obtained 90 d.p.i. phenotype scores were considered as the endpoints for
the prognostic analysis of using pre-infection DigiGait measurement values.

2.2. Pre-Infection DigiGait Measurements Were Significantly Associated with 90 d.p.i. Phenotype Scores

To determine whether gait patterns may serve as prognostic markers for viral-induced
motor alterations, of the 131 pre-infection DigiGait measurement values, stepwise regres-
sion identified those with the best predictive value and the most significant association
with the 90 d.p.i. phenotype scores. Briefly, stepwise regression involves fitting multiple
regression models to identify the optimal combination of “variables” (e.g., DigiGait pa-
rameters and 90 d.p.i. scores) and has been found particularly useful when using data
from complex populations [40,41]. For this study, stepwise regression not only was used
to identify significant associations, but also was used for validating these associations,
confirming the predictive value of the associated measurements.

The final model determined using “step Akaike Information Criterion (AIC)” yielded
a p-value of zero, demonstrating the overall significance of the selected model describing
the association between the selected pre-infection variables (DigiGait parameters) and
the 90 d.p.i. phenotype score. Between five and ten DigiGait parameters per limb were
identified as being statistically associated with the 90 d.p.i. phenotype score at the 5%
significance level. Thus, a total of 31 parameters for the four limbs were identified as
significant (out of 131 considered) (Table 1). Of the 31 significant parameters, % Propel
Stance, Brake, MAX dA/dT (maximum paw area over time), Midline Distance, and Paw
Drag were significantly associated to two separate limbs. In addition, Paw Placement
Positioning (PPP), Stride, and Stride Frequency were each significantly associated to three
separate limbs, with hindlimb parameters accounting for 19 of the 31 parameters.

Next, a linear mixed model was fitted to reveal how the genetic variability from
the CC strains affected the association between 90 d.p.i. phenotype scores and DigiGait
variables. This procedure was repeated separately for each limb. In the linear mixed model,
each strain was used as the random effect and significant DigiGait variables, and those
identified by stepwise regression were treated as fixed effects. Following the linear mixed
model assessment, strain-inherent gait patterns and characteristics were, on their own, not
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sufficient to explain the significant associations between DigiGait parameters and 90 d.p.i.
phenotype scores (Table 1). In other words, regardless of mouse strain, the associations
identified between pre-infection DigiGait measurements and 90 d.p.i. phenotype scores
were relevant. This increases the prognostic value of these DigiGait measurements: these
measurements are not only useful for certain CC strains, or certain 90 d.p.i. scores, but can
be utilized for predictive purposes in future studies using any mouse strain.

Each DigiGait parameter was previously classified based on the aspect of gait it mea-
sured [31,42–44]. Most, if not all, gait parameters are interrelated to some extent, but differ-
ent pathologies may have a greater impact on certain aspects of gait. For example, patients
with ALS, PD, and Huntington’s Disease exhibit differences in specific gait aspects, in part
due to different CNS region involvement [23,45]. Therefore, the 31 variables significantly
associated with the 90 d.p.i. phenotype score were categorized based on relevance to the
spatial, temporal, or postural properties of gait or intraindividual variability [46]. Briefly,
temporal gait parameters include aspects of gait measured in units of time (e.g., seconds [s]),
spatial gait parameters include aspects of gait measured in units of length/size (e.g., cen-
timeters [cm]), parameters classified as “intraindividual variability” reflect step-to-step
variances measured in degrees or percentages, and postural gait parameters include aspects
of gait pertaining to how much each step deviates from some standard, such as centroid axis
(Axis Distance) or transverse midline (Midline Distance), or step-to-step paw placement
(Paw Area Variability, Paw Angle, and Paw Drag).

Previously, temporal aspects of gait were measured by approximately 38% of all
DigiGait parameters, spatial and postural aspects were captured by 25% and 19%, respec-
tively, and roughly 15% measured intraindividual variability [31]. The categories of the
31 significant variables identified using the stepwise regression model, when weighted by
the number of limbs for each variable found as significant, were represented at slightly
different percentages: 39% temporal, 32% spatial, 23% postural, and 6% intra-individual
variability. In other words, there was a noticeable increase in the representation of DigiGait
parameters measuring spatial and postural aspects of gait in this study.

Table 1. Pre-infection (baseline) DigiGait parameters for each limb (second column from left) were
significantly associated with 90 d.p.i. phenotype scores via stepwise regression analysis. These
parameters represent different aspects of gait, listed in the third column from the left. # Parameters
significantly associated with TMEV response categories via one-way ANOVA (as shown in Figure 1)
are indicated with p-values listed in the rightmost column. * Indicates parameters for which significant
QTL were identified (QTL are listed in Table 2).

Limb DigiGait Parameter Parameter Category
(from [46])

Association with Response Categories
(from [47]) and/or Sex

Left forelimb (LF)

Swing * temporal

Brake #* temporal p = 0.0413

Stance temporal

Stride * spatial

MAXdA/dT temporal

Left hindlimb (LH)

Stride # spatial
p = 0.00573 (female resilient vs. female
susceptible: p = 0.0064; female resilient
vs. male susceptible: p = 0.0188)

% Propel Stance temporal

Stride Frequency # spatial
p = 0.0375 (female resilient vs. female
susceptible: p = 0.032; female resilient vs.
male susceptible: p = 0.0034)

Stance Width Coefficient of
Variance (CV) # intraindividual variability

p = 0.0169 (female resilient vs. male
resistant: p = 0.0396; female resilient vs.
male susceptible: p = 0.0077)
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Table 1. Cont.

Limb DigiGait Parameter Parameter Category
(from [46])

Association with Response Categories
(from [47]) and/or Sex

Paw Placement Positioning spatial

Paw Drag # postural p = 0.00425

Hind Limb Shared Stance Time #* temporal p = 0.0287

Right forelimb (RF)

Brake * temporal

Propel # temporal p = 0.0222

Stride # spatial p = 0.0373

Stride Frequency * spatial

Paw Area at Peak Stance postural

MAXdA/dT temporal

Paw Placement Positioning spatial

Midline Distance postural

Right hindlimb (RH)

% Propel Stance * temporal

% Propel Stride temporal

Stance/Swing * temporal

Stride Frequency spatial

Paw Angle postural

Paw Angle Variability intraindividual variability

Overlap Distance spatial

Paw Placement Positioning spatial

Midline Distance postural

Axis Distance postural

Paw Drag #* postural p = 0.0242

Table 2. DigiGait parameters with statistically significant QTL are listed in chromosome order. QTL
chromosomal positions are shown in the third column from the left. The program used for QTL mapping
(gQTL, [48]) uses data from an SNP assay which includes SNPs with different names than SNPs of the
Mouse Phenome Database (MPD), which uses Reference SNP Identification (rsID). Since gQTL and
MPD use different names for the same SNPs, both names were listed for each SNP in the second and
third columns. The column labeled “p-value” gives the p-value for each QTL. The “Location” column
provides the chromosome and base pair (chr:bp) location of each SNP. The column labeled “Prox-Dist
(Mb)” shows Mb positions for the proximal and distal boundaries of each QTL region, and to the right,
the numbers of genes (including pseudogenes) located in each region are listed. The column “Significant
DEGs in region” gives the number of differentially expressed genes (DEGs) with statistically significant
expression between infected and sham-infected mice of the same sex and strain; the final column on the
right lists the number of significant DEGs which are known protein-coding genes. (LF = left forelimb;
LH = left hindlimb; RF = right forelimb; RH = right hindlimb).

Phenotype Sex SNP ID
(gQTL) rsID (MPD) p-Value Location

(chr:bp)
Prox-Dist
(Mb)

Number
of Genes
in Region

Significant
DEGs in
Region

Protein-
Coding
DEGs

Swing LF both UNC23682331 rs30743246 1.59 × 10−6 14:21992279 9.17–25.50 376 7 0
Brake LF both UNC27374397 rs4217379 2.03 × 10−6 16:90390967 86.46–90.56 100 1 0
Stride LF both UNC855090 rs51387167 9.18 × 10−9 1:67861707 64.57–67.96 400 4 3
Hindlimb Shared Stance Time LH both UNC30823189 rs30323288 2.41 × 10−7 X:51777164 50.67–51.84 687 5 0
Brake RF F JAX00139829 rs29969310 1.40 × 10−10 6:36890310 34.85–36.99 53 1 1
Stride Frequency RF both UNC19870031 rs224655440 2.18 × 10−6 11:69589978 64.57–67.96 942 18 13
% Propel Stance RH F UNC26076456 rs30829258 9.86 × 10−8 15:89682500 89.59–91.33 70 2 2
Stance/Swing RH M UNC16337966 rs37517810 2.34 × 10−7 9:49759868 49.70–52.20 950 12 9
Paw Drag RH F UNC30588773 rs50371642 7.41 × 10−8 19:59415570 59.05–61.26 57 0 0
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Figure 1. Baseline DigiGait parameters significantly associated with the three TMEV response cate-
gories are shown. Plots describe the distribution of measurement values for mice belonging to each 
of the three categories (resistant, resilient, and susceptible), with horizontal bars depicting the aver-
age values within each category. Each panel indicates parameters for each limb ((A)—front left limb, 
(B)—front right limb, (C)—hind left limb, and (D)—hind right limb). p-values were determined us-
ing a one-way ANOVA (see Section 4 Materials and Methods); * p < 0.05, ** p < 0.01, s: seconds. 

2.3. Relationships between Strain Categories and Baseline DigiGait Measurements 

Figure 1. Baseline DigiGait parameters significantly associated with the three TMEV response
categories are shown. Plots describe the distribution of measurement values for mice belonging to
each of the three categories (resistant, resilient, and susceptible), with horizontal bars depicting the
average values within each category. Each panel indicates parameters for each limb ((A)—front left
limb, (B)—front right limb, (C)—hind left limb, and (D)—hind right limb). p-values were determined
using a one-way ANOVA (see Section 4 Materials and Methods); * p < 0.05, ** p < 0.01, s: seconds.

2.3. Relationships between Strain Categories and Baseline DigiGait Measurements

Previously, CC strains were categorized based on their TMEV disease course (“re-
sponse category”), with strains designated as resistant, resilient, or susceptible, based on
the level of TMEV RNA persistence and severity of neurological phenotypes [47]. These
categories reflect that TMEV RNA levels do not consistently correlate with disease severity
as represented by the 90 d.p.i. phenotype score. Resistant and resilient strains had lower
90 d.p.i. phenotype scores, and resilient and susceptible strains had measurable levels
of TMEV RNA at 90 d.p.i. DigiGait measurement values were analyzed in respect to the
response groups to determine whether pre-infection gait patterns could predict whether a
given strain would be classified in any one of the response groups. Among the pre-infection
DigiGait parameters listed in Table 1, nine significant associations between measurement
values and response categories were identified, including one (left hindlimb Stance Width
CV) for which measurement values were also significantly associated with sex. The mea-
surement values for the mice in each of the three response categories provided more context
for interpreting the connection between gait patterns and phenotype scores (Figure 1). For
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example, mice with the highest baseline measurement values for left and right hindlimb
Paw Drag tended to experience the greatest disease severity, falling under the “susceptible”
response category following TMEV infection.

Additionally, the influence of sex on the relationship between TMEV response cate-
gories and pre-infection DigiGait measurements were evaluated. There were fewer individ-
uals per category, yet statistically significant differences were identified between females
and males, and between females from different TMEV response groups. These differences
were found in three parameters, all measured in the hindlimbs. A significant difference
was found in left hindlimb Stride measurements for females in the resistant vs. resilient
categories, and for females of the resilient vs. susceptible categories. Furthermore, Stride
measurements were significantly different between resilient females and susceptible males.
A related parameter, left hindlimb Stride Frequency, also showed significant differences
between resilient and susceptible females, as well as between resilient females and suscep-
tible males. Additionally, the left hindlimb Stance Width CV was significantly different
between resilient females and both resistant and susceptible males. Finally, right hindlimb
Axis Distance measurements were significantly different between resilient females and
susceptible males. Paw Drag values for both hindlimbs tended to be greatest in suscep-
tible mice. Although this finding was not statistically significant, its potential biological
relevance was noteworthy. Regardless of sex, mice with higher Paw Drag values prior to
viral infection were classified as the most severely affected of all mice by 90 d.p.i. Overall,
DigiGait parameters, associated per limb, have been identified according to their TMEV
response categories narrowing the list from the by identified 31 parameters originally found.
These nine parameters of interest may allow for future studies to focus on the temporal
motor degradations observed in viral-induced neurological mouse models.

2.4. Quantitative Trait Loci (QTL) Mapping

QTL mapping was performed for pre-infection DigiGait measurements to identify
loci potentially involved in strain-inherent gait differences. Nine significant QTL for pre-
infection DigiGait parameters were associated with 90 d.p.i. phenotype score. Four of these
QTL were sex specific (three female-only and one male-only), indicating that their effects
were not as strong in all mice combined as when in one sex or the other.

Significant QTL are listed in Table 2. Manhattan plots, founder genotypes, and gene
identities located within QTL regions are provided in Figures S2 and S3 and Table S2.

Inheritance played a major role in the Collaborative Cross mice as certain founder
strains were found to have a stronger influence on the gait measurements of the resistant,
resilient, and/or susceptible strains. For resilient strains, several measurements were
significantly associated with QTL inherited from the wild-derived founders of the CC:
CAST/EiJ, PWK/PhJ, and WSB/EiJ (Table 2 and Figure S3; [49,50]). For example, a QTL for
left forelimb stride was inherited from CAST/EiJ in the resilient strain CC015 and WSB/EiJ
in CC043. Resilient CC037 mice inherited the QTL for left hindlimb shared stance time from
the WSB/EiJ founder strain. Another resilient strain, CC027, inherited the QTL for right
forelimb stride frequency from WSB/EiJ; however, this was also true for the resistant strain
CC036. For each of the nine significant QTL listed in Table 2, up to three resilient strains
inherited genotypes from a wild-derived strain (Figure S3) [49,50]. By contrast, resistant
and susceptible strains inherited wild-derived genotypes for 5 and 2 QTL, respectively.
Therefore, the gait of resilient strains were often influenced by genetic inheritance from
wild-derived founder strains, although not consistently for all resilient strains or exclusively
for any one parameter.

Next, the expression of genes in the QTL regions (Table S2) was investigated to identify
correlations between gene expression and the nine gait parameters listed in Table 2. Gene
expression levels were previously evaluated via RNAseq for the hippocampus and thoracic
spinal cord at 90 d.p.i. [47]. These data were originally collected for both TMEV-infected
and sham-infected mice of both sexes and all strains to ascertain differences in the response
of each strain to TMEV infection. Of the 3635 genes and pseudogenes located within QTL
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regions, 51 were expressed at significantly different levels between infected and sham-
infected mice of the same sex and strain; 23 of these differentially expressed genes (DEGs)
were classified as non-coding RNA, pseudogenes, or predicted genes. The ontologies of
the remaining 28 known protein-coding DEGs were relevant to different aspects of gait
and/or viral infection. As expected, there was no 1-to-1 correspondence between the DEG
expression level and phenotype measurement value; however, the influence of these genes
was likely contextual: each DEG affected some facet(s) of different gait parameters, with
multiple DEGs collectively contributing to the phenotype. Thus, genetic markers associated
with gait and viral infection have been identified that can serve as potential markers of
interest in prognostic gait studies.

3. Discussion

Gait changes are common to many neurological conditions, but oftentimes these
changes are noted in relation to control samples rather than longitudinal measurements
of the same individual. Mouse model systems provide the ability to measure gait prior
to disease development, so that it is possible to identify relevant aspects of gait which
can indicate the likelihood of an individual mouse experiencing a more or less severe
expression of a disease compared to other mice. The DigiGait system offers quantitative
and objective measurements of numerous gait patterns in murine models. This system
provides a practical and functional method to assess gait changes as part of a disease process,
compared to other gait analysis procedures. For instance, DigiGait was more sensitive
than other methods, such as CatWalk, when measuring gait impairment resembling MS
in experimental autoimmune encephalitis mice [51]. Similar to our study, the system was
used to note significant changes in spatial and temporal gait patterns of Ross River virus
(RRV) that disseminates in skeletal muscles and joints [52]. One evident limitation of our
study was that while the gait of a quadruped murine model may not directly match to the
gait of human bipeds, there have been documented gait development aspects that mirrored
those to humans [46]. While humans and mice do not share entirely similar gait patterns,
similarities in gait aspects—such as whether it is affected by a lack of strength, coordination,
etc.—support the potential for identifying prognostic gait patterns in humans. In addition,
the DigiGait system accounts for the standardization of gait speed and mouse weight to
directly extrapolate proper gait assessments. Thus, the DigiGait measurement values may
provide valuable context for interpreting the connection between murine gait patterns and
gait disturbances observed in human neurological disorders.

The current study demonstrates how pre-existing differences in gait can predict pos-
sible neurological dysfunction resulting from long-term viral infection, as measured by
the collective 90 d.p.i. phenotype score. Of the 131 discrete parameters measured at the
pre-infection time point (“baseline”; Table S1), 20 demonstrated a statistically significant
relationship with the score. These gait parameters represent multiple aspects of gait (e.g.,
temporal, spatial, postural, and intraindividual variability). The parameters significantly
associated with the 90 d.p.i. phenotype score tended to bias more toward the spatial and
postural aspects of gait than expected, such as stride and paw drag. This suggests that the
inherent body conformation of a mouse is predictive of the severity of long-term physical
effects following TMEV infection. Moreover, eight of the 20 parameters were significant for
more than one limb. These eight parameters included Paw Placement Positioning, Stride,
and Stride Frequency, which represent spatial aspects of gait and were associated with
90 d.p.i. phenotype scores for three limbs each. % Propel Stance, Brake, MAX dA/dT,
Midline Distance, and Paw Drag, which measure temporal and postural aspects of gait,
were significant for two limbs each.

Gait parameters significantly associated with 90 d.p.i. phenotype score for multiple
limbs were likely strain-dependent and robust in relation to body size. For example,
Paw Placement Positioning is measured in centimeters and reflects the extent of overlap
between the fore and hind paws on the same side of the body. If the forelimb and hindlimb
stances are roughly equal, the value of this parameter is close to zero. The Stride parameter
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indicates the duration of one complete stride for one paw, which depends on both the speed
of motion and stride frequency [53]. Meanwhile, the Stride Frequency parameter measures
the number of times a paw takes a complete stride per second. Therefore, Stride Frequency
reflects the tempo of the gait [53,54]. All three of these parameters describe aspects of
balance and rhythmicity of gait, and while they are all considered “spatial” aspects of
gait because their measurements are calculated by DigiGait software from real digital
footprints [46], there is also a temporal connotation to Stride and Stride Frequency. The
overlap of spatial and temporal gaits have also been described in humans and specifically
in the elderly and in stroke patients [25,26,55]. Consistent coordinated spatial and temporal
features of gait result in steady locomotor patterns, which may be disrupted as a result of
injuries and diseases affecting the nervous system (e.g., Parkinson’s disease; [56]).

Pathological circumstances can also affect the % Propel Stance, Brake, MAX dA/dT,
Midline Distance, and Paw Drag, which measure temporal and postural aspects of gait and
were significant for two limbs each. For example, measurement values for % Propel Stance
indicate the percentage of the stance phase in which the paw comes off the treadmill belt to
propel the mouse forward. Paw Drag measurements reflect the robustness of the lift-off
stage of the paw from the treadmill belt. The 90 d.p.i. score was associated with % Propel
Stance and Paw Drag values for both hindlimbs, but not with forelimbs, which makes
sense in the context of TMEV infection pathology: weakness and paralysis tend to be more
prevalent in the hindlimbs [30,31]; thus, any pre-existing differences in these parameters
would logically be amplified in infected mice. In contrast, forelimb measurements for the
Brake and MAX dA/dT parameters were associated with 90 d.p.i. score. To maintain control
and load distribution as needed, changes in hindlimb propulsion could be compensated
by forelimb braking power and by adjusting MAX dA/dT, the maximal rate of change
in paw area in contact with the treadmill belt during braking. Finally, Midline Distance
measurements for both limbs on the right side of the body were associated with 90 d.p.i.
score. Midline Distance values increased when forelimbs reached farther or hindlimbs
extended farther. The relationship between Midline Distance and 90 d.p.i. score may be
clarified when considering that TMEV infection occasionally results in weakness and/or
paralysis on one side of the body only [31], leading to changes in balance and coordination
that would be reflected in Midline Distance measurements. TMEV-induced lesions develop
in different locations within the CNS depending on the mouse strain [57,58], and the effects
of these lesions could amplify pre-existing gait tendencies for certain strains but not others.
The 90 d.p.i. phenotype score provides a quantitative means of comparing the overall
severity of neurological symptoms; however, considering this score in context with baseline
gait parameters reveals a more holistic understanding of the physiological expression of
the disease.

Along these same lines, 90 d.p.i. scores of different CC strains were evaluated in
relation to how well each strain cleared the viral infection over 90 days. From this, three
TMEV response categories were defined: “resistant”, “resilient”, and “susceptible” [47].
Resistant mice successfully cleared the infection while maintaining a relatively mild disease
course, whereas resilient and susceptible mice did not clear the infection but diverged in
symptom severity, with susceptible mice experiencing the most severe symptoms. Of the
gait parameters with pre-infection measurements statistically associated with the 90 d.p.i.
infection score, nine gait parameters were associated with response categories, five of
which were specific to the left hindlimb (Table 1). Average measurement values for each of
the nine parameters were distinctly different for the three response categories (Figure 1).
For example, Paw Drag values increased from resistant to resilient to susceptible strains,
suggesting that even before infection, the strains that would have a more susceptible
outcome had a tendency to lift each hind paw less vigorously than the strains that would
eventually be categorized as resilient or resistant. Similarly, pre-infection measurements of
the Brake parameter were lowest in susceptible strains, indicating that these strains might
have had less natural gait control as their steps had relatively less firm, full contact with
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the treadmill belt. However, other parameters did not have an obvious correlation with the
TMEV response category, and often, the resilient strains had the highest or lowest values.

Resilient strains tended to have shorter stride times, greater stride frequencies, less
time spent in the propel phase, and less hindlimb shared stance time (which typically
increases with stride time [59]). These strains also had the highest values for Stance Width
CV. Together, these pre-infection measurements suggest that resilient strains had quicker
gaits than their resistant and susceptible counterparts. Prior research has demonstrated
that natural gait and posture variations between strains can be attributed in part to genetic
underpinnings and that wild-derived strains tend to have distinct gait patterns compared
to those of many classical inbred strains [60].

Gait patterns do not usually differ by sex in healthy mice of the same strain [53],
although neuropathologies can affect gait differently in females and males (for example,
mouse models of Parkinson’s disease [61]). Therefore, it was not expected to identify sex
differences in relation to pre-infection DigiGait parameters, which were measured before
the viral infection. However, of the nine gait parameters associated with TMEV responses,
four were also significantly different based on sex (Figure S1). The difference between
resilient females and susceptible males was significant for all four parameters, and for
two parameters there were significant differences between the response groups in females
only. A significant difference was also found between the resilient females and resistant
males. Every significant sex difference, in other words, involved the resilient female group.
Resilient females had the shortest stride times, greatest stride frequencies, and greatest
coefficient of variation in stance width (Stance Width CV) for the left hindlimb (a similar
pattern was observed for the other limbs, but the effects were not significant). For the right
hindlimb, resilient females showed the smallest deviation from the centroid axis (Axis
Distance) of any group, and this was significantly different from susceptible males. Taken
together, these findings suggest that resilient female mice had quicker, more symmetrical
gaits than other mice prior to TMEV infection, which could indicate an improved ability
to counteract gait deficits later on (for example, as seen for stance width variation in
mice [62]). In general, however, the TMEV response category had a greater influence on
gait measurements than sex, and it is unclear why only these four parameters showed
substantial sex differences. It is intriguing to consider that resilient females, though unable
to clear the viral infection by 90 d.p.i., could compensate from an ambulatory standpoint
based on pre-existing advantages, e.g., slightly faster gait and greater balance.

4. Materials and Methods
4.1. Mice

Ethics statement: All procedures were approved by the Institutional Animal Care
and Use Committee at Texas A&M University and performed under animal use protocol
numbers 2017-0082 (approved 20 July 2017) and 2020-0065 (approved 21 May 2020). All
experiments were performed in accordance with relevant guidelines and regulations. Mice
were group-housed, and all testing performed during the light phase. Mouse strains, sexes,
infection status, and 90 d.p.i. phenotype scores are shown in Table 3.

Previously, distinct TMEV “response categories” were identified in CC mouse strains [47];
the response categories were known for several strains included in the current study.
“Resistant” strains had no or very little evidence of TMEV RNA, along with mild disease
symptoms (low 90 d.p.i. phenotype scores) at 90 d.p.i. “Resilient” strains also had low
90 d.p.i. phenotype scores, but with high levels of TMEV RNA at 90 d.p.i. “Susceptible”
strains had high 90 d.p.i. phenotype scores, indicating severe and persistent signs of the
disease, along with high levels of TMEV RNA at 90 d.p.i.
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Table 3. Baseline DigiGait data were collected for 142 mice representing 22 mouse strains. Numbers
of female and male mice are shown, along with their TMEV infection status. Not all strains were
equally fecund and not all mice survived until 90 d.p.i., hence the differences in numbers of mice
representing each sex and strain. 90 d.p.i. phenotype scores were calculated for each infected mouse
included in the study, and the scores listed in the column to the far right represent the average of
these scores for each strain. Some CC strains were previously identified as * resistant, ** resilient,
or *** susceptible to TMEV-induced disease; these so-called “TMEV response categories” were defined
in [47] and are summarized above. The SJL/J strain and CC recombinant strains CC002 × CC023,
CC012 × CC032, and CC023 × CC002 were not included in the QTL analyses due to incompatibility
with the gQTL program [63].

Strain Infected F Infected M Sham F Sham M Total n
90 d.p.i.

Phenotype
Score

CC002 * 3 1 1 2 7 1.01
CC002 × CC023 0 0 2 2 4 0.14

CC005 0 1 1 1 3 0.14
CC011 1 2 1 1 5 0.43

CC012 × CC032 3 3 7 7 20 0.26
CC015 ** 1 2 1 2 6 0.22

CC017 4 0 1 1 6 0.41
CC023 *** 6 8 2 2 18 2.31

CC023 × CC002 0 0 0 3 3 0.21
CC024 1 1 1 1 4 0.48
CC025 3 2 1 0 6 1.15

CC027 ** 4 4 4 4 16 0.30
CC036 * 0 1 1 0 2 0.34
CC037 ** 1 0 0 0 1 0.47

CC041 1 4 0 2 7 0.92
CC043 ** 0 2 1 1 4 0.38
CC051 * 0 1 0 1 2 0.31
CC057 0 2 2 2 6 0.30
CC058 1 0 0 1 2 0.90
CC072 0 2 1 0 3 1.38
CC078 0 1 0 0 1 1.58
SJL/J 3 4 6 3 16 0.65

4.2. DigiGait

DigiGait evaluations were performed prior to TMEV infection (0 d.p.i.) to establish
the baseline gait profiles for each mouse and strain. The DigiGait rodent treadmill system
provides quantitative and objective measurements of different aspects of gait, coordination,
balance, and motor function. DigiGait has been useful for objectively assessing gait using
identical contexts, such as treadmill speed, to minimize confounding influences in a timely
manner [64]. The method provides quantitative data for each limb independently, and
evaluates over thirty gait parameters per limb; thus, generating far more data points with
greater accuracy than the traditional “foot print” method the authors have used in the
past [30]. Importantly, the DigiGait apparatus considers the weight of each mouse when
measuring these parameters; therefore, each mouse was weighed before walking on the
treadmill. All mice walked on the DigiGait treadmill for a minimum of six consecutive steps
per limb at the same speed (15 cm/s) and time of day. The treadmill belt was cleaned with
70% ethanol between each mouse performance. Measurements for each of the four limbs
(left and right forelimbs and hindlimbs) were appraised independently using DigiGait and
reported as separate values.

4.3. 90 d.p.i. Phenotype Score

All mice were subjected to phenotyping and score assignment as previously de-
scribed [31,40,58]. TMEV neurological phenotypes varied in presentation and severity over
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90 d.p.i. This variation was partly attributed to differences in the immune response [40],
lesion burden [58], and gene expression [47]. The 90 d.p.i. phenotype score included
cumulative scores for “qualitative” phenotypes measured over 90 days. These phenotypes
include paresis, paralysis, piloerection, kyphosis, seizures, limb clasping, and delayed right-
ing reflex. Each phenotype was scored as “1” if present or “0” if not present during each
observation. Infected mice were compared with strain- and sex-matched sham-infected
mice to ensure that phenotype scores were not influenced by strain-specific idiosyncrasies.
Observations occurred twice daily for the first 14 days p.i., during acute infection when
the health of the mice may decline rapidly, then weekly until 90 d.p.i. The total number of
“1” scores compared with the total number of observations were calculated to determine
the frequency of each phenotype. The sum of all phenotype frequencies at 90 d.p.i. was
the “90 d.p.i. phenotype score.” No data from sham-infected mice were considered for
association with the 90 d.p.i. phenotype score, as the phenotype scores for uninfected mice
were all approximately zero. The summarized methods are shown in Figure 2.
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Figure 2. Prior to infection, different aspects of gait were measured via DigiGait. Then, mice were in-
fected with TMEV or sham-infected (control). Mice were evaluated for neurological phenotypes twice
a day for the first 14 d.p.i. and once a week thereafter until 90 d.p.i. The phenotype scores obtained
throughout the 90 days were statistically associated with the pre-infection DigiGait measurements.

4.4. Statistical Analyses

Statistical analysis included 131 independent DigiGait variables, all measured prior
to TMEV infection. Because different DigiGait parameters were assessed with different
units/scales (such as cm2, percentages, etc.), the independent variables were standard-
ized (i.e., mean of zero and variance of one), bringing all into the same scale for a more
interpretable downstream analysis. Due to the response being skewed, a logarithm trans-
formation was performed for downstream statistical analysis.

Statistical analyses were performed using R software and the “stepAIC” function for
stepwise regression. The stepwise regression procedure involved both forward and back-
ward selection in a procedure that started with the “intercept only” model and proceeded
according to the optimal stopping criterion to choose the final model. Stepwise regression
for each of the limbs was performed separately to select pre-infection DigiGait variables
significantly associated with the 90 d.p.i. phenotype score.

To understand the effect of strain on the association between 90 d.p.i. phenotype score
and the DigiGait variables, a linear mixed effect model was fitted using lmer package.
The “r.squaredGLMM” function from the “MuMIn” package was applied to calculate a
conditional and marginal coefficient of determination for the mixed-effect model.

GraphPad Prism version 9.4.1 for Mac (GraphPad Software, San Diego, CA, USA)
was used to perform one-way ANOVA tests for associating baseline limb-specific DigiGait
parameters with TMEV response group classifications (Resistant, Resilient, Susceptible),
and two-way ANOVA tests for determining sex-specific differences among the Digigait
parameters and the three TMEV response groups. All reported p-values were based on
two-tailed statistical tests, with a significance level of 0.05.
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4.5. Identification of Significant Quantitative Trait Loci (QTL)

Strain-averaged measurement values were used to identify QTL with statistically
significant associations with DigiGait parameters, deemed to have a significant relationship
with the 90 d.p.i. phenotype score. Measurement datasets were evaluated using gQTL
software [65]; these datasets included measurements from all mice, female mice only, and
male mice only. A total of 1000 permutations and p < 0.05 standards were applied to identify
significant QTL. Next, strain-specific alleles for each QTL were identified using the Mouse
Phenome Database [66] (assembly GRCm38). This search provided rsIDs and names of
genes located nearest to the QTL SNPs, along with functional annotation for each SNP.

5. Conclusions

The severity of neurological symptoms following a viral infection can dictate the long-
term quality of life. Symptom severity is, in part, influenced by pre-existing factors such as
genetic background, which also affects immunological and physiological predispositions.
In this study, baseline measurements of different aspects of gait, collected prior to infection,
were statistically correlated with the severity of neurological symptoms during and after a
viral infection. Mice with a shuffling and ambling gait prior to infection tended to be more
severely affected after infection. Conversely, a more balanced and normal gait tended to
predict a milder neurological outcome. Most intriguing, however, were the “resilient” mice
which did not clear the viral infection but often had more divergent baseline gait profiles
for parameters which had similar measurements in resistant and susceptible mice prior
to infection.
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