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Abstract: White lupin is a high-protein crop requiring drought tolerance improvement. This study
focused on a genetically-broad population of 138 lines to investigate the phenotypic variation and
genotype × environment interaction (GEI) for grain yield and other traits across drought-prone and
moisture-favourable managed environments, the trait genetic architecture and relevant genomic
regions by a GWAS using 9828 mapped SNP markers, and the predictive ability of genomic selection
(GS) models. Water treatments across two late cropping months implied max. available soil water
content of 60–80% for favourable conditions and from wilting point to 15% for severe drought. Line
yield responses across environments featured a genetic correlation of 0.84. Relatively better line yield
under drought was associated with an increased harvest index. Two significant QTLs emerged for
yield in each condition that differed across conditions. Line yield under stress displayed an inverse
linear relationship with the onset of flowering, confirmed genomically by a common major QTL. An
adjusted grain yield computed as deviation from phenology-predicted yield acted as an indicator of
intrinsic drought tolerance. On the whole, the yield in both conditions and the adjusted yield were
polygenic, heritable, and exploitable by GS with a high predictive ability (0.62–0.78). Our results can
support selection for climatically different drought-prone regions.

Keywords: drought stress; genotype × environment interaction; genomic selection; GWAS; grain
yield; phenology; plant adaptation

1. Introduction

White lupin (Lupinus albus L.) is a Mediterranean grain legume that used to be a major
crop in various regions of the Roman Empire because of its ability to adapt to and improve
infertile soils [1]. A recent surge of interest in its cultivation as a rain-fed food or feed
crop in Europe is justified by its protein content that is close to 40% and other favourable
quality traits of its seed [2–4], which can respond to the increasing demand for healthy and
nutritious plant-based food [5] and high-protein feedstuff [6]. In particular, the exploitation
of white lupin seed as a component of functional, healthy, or vegan food is favoured by its
good content of essential amino acids and several useful techno-functional properties [7],
the positive effects on human health that it can exert with respect to diabetes and glycaemia,
hypertension, cardiovascular diseases, and obesity [8], and 8–12% content of oil with
excellent nutritional characteristics [9]. The potential value of white lupin for feed protein
production was confirmed by its greater crude protein yield per unit area compared with
other cool-season grain legumes, such as pea (Pisum sativum L.), faba bean (Vicia faba L.),
and narrow-leafed lupin (Lupinus angustifolius L.), across climatically-contrasting, autumn-
sown environments of southern Europe [10]. However, insufficient yielding ability limits
the spread of this crop crucially [11].

White lupin adaptation to severe drought has paramount importance in Mediterranean-
climate areas, where this stress occurs in coincidence with critical reproductive stages.
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Drought stress is predicted to increase throughout the Mediterranean basin and to expand
northward and eastward into Europe, owing to lower rainfall and rising evapotranspi-
ration caused by climate change [12]. The available information on the extent of white
lupin genetic variation for drought tolerance is modest and concerns mainly landrace
material. A fairly narrow variation was observed in germplasm from Portugal [13]. Vari-
ation for this trait was reported in Egyptian germplasm [14], while a few accessions of
Italian origins were found to be more drought tolerant than local germplasm in Egypt [15].
Annicchiarico et al. [16] reported large yield variation among accessions of a world lan-
drace collection grown in a moderately favourable Mediterranean environment, along
with the definite superiority of several landrace accessions over a set of control varieties.
Variation for specific adaptation to severe drought, as indicated by a fairly large geno-
type × environment interaction (GEI) for grain yield across drought-prone and moisture-
favourable managed environments, was reported by Annicchiarico et al. [17] for a set
of landraces having different geographic origins and similar phenology. Moderate GEI
across these environments emerged also for individual genotypes sorted out of landrace
accessions [18]. Finally, large GEI was reported for a small set of breeding lines across
subcontinental-climate and Mediterranean-climate sites of Italy [19].

The tolerance of cool-season grain legumes to the terminal drought that features
Mediterranean-climate regions is typically associated with an early phenology, but the
exploitation of this drought stress-escape mechanism in autumn-sown environments may
be limited by the lower winter hardiness of early-flowering germplasm [20,21]. When
targeting such environments, it may be useful to assess and exploit the genetic variation for
intrinsic drought tolerance obtained by partialling out the effect of phenology on genotype
yield responses [22]. As an alternative, more demanding avenue, one may dissect and
exploit the variation for single traits that contribute to drought avoidance or drought
resistance [23,24].

The scope for molecular marker-based selection has widened considerably after the
development of next-generation sequencing techniques, such as genotyping-by-sequencing
(GBS; [25]), which allows genotyping large germplasm sets by thousands of single nu-
cleotide polymorphism (SNP) markers at a relatively low cost. Książkiewicz et al. [26]
confirmed the ability of GBS to generate thousands of polymorphic SNP markers for
white lupin genetic analyses and highlighted its value for a genome-wide association
study (GWAS). Identifying and exploiting putative QTL (quantitative trait loci) hotspots
of the genome that are associated with drought tolerance led to enhanced crop yield un-
der drought in two other cool-season grain legumes, such as pea [27] and chickpea [28].
In the presence of a definitely polygenic trait genetic architecture revealed by a GWAS,
which is likely to emerge for complex traits such as crop yield or drought tolerance, an
alternative molecular breeding strategy is represented by genomic selection (GS). This
strategy combines phenotyping and genotyping data of a genotype sample (training pop-
ulation) representing a target genetic base (reference population) into a statistical model
for the prediction of breeding values in future plant selection [29,30]. Pioneer exam-
ples of GS for grain legume drought tolerance improvement were provided for pea [22]
and chickpea [24], and a proof-of-concept study confirmed the ability of GS to identify
drought-tolerant pea lines [27]. Encouraging results for GS of white lupin yield emerged in
Annicchiarico et al. [18], who reported predictive ability values (as Pearson’s correlation
between predicted and observed values based on intra-environment cross-validations)
in the range of 0.47–0.76 for geographically-diversified landrace material evaluated in
climatically-contrasting regions or across moisture-favourable and severely drought-prone
managed environments. A second study on landrace germplasm reported high to moderate
predictive ability (0.49–0.85) for a set of morphophysiological traits [31].

White lupin studies on drought tolerance variation, GEI and genome-enabled pre-
dictive ability are scanty. In addition, their results relative to landrace germplasm are not
necessarily meaningful to breeding programs, which select inbred lines whose variation
for yielding ability and drought tolerance on the one hand and for molecular markers on
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the other may be smaller than those of geographically-diversified landrace material. This
study focused on a reference population of inbred lines generated by crossing each of four
elite sweet-seed cultivars or breeding lines with each of four elite landrace accessions of
different geographical origins. Its main objectives were (a) to assess the phenotypic varia-
tion for adaptation to severe drought and the extent of GEI for grain yield, aerial biomass,
harvest index, and the onset of flowering across drought-prone and moisture-favourable
managed conditions, (b) to investigate the genetic architecture and the presence of highly
relevant genomic regions for grain yield under severe drought and favourable conditions
and intrinsic drought tolerance by a GWAS, and (c) to assess the ability of different GS
models to predict genotype yield responses, drought tolerance, and the onset of flowering.

2. Results
2.1. Adaptive Responses

The reduction of water supply in the drought-prone managed environment relative to
the moisture-favourable one, which amounted to 53% over the crop cycle (170 vs. 360 mm)
and 79% over the two-month period of stress application (50 vs. 240 mm), determined
average reductions of 61% for grain yield (0.88 vs. 2.28 t/ha) and 66% for aerial biomass
(grain plus straw: 3.13 vs. 9.13 t/ha). The somewhat lower penalty suffered by grain yield
relative to aerial biomass was associated with a concurrent, slight increase of the harvest
index under stress (0.281 vs. 0.250) (Table 1). Drought stress also caused an anticipation of
2.8 days of the mean onset of flowering (Table 1).

Table 1. Mean value, genetic or phenotypic coefficient of variation (CV), and broad-sense heritability
on a line mean basis (H2), for 138 white lupin inbred lines in drought stress and moisture-favourable
managed environments.

Trait Environment a Mean b CV (%) c H2

Grain yield (t/ha) Stress 0.88 28.7 0.70 ± 0.04
Grain yield (t/ha) Favourable 2.28 35.1 0.69 ± 0.04
Straw biomass (t/ha) Stress 2.25 19.6 0.65 ± 0.05
Straw biomass (t/ha) Favourable 6.85 30.4 0.72 ± 0.04
Aerial biomass (t/ha) Stress 3.13 20.4 0.65 ± 0.05
Aerial biomass (t/ha) Favourable 9.13 30.6 0.71 ± 0.04
Harvest index Stress 0.281 10.9 0.76 ± 0.03
Harvest index Favourable 0.250 10.2 0.58 ± 0.06
Onset of flowering (days from 1 April) Stress 38.7 11.2 0.93 ± 0.01
Onset of flowering (days from 1 April) Favourable 41.5 10.9 0.92 ± 0.01
Adjusted grain yield d (t/ha) Stress 0 − 0.59 ± 0.06
Drought susceptibility index (DSI) e − 1.08 29.2 −

a Water treatments applied from 15 April to 15 June. Favourable: soil water content in the range of 60–80% of
max. available content; stress: soil water content ranging from wilting point to 15% of max. available content.
b Trait means difference between environments significant at p < 0.10 for harvest index and onset of flowering
and at p < 0.01 for the other traits. c CV was not estimable for adjusted grain yield (due to zero trait value), was
phenotypic for DSI (computed on within-environment line mean values), and was genetic for the other traits.
Variation among lines significant at p < 0.01 for all traits, including the adjusted grain yield. d As deviation from
yield under stress expected from linear regression as a function of onset of flowering; used as indicator of intrinsic
drought tolerance. e According to [32].

The genetic variation among inbred lines was significant for all traits in each envi-
ronment (p < 0.01) but tended to decrease under drought relative to moisture-favourable
conditions for grain and straw biomass according to the genetic coefficient of variation
values (Table 1). The broad-sense heritability, however, was comparable across conditions,
except for the lower value under favourable conditions of the harvest index (Table 1). Line
grain yield values ranged from substantial crop failure (0.09 t/ha) to 1.64 t/ha under stress,
and from 0.45 to 4.68 t/ha under favourable conditions. The line drought susceptibility
index (DSI) ranged from 0.18 to 1.74.

Line grain yield under stress exhibited an inverse linear relationship with the onset of
flowering (p < 0.01), across about 20 days of line phenology range (Figure 1). The regression
R2 value suggested that drought stress escape accounted for nearly 30% of the line yield
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variation under stress, with an average yield loss of 0.036 t/ha per day of delayed flowering
(Figure 1). The adjusted grain yield computed as the yield deviation from regression,
which acted as an indicator of intrinsic drought tolerance, varied from −0.52 to 0.57 t/ha
(Figure 1). This measure displayed broad-sense heritability of practical interest for breeders,
although its value was somewhat lower than that for grain yield under stress (0.59 vs. 0.70;
Table 1).
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Figure 1. Linear regression of grain yield under drought stress as a function of onset of flowering for
138 white lupin inbred lines.

A combined analysis of variance (ANOVA) indicated the occurrence of GEI across
managed environments (p < 0.01) for all traits except the onset of flowering. However,
a significant lack of genetic correlation (rg) for line responses across environments (as
indicated by the significant deviation from the unity value of rg at p < 0.05) was only found
in grain yield and harvest index (Table 2), suggesting that GEI for the other traits was
essentially due to the heterogeneity of genotype variance across environments. The unity
value of rg for the onset of flowering indicated a perfect consistency of line phenology
differences across environments (Table 2). The GEI effects for grain yield and harvest index
were correlated (r = 0.43, p < 0.01), indicating that genotypes that displayed relatively better
performance under drought tended to increase their harvest index under drought more
than drought-susceptible material.

Table 2. Genotype (G) and genotype × environment interaction (GEI) components of variance, and
genetic correlation (rg) of genotype values across environments, for traits of 138 white lupin inbred
lines grown in drought stress and moisture-favourable managed environments.

Variance Component a

Trait G GEI rg ± SE

Grain yield (t/ha) 0.170 0.182 0.84 ± 0.07
Straw biomass (t/ha) 0.857 1.414 0.93 ± 0.07
Aerial biomass (t/ha) 1.675 2.448 0.93 ± 0.07
Harvest index 0.000557 0.000242 0.71 ± 0.09
Onset of flowering (days from 1 April) 19.98 0 1.00 ± 0.01

a All components different from zero at p < 0.01 except GEI for onset of flowering.

Line grain yield was positively correlated with straw biomass and harvest index, and
negatively correlated with the onset of flowering, under both drought stress and favourable
conditions (p < 0.01; Table 3). However, the relationships of grain yield with harvest
index and phenology were closer under drought stress than under favourable conditions
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(Table 3), in agreement with the importance of earlier phenology for stress escape and the
exploitation of GEI for greater harvest index under drought by drought-tolerant lines that
were suggested by previous results.

Table 3. Trait phenotypic correlations for 138 white lupin inbred lines grown in drought stress and
moisture-favourable managed environments.

Trait Grain Yield, Stress Adjusted Grain
Yield, Stress

Grain Yield,
Favourable

Straw biomass a 0.71 ** 0.69 ** 0.86 **
Aerial biomass a 0.87 ** 0.79 ** 0.92 **
Harvest index a 0.73 ** 0.49 ** 0.59 **
Onset of flowering a −0.54 ** 0.00 −0.40 **
Drought susceptibility
index (DSI) b −0.15 † −0.14 † 0.62 **

Adjusted grain yield c 0.84 ** − −
†, ** = different from zero at p < 0.10 and p < 0.01, respectively. a Relative to the growing condition in which grain
yield was assessed. b According to [32]. c As deviation from yield under stress expected from linear regression as
a function of onset of flowering; used as indicator of intrinsic drought tolerance.

The DSI exhibited just a slightly negative relationship with line yield under stress
(r = −0.14, p < 0.10) while being closely associated with line yield in favourable conditions
(r = 0.62), indicating that its values depended mainly on the line-yielding ability under
favourable conditions and would, therefore, be of limited value for selection of drought-
tolerant germplasm (unlike adjusted grain yield values, which displayed high correlation
with grain yield under stress: Table 3). As a consequence, DSI was neglected by following
genome-focused analyses.

On average, the progeny lines of the landrace La646 displayed the highest intrinsic
drought tolerance according to adjusted yield data (Table 4). This feature, which was
associated with late flowering, led to mean grain yield under drought of its progeny lines
that was comparable with that of the progeny lines of the Moroccan line L27PS3, of which
the good yielding ability under stress was due to very early flowering rather than intrinsic
drought tolerance (Table 4). High mean grain yield under drought due to early flowering
was also shown by progenies of the landrace LAP123. In contrast, poor mean yield in
this condition associated with high susceptibility to drought tolerance was exhibited by
progenies of the landrace Gr56 and, to a lesser extent, those of line MB-38 (Table 4).

Table 4. Breeding value of eight white lupin parent genotypes used for 16 factorial crosses of landrace
× sweet-seed cultivar or breeding line germplasm based on mean values of their progeny lines for
grain yield under severe drought and adjusted yield, and mean progeny values of onset of flowering.

Plant Material Parent
Genotype Yield (t/ha) Adjusted

Yield (t/ha) a

Onset of
Flowering (dd
from 1 April)

Landrace Gr56 0.731 −0.170 38.1
Landrace LAP123 0.984 0.035 36.8
Landrace La246 0.885 0.006 38.8
Landrace La646 0.944 0.105 39.9
Cultivar/Breeding line Arsenio 0.892 0.024 39.1
Cultivar/Breeding line L27PS3 0.942 −0.016 36.6
Cultivar/Breeding line Lucky 0.941 0.051 38.4
Cultivar/Breeding line MB-38 0.769 −0.084 39.5

a As deviation from yield under stress expected from linear regression as a function of onset of flowering.

2.2. Trait Genetic Architecture

Genotyping-by-sequencing (GBS) of the DNA samples generated, on average, 1.93 million
reads per sample. After alignment, SNP calling, and quality filtering, we obtained a set of
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19,024 markers, which were further filtered for missing rates. We retained for linkage dise-
quilibrium (LD), population structure, and GWAS analyses 9828 polymorphic SNP markers
that mapped on the Lupinus albus genome released by Hufnagel et al. [33], after imposing the
thresholds of 30% maximum missing rate per marker and 50% maximum missing rate per
sample. For GS analyses, we also envisaged other thresholds of missing rate per marker (i.e.,
15% and 20%).

On average, the LD reached half of its 90th percentile (r2 = 0.38) at 811 bp, with values
for the single chromosomes that ranged from 338 bp for the chromosome 12 to 1592 bp for
the chromosome 10 (Supplementary Figure S1).

An analysis of population structure was performed by a discriminant principal com-
ponents analysis (DPCA). In its first step, the DPCA was applied to identify the optimal
number of genotype groups (K) for imputation in the GWAS and GS analyses by the
k-means algorithm applied to increasing levels of K, selecting the value of K = 17 that
minimized the Bayesian Information Content (BIC) (Figure 2, top panel). The final DPCA
performed according to this K value retained seven components according to the a-score
criterion. The main results of this analysis are summarised in Figure 2 (bottom panel) as a
function of the genotype scores in the space of the first two DPCA components. As expected,
all genotypes were grouped according to the cross they derived from. The genotypes issued
from the four crosses involving Lucky as the sweet-seed parent (square symbols in Figure 2),
and those issued from the four crosses having the landrace La646 from the Canary Islands
(green symbols in Figure 2), were clearly separated from the rest of the genotypes, whereas
the material from crosses of the remaining parents created well-defined but occasionally
intertwined clusters (Figure 2).Int. J. Mol. Sci. 2023, 24, 2351 7 of 21 
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Figure 2. Assessment of population structure by a discriminant principal components analysis
(DPCA). The top panel shows the Bayesian Information Content (BIC) as measured after clustering
the samples by the k-means algorithm for increasing levels of K. The bottom panel shows the first
two DPCA components for the selected K level. The symbol shapes represent the sweet-seed parent
line (Lucky: square; MB-38: circle; Arsenio: triangle; L27PS3: cross); the symbol colours represent the
bitter-seed parent accession (Gr56: red; La646: green; La246: blue; LAP123: magenta).

The GWAS revealed two significant SNPs for grain yield under moisture-favourable
conditions on chromosomes 13 and 21, two SNPs for grain yield under severe drought
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stress on chromosomes 8 and 18, and seven SNPs for the onset of flowering placed in as
many different chromosomes (1, 3, 9, 13, 15, 18, and 20) (Figure 3; Table 5). No significant
association was detected for the adjusted grain yield (Figure 3). Our results suggested a
definite polygenic control not only for the adjusted grain yield but also for yield in either
cropping condition, when considering that the proportion of the total phenotypic variance
explained by the significant SNPs amounted to 36.8% and 40.5% for grain yield under
favourable and stress conditions, respectively (Table 5). The seven significant SNPs for
the onset of flowering accounted jointly for over 50% of the trait phenotypic variation
(Table 5). Importantly, the most significant SNP marker for grain yield under drought stress,
which mapped on chromosome 18, coincided with the most significant SNP for the onset
of flowering (Table 5), confirming at the genomic level the association of early phenology
with better crop performance under severe drought that emerged from the analysis of
phenotypic data.
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Figure 3. Manhattan plots showing the association scores between 9828 SNPs and grain yield under
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Bonferroni’s threshold at p < 0.05 and p < 0.01, respectively.
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Table 5. Significant (p < 0.01) SNPs detected by a GWAS based on 9828 SNPs and 134 white lupin
inbred lines for grain yield under moisture-favourable (Yield_NS) and drought conditions (Yield_S),
and for onset of flowering (Flowering), with proportion of explained phenotypic variance and minor
allele frequency (MAF).

SNP Trait Variance (%) MAF

Chr21_5357552 Yield_NS 29.0 0.10
Chr13_10513725 Yield_NS 7.8 0.43
Chr18_13052982 Yield_S 31.9 0.12
Chr08_862028 Yield_S 8.6 0.24
Chr18_13052982 Flowering 20.3 0.12
Chr20_17362727 Flowering 1.3 0.42
Chr13_1653492 Flowering 2.1 0.22
Chr09_6606393 Flowering 9.2 0.11
Chr15_14142372 Flowering 1.1 0.49
Chr03_5647810 Flowering 10.4 0.05
Chr01_6340005 Flowering 5.8 0.06

2.3. Genome-Enabled Predictions

We assessed the predictive ability of GS models as Pearson’s correlations between
true and predicted phenotypes by envisaging a single-environment predicting scenario for
the four traits (via standard cross-validation) as well as a cross-environment predicting
scenario for grain yield (where one environment was used to train the model for trait
prediction in the other environment). Table 6 reports for each trait the best combination
of four tested statistical models, three thresholds of maximum missing rate per SNP
marker (0.15, 0.20, 0.30), and the presence or absence of inputted population structure that
allowed to maximize the predictive ability. In general, we found a high single-environment
predictive ability for all traits, with values ranging from 0.619 for the adjusted grain yield to
0.780 for grain yield in favourable conditions. Predictive ability values displayed relatively
modest variation among most combinations of statistical models, missing rate and presence
or absence of population structure (Supplementary Figure S2). The cross-environment
predictive ability for grain yield was lower than the single-environment scenario but still
moderately high in absolute terms, ranging from 0.506 (GS training on moisture-favourable
data) to 0.600 (GS training on drought stress data) (Table 6).

Table 6. Predictive ability (as Pearson’s correlation between true and predicted phenotypes) of best-
performing genomic selection models for single-environment (first four rows) and cross-environment
(last two rows) prediction scenarios.

Trait a Model b
Population
Structure
Included

Maximum
Missing Rate

per SNP Marker

Predictive
Ability c

Onset of flowering WGBLUP Yes 0.30 0.760
Grain yield [favourable] WGBLUP Yes 0.30 0.780
Grain yield [stress] WGBLUP Yes 0.20 0.670
Adjusted grain yield RKHS No 0.15 0.619
Grain yield [favourable]→
Grain yield [stress] BL No 0.15 0.506

Grain yield [stress]→
Grain yield [favourable] RKHS No 0.15 0.600

a In the cross-environment scenario, the first reported trait (before the arrow) is used for training the model to
predict the second trait. b WGBLUP, Weighted G-BLUP; RKHS, Bayesian Reproducing Kernel Hilbert Space; BL,
Bayesian Lasso. c The training procedure was repeated 10 times, reporting the mean values.

The weighted G-BLUP (WGBLUP) statistical model was top-performing for three
traits out of six in Table 6, whereas Bayesian Reproducing Kernel Hilbert Space (RKHS)
and Bayesian Lasso were top performing for two traits and one trait, respectively. However,
the four tested statistical models performed quite similarly in a more thorough model
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comparison based on predictive ability values averaged across traits (Table 7). Likewise,
no threshold of missing rate per SNP marker (0.15, 0.20 or 0.30) provided a consistent
predictive ability advantage on the ground of selected top-performing models (Table 6), or
predictive ability values averaged across traits (Table 7). Inputting population structure
into prediction models did not provide a consistent advantage according to top-performing
models, which included this information layer in three cases out of six (Table 6).

Table 7. Comparison of four statistical models for genomic selection based on their predictive ability
averaged across the six traits (four according to a single-environment scenario and two according to
a cross-environment scenario) listed in Table 6, for different thresholds of allowed missing rate per
SNP marker.

Model a Maximum Missing Rate per SNP Marker

0.15 0.20 0.30 Average

BL 0.630 0.628 0.628 0.629
RKHS 0.640 0.638 0.644 0.641
rrBLUP 0.634 0.635 0.636 0.635
WGBLUP 0.636 0.634 0.638 0.636
Average 0.635 0.634 0.636 0.635

a BL, Bayesian Lasso; RKHS, Bayesian Reproducing Kernel Hilbert Space; Ridge Regression BLUP; WGBLUP,
Weighted G-BLUP.

3. Discussion

The grain yield reduction of 61% arising from the imposed drought stress was severe
but largely comparable, for example, with yield reductions in the range of 35–76% that
were reported for narrow-leafed lupin across moisture-favourable and drought-prone
environments of Australia [34]. The observed extent of GEI for grain yield across moisture-
contrasting environments was in substantial agreement with earlier studies on white lupin
that were performed in managed environments on germplasm sets mainly composed of
accessions [17] or individual genotypes [18] of landrace germplasm. These earlier studies
revealed genetic correlation values for yield responses across managed environments that
were somewhat lower than the current one (rg = 0.76–0.77 vs. 0.84). The imposition of
greater yield reduction under stress (nearly 80%) and the wider genetic variation of the
tested germplasm in those studies may account for this minor difference. A reason for
the moderately high genetic correlation across drought-prone and moisture-favourable
environments that was observed in this study and the earlier ones could be a general
impact of climatic adaptation, since the delay in fulfilling the vernalization requirement of
later-flowering lines under the adopted late-winter sowing could disfavour a priori these
lines in both managed environments [17]. The occurrence of such a delay is supported
by the fact that mean daily temperatures averaged 7.6 ◦C in the first two weeks following
the sowing, while 6 ◦C would be needed for the vernalization of mid- to late-flowering
genotypes in the same period [35].

Correlation and regression results for the onset of flowering confirmed that drought
stress escape by early flowering is an important mechanism for white lupin adaptation
to environments with severe drought. This result was confirmed at the genomic level
by the fact that the most important SNP for grain yield under stress coincided with that
for the onset of flowering. The association of drought tolerance with early phenology
emerged in earlier studies on white lupin [17] and other grain legumes, such as narrow-
leafed lupin [36] and pea [22]. The study on pea, which was performed on three sets of
recombinant inbred lines under managed stress conditions similar to the current ones,
revealed a nearly identical response pattern of line grain yield as a function of the onset of
flowering when averaging its results across the three line sets, namely, an average yield loss
of 0.033 t/ha per day of delayed flowering (compared with the current value of 0.036 t/ha)
across a 20-day range of line onset of flowering that is identical to the current one. The
only difference between the two studies was the greater R2 for the regression of yield as a
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function of the onset of flowering in the pea study (which averaged 0.63, compared with
the current value of 0.29), suggesting that drought stress escape had about two-fold greater
impact on grain yield variation of pea lines compared with current lupin lines. The adjusted
yield, which was indicative of intrinsic drought tolerance, had lower relative importance
in the pea study (where it related to 37% of the total grain yield variation based on the
average R2 value) than in the current study (where it related to 71% of the total variation),
but its reported broad-sense heritability was quite similar in the two studies (0.57 vs. 0.59).
Importantly, the exploitation of the adjusted yield through marker-assisted selection or
GS produced pea genotypes with distinctly improved drought tolerance in a following
proof-of-concept study [27]. Actually, stress escape by earlier flowering emerged as well
as a plant plasticity mechanism in the present study, based on the modest anticipation of
mean flowering date exhibited unanimously by all lupin genotypes (without GEI).

Although appealing for drought tolerance improvement, the exploitation of early onset
of flowering is limited in many white lupin cropping environments, such as the autumn-
sown ones in inland areas of the Iberian, Italian and Balkan peninsulas, because the early-
flowering germplasm is more subjected than the late one to winter low-temperature stress
and winter mortality [21]. The ideal plant type in these environments ought to combine
moderate lateness of flowering with high intrinsic drought tolerance. Indeed, the landrace
accession La646, which possesses these characteristics [17], exhibited an exceptionally
wide adaptation pattern that made it the top-yielding one out of 121 landraces or modern
cultivars evaluated across drought-prone or cold-prone autumn-sown environments of
southern Europe [16]. The progeny lines of this landrace clearly tended to inherit these
characteristics (Table 4), reinforcing the high value of this accession as a genetic resource
for breeding programs. The heritability of intrinsic drought tolerance is also supported in-
directly by the mean response of the progeny lines of the Greek landrace Gr56, an accession
that exhibited high susceptibility to drought [17]. The indications of heritable variation
from parent genotypes to progeny lines and moderately high broad-sense heritability that
emerged for complex traits, such as intrinsic drought tolerance and grain yield under severe
drought, are encouraging for drought tolerance improvement of this crop.

Intrinsic drought tolerance may rely on different physiological mechanisms in white
lupin, such as stomatal closure, greater stomatal conductance, or less reduced net pho-
tosynthesis under stress [13,37]. In addition, the ability to accumulate assimilates in the
shoots upon drought stress intensification may contribute to plant survival and seed filling
under stress through re-translocation [13,38]. This latter mechanism may have contributed
to the greater increase of the harvest index under stress that represented a key feature of
drought-tolerant lines in this study and emerged already for landrace germplasm [17].

We observed a faster LD decay in our germplasm set compared with that reported
earlier for a collection of cultivars and landraces [39], possibly because of the generation by
our crossing scheme of a high number of heterozygous loci differently combined depending
on the specific geographically-contrasting parental lines. The occurrence of substantial
variation among chromosomes for LD decay was already found in [39]. Although chal-
lenged by the fast LD decay and the somewhat suboptimal genotype sample size, our study
was able to reveal a few QTLs for grain yield under moisture-favourable or drought stress
conditions while confirming the expected polygenic control of the crop yield traits, espe-
cially the adjusted yield (to which various physiological mechanisms with fairly limited
individual impact may be expected to contribute). The polygenic control of all yield traits
was confirmed by (a) the ability of the significant SNPs to account for only a minor portion
of the phenotypic variation and (b) the definitely lower proportion of phenotypic variation
that these SNPs could explain compared with that of GS models (which can also account
for minor gene effects). An insufficient GWAS power to detect small-effect SNPs [40] likely
hindered our ability to identify QTLs with modest genetic effects for grain yield in drought
or favourable conditions and the adjusted grain yield.

Interestingly, the significant SNPs for grain yield differed across managed environ-
ments in spite of the moderately high genetic correlation across environments. This result
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emphasized the partly different genetic control of the yield trait in the two cropping con-
ditions. On the other hand, the moderately high genetic correlation for genotype yield
response across the contrasting environments, and the only moderate decrease of GS
predictive ability for grain yield passing from single-environment to cross-environment
prediction scenarios (Table 6), suggested that many small-effect loci for grain yield may be
coincident between favourable and drought stress environments.

Our GWAS results suggested a polygenic control also for the onset of flowering, a
result that agrees with recent unpublished results by Rychel et al. (personal communication).
Some of the significant SNPs revealed by our study mapped on the same chromosomes of
QTLs reported in previous GWAS and linkage mapping studies conducted under various
vernalization conditions, including regions on chromosomes 1 [41], 3 [42], 13 [26,41,42],
and 20 [42]. In contrast with earlier studies [26,41,42], we found no QTL on chromosomes
2 and 16 for this trait, possibly because extremely late-flowering lines were absent from our
germplasm set.

Our study revealed several genomic regions of potential interest for grain yield and
onset of flowering selection by scanning a region as long as the mean chromosome distance
at which LD dropped below 0.2 in both directions from each significant SNP (Supplementary
Table S1). Inter alia, Lalb_Chr13g0291541 that was associated with SNP Chr13_1653492
for the onset of flowering encodes a transcription factor of the C2H2 family [43], which is
known to play a role in flowering regulation [44]. However, the polygenic control of all focus
traits does support the exploitation of SNP information mainly by means of GS models, also
in view of the high predictive ability exhibited by these models. In particular, our findings
reinforced the high potential interest of GS for lupin grain yield improvement by confirming
for a genetically-broad reference population of sweet-seed breeding lines the high predictive
ability of GS found in landrace germplasm [18]. That study reported predictive ability
values for single-environment grain yield predictions in moisture-favourable or drought
stress conditions in the range of 0.47–0.58, which are somewhat lower than the current
range of 0.67–0.78 (Table 7). Likewise, the cross-environment predictive ability values across
moisture-favourable and drought-stress environments in [18] (in the range of 0.42–0.51) are
somewhat lower than the current values (in the range of 0.51–0.60; Table 6). If the limited
seed market size of white lupin supported the breeding of this crop for wide adaptation [45],
the moderate consistency of GS predictions across the moisture-contrasting environments
could be exploited to build a comprehensive GS model trained on grain yield data from
the contrasting environments. On the other hand, the selection for specific adaptation to
drought-prone cropping environments could exploit (a) the GS model for grain yield under
drought when targeting a mild-winter region or (b) the GS model for the adjusted yield
(also featuring a substantial predictive ability), when targeting autumn-sown, relatively
cold-prone environments by selection for intrinsic drought tolerance without affecting
the phenology.

In conclusion, this study generated information that could support the phenotypic
and genomic selection of white lupin for drought-prone or climatically-diversified target
regions. It confirmed the importance of an early phenology for drought stress escape on the
ground of phenotypic and GWAS results. However, it revealed the presence of heritable,
polygenic genetic variation for intrinsic drought tolerance that could be exploited through
phenotypic selection or, less expensively, through moderately reliable genomic predictions.
It also indicated the feasibility of phenotypic or genomic selection for wide adaptation to
moisture-contrasting target environments. The high predictive ability of the current GS
models for drought tolerance will be verified by future proof-of-concept work aiming to
assess actual genetic gains obtained from GS application to independent germplasm sets.

4. Materials and Methods
4.1. Plant Material

The plant material for this study included 138 sweet-seed inbred lines chosen from
a reference population developed by CREA to broaden the genetic base for white lupin
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breeding in Europe. The list of test lines and information on their parent germplasm are
provided in Supplementary Table S2. The reference population originated from crosses
of each of four elite, sweet-seed cultivars or breeding lines with each of four elite, bitter-
seed landrace accessions. To further broaden the population genetic base, we used a
different parent genotype within a landrace accession for each of its crosses with sweet-
seed genotypes (assuming that landraces are genetically heterogeneous, unlike modern
cultivars). Landrace accessions were selected out of a world germplasm collection evaluated
for grain yield under spring-sowing in France and autumn-sowing in two climatically-
contrasting Italian sites [16]. Additional information for parent choice was provided from
other studies, e.g., [46] for lime tolerance, [45] for genotype adaptation across Italian
environments, and [17] for drought tolerance. In brief, the landrace accessions identified
as La246 and La646 in INRAE’s white lupin germplasm collection originated respectively
from Italy and the Canary Islands, the French variety Lucky, and the Italian variety Arsenio
(referred to as line 7–50 in earlier studies), were selected because of their wide adaptation to
climatically-contrasting and/or moisture-contrasting environments; the Moroccan breeding
line L27PS3, because of its good adaptation to drought stress environments; the Greek
landrace accession Gr56 from INRAE’s collection and the breeding line MB-38, because of
the high tolerance to low winter temperatures; and the Italian landrace LAP123 collected
by CREA, because of the moderate lime tolerance. Seed quality characteristics contributed
to parent choice, e.g., the high γ-conglutin content of Arsenio and Lucky or the very large
seed of LAP123. Crosses in 2014 and on-season or off-season single-seed descent-based
generations of F2 to F5 inbred lines for each of the 16 crosses from 2015 to 2017 were
carried out in isolation under insect-proof nets to prevent any out-crossing. Within-cross
selection for low alkaloid content was performed (a) on F3 and F4 individual seeds by the
fluorescence method [47]; and (b) on F4 individual seeds by a non-destructive test that
adapted to single seeds the spectrophotometer method described by [48] and [49], in order
to discard material whose alkaloid content belonged to the highest 25% quartile. The final
population included 960 F5 inbred lines (60 per cross), of which 560 (35 per cross) were
genotyped, and 192 (12 per cross) were multiplied in isolation in 2018 to obtain F6 seed
used for this study and to characterize phenologically these lines. The final set of 138 test
lines was assembled by randomly choosing within early-maturing crosses and by selecting
for earliness within late-maturing crosses in order to avoid the presence in the panel of
definitely winter-type germplasm (since a late phenological type was expected a priori
to be poorly adapted to severely drought-prone environments). The number of lines per
cross ranged from 3 to 10 (Supplementary Table S2). However, the number of lines issued
by each individual parent was more balanced, ranging from 27 for MB-38 to 37 for La246,
La646, Lucky, Arsenio, and L27PS3.

4.2. Phenotyping

The 138 inbred lines were grown in Lodi, northern Italy, in a phenotyping platform
already used for other drought-tolerance studies (e.g., [27]). The platform is composed of
eight independent, large (24.0 m × 1.6 m × 0.8 m deep) bottomless containers in concrete
filled with local soil, covered by a rainout shelter and equipped with a double-rail irrigation
boom (Supplementary Figure S3). Four containers formed just as many complete replicates
of a managed environment with imposed severe drought stress; the other four represented
the replicates of a moisture-favourable managed environment. The containers were filled
with local sub-acid (pH 6.5), sandy-loam (55.9% sand, 32.4% silt, 11.7% clay) soil, which
featured 22.2% (in volume) field capacity and 9.0% (in volume) wilting point. Each plot
included two rows of five plants, each spaced 0.15 m across and within rows (plant density
= 44 plants/m2), keeping two edge plants as border plants. Sowing took place in the
late winter (mid-February) in 2019 to avoid any confounding effect of susceptibility to
low temperatures in addition to drought. Mineral fertilization was incorporated into the
seedbed at the rates of 27 kg/ha of N, 46 kg/ha of P2O5, and 50 kg/ha of K2O. The seed was
inoculated with NPPL HiStick inoculant (Becker Underwood, Toulouse, France) prior to
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sowing. Pre-emergence weed control was performed by applying 1.5 L/ha of Stomp Aqua
(Basf Agro; Pendimentalin 38%). After an initial stage of favourable vegetative growth that
implied 120 mm of irrigation, two conditions of water availability were imposed, starting
from 16 April to 16 June (i.e., one to two weeks before crop harvest). A Diviner 2000
capacitance sensor (Sentek Pty Ltd., Stepney, Australia) monitored the soil moisture every
two to three days. In the moisture-favourable environment, irrigation of about 20 mm was
applied when the soil water content decreased beneath 60% of the maximum available
soil water (i.e., soil water content at field capacity minus soil water content at the wilting
point) in the upper 40 cm, bringing back the water content to a level exceeding 80% of the
maximum available soil water. In the drought-stress environment, an irrigation of about
10 mm was applied at the soil water content corresponding to the wilting point, replenishing
15% of the maximum available soil water. The moisture-favourable environment received
a total of 240 mm of irrigation in 12 applications, whereas the stress environment was
irrigated five times with a total of 50 mm. Daily mean temperatures and daily maximum
temperatures averaged 12.4 ◦C and 17.3 ◦C, respectively, in April, 14.3 ◦C and 19.3 ◦C in
May, and 24.0 ◦C and 29.8 ◦C in June.

We recorded on a plot basis the onset of flowering as the number of days from 1 April
to when 50% of the plants displayed three open flowers. Dry grain yield, dry straw biomass,
and harvest index (as the ratio of grain to aerial biomass) were assessed after harvesting
and threshing the whole plot at crop maturity and oven drying the grain and the straw at
60 ◦C for four days to constant weight.

4.3. Statistical Analysis of Phenotyping Data

An ANOVA including the fixed factor genotype and the random factor block was
performed for each trait in each environment to assess the significance of the variation
among lines and its extent as the genetic coefficient of variation computed as:

CV = (sg/m) × 100 (1)

where, m is the trait mean value, and sg is the square root of the genotypic component
of variance (s2

g) estimated along with the experimental error (s2
e) component of variance

by a restricted maximum likelihood (REML) method. Trait broad-sense heritability was
computed from these components of variance by the equation:

H2 = s2
g/(s2

g + s2
e/n) (2)

where, n is the number of experiment replicates, computing an approximate standard error
as reported in [50]. We used H2 values to compute the best linear unbiased prediction
(BLUP) values according to [51], which were used for GS analyses.

A second ANOVA including the fixed factor environment and the random factors
genotype and block within environment was performed for each trait to test the variation
relative to water treatments, genotypes, and GEI, assessing the extent of the last two
effects by estimating the respective components of variance through a REML method.
The consistency of the genotype responses across environments was assessed in terms of
genetic correlation as described in [52] for one trait assessed in different environments.
We tested each genetic correlation coefficient for statistical differences to unity to verify
the occurrence of inconsistent response across environments on the ground of confidence
intervals computed by multiplying standard errors according to [53] by relevant t values.

We verified whether genotype grain yields under severe drought were affected by the
onset of flowering through a regression analysis, assessing the significance of linear and
curvilinear responses. Line mean yields of flowering across environments were used in
this analysis, given the lack of GEI observed for this trait. In the presence of a significant
inverse linear response, we estimated for each line an ‘adjusted’ grain yield on a plot basis
as the deviation of its actual yield from the yield value expected for the line as a function of
its onset of flowering in the linear regression model, as described in an earlier study on
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pea [22]. Such adjusted grain yield (which had negative or positive values according to the
deviation direction and averaged zero) enabled an ANOVA comparison of the lines for
grain yield under stress after removing the mean effect of drought escape as determined by
differences in phenology, thereby focusing on grain yield as affected essentially by drought
tolerance mechanisms. In addition, we estimated the drought susceptibility index (DSI)
proposed by Fischer and Maurer [32]:

DSI = [1 − (YS/YF)]/DS (3)

where, YS and YF stand for line grain yield under stress and favourable conditions, respec-
tively, and DS is an index of drought severity estimated from irrigation water over the crop
cycle for stress (IS) and favourable (IF) conditions:

DS = (IF − IS)/IF (4)

No ANOVA could be applied to DSI because its values were estimated from cultivar
mean values within each condition. We assessed the line variation for DSI values in terms
of phenotypic CV.

Simple correlation analyses were used to assess (a) interrelationships between traits
within each environment and (b) patterns of covariation for GEI effects of different traits.
The mean value of inbred line progenies issued from each parent provided an estimate of
the parent value for yield under severe drought. All analyses were carried out using the
SAS/STAT® software [54].

4.4. DNA Isolation, GBS Library Construction, and Sequencing

Genomic DNA was extracted from young leaves of F5 plants of each inbred line
using the DNeasy Plant Mini Kit (Qiagen, Milan, Italy). Nucleic acid was quantified by a
Quant-iT™ PicoGreen™ dsDNA Assay Kit (P7589, Life Technologies, Italy), checking its
quality by 1% agarose gel electrophoresis. A trial digestion was carried out on 10% of the
DNA samples using the Optizyme EcoRI restriction enzyme (25,000 U, Fisher BioReagents,
Rodano, MI, Italy), to compare bands of cut and uncut DNA. The reaction was performed
at 37 ◦C for one hour and the enzyme was deactivated at 65 ◦C for 20 min. DNA samples
were sent to The Elshire Group Ltd. laboratory (Palmerston North, New Zealand) for
outsourced library preparation and sequencing. GBS data were generated according to
Elshire et al.’s [25] method with the following changes: we used 100 ng of genomic DNA
and 3.6 ng of total adapters and restricted the genomic DNA with ApeKI enzyme (NEB
New England Biolabs, R0643L); then, the library was amplified with Kapa Taq polymerase
Alpha (KAPA Library Amplification Readymix, Kapa Biosystems KK2611) by 14 PCR cycles.
Sequencing was performed on a single Illumina HiSeq X lane, at 2X150 bp paired-end.
Adopting ApeKI as the restriction enzyme according to [25] was supported by the fact that
about 60% of the white lupin genome includes repetitive DNA sequences [33], which this
enzyme tends to skip.

4.5. Genotype SNP Calling Procedures, Data Filtering and Imputation

GBS raw reads were demultiplexed using Axe demultiplexer [55]. Trimming for
restriction enzyme remnants, alignment on the reference genome and SNP calling were per-
formed using the dDocent pipeline [56]. For alignment, we used the Lupinus albus genome
version 1.0 [33], which was downloaded from https://www.whitelupin.fr/ (accessed on
3 November 2022). The final genotype matrix, in the form of a vcf file, was further filtered
for quality using the vcftools software [57] with parameters −minQ 30 −max-non-ref-af
1 –non-ref-af 0.001. The resulting data set was filtered for monomorphic markers, minor
allele frequency (MAF) > 5%, missing SNP marker rate < 10%, 20% or 30%, and a missing
rate per individual < 50%. Following Nazzicari et al. [58], we estimated missing data by
random forest imputation [59] using the R package MissForest [60] with the configuration
ntree = 100, maxiter = 10 and encoding genotypes as categorical data (factors).

https://www.whitelupin.fr/
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Both genotypes and SNPs were filtered for excess heterozygosis by using the mean
plus three and two standard deviations as maximum thresholds, respectively.

4.6. Analysis of Population Structure and Genome-Wide Association Study

The presence and pattern of population structure were investigated by a discriminant
principal components analysis (DPCA) [61]. We used the k-means clustering algorithm
iteratively for increasing values of K genotype groups from 1 to 20 to identify the optimal
number of groups according to the local minimum of the Bayesian information criterion
(BIC). The analyses were performed on the output of an ordinary principal components
analysis performed on SNP data to benefit from its dimensionality reduction but keeping
all the components to avoid information loss. We performed the final DPCA after selecting
the optimal K value. The optimal number of DPCA axis to retain for the following analyses
was selected by the a-score criterion (which represents the propensity of DPCA toward
overfitting). The whole procedure was implemented using the R package adegenet [62]
using functions find.clusters(), dapc() and optim.a.score().

Linkage disequilibrium (LD) was estimated for each chromosome in R as the squared
Pearson’s correlation (r2) between all pairwise combinations of SNPs within a 50 kb window
from genotype data filtered by 0.3 missing data per marker, 0.5 missing data per sample,
0.05 MAF, and excess SNP and genotype heterozygosis, plotted against physical distance,
and fitted by a polynomial curve, as described in [63].

A GWAS was performed for grain yield under both water treatments, the onset of
flowering averaged across the two water treatments, and the adjusted grain yield using
9828 mapped SNPs according to the Blink model [64] in R package GAPIT3 [65]. The first
seven components of a DPCA with K = 17 were included in the GWAS, as they properly
account for the population structure based on the visual inspection of quantile-quantile
plots comparing the observed trait-marker association scores with those expected in the
case of no significant association (Supplementary Figure S4). The statistical significance of
trait-marker associations was assessed by Bonferroni’s threshold at p < 0.01.

4.7. Genome-Enabled Predictions

We tested several whole-genome regression models for the focus traits (grain yield in
both favourable and stress conditions, onset of flowering averaged across the two water
treatments, and adjusted grain yield) considering four possible statistical models described
below, the presence or absence of population structure inputted as in the GWAS, and
three thresholds of maximum missing rate per SNP marker (0.15, 0.20 and 0.30). We first
envisaged a single-environment (alias intra-environment) prediction scenario, assessing
the predictive ability of GS models by standard 10-fold cross-validation. Each model was
tested twice, repeating the analyses ten times and reporting the average results to ensure
numerical stability. We also envisaged a cross-environment prediction scenario for grain
yield assessed in the favourable and stress environments, using by turns one environment
for training and the other for validation (by splitting the training data in a 90/10 fashion as
done for single-environment predictions). The whole procedure was repeated ten times for
numerical stability.

We considered four possible whole-genome regression models: Ridge Regression BLUP
(rrBLUP), Bayesian Lasso (BL), Bayesian Reproducing Kernel Hilbert Space (RKHS), and
Weighted G-BLUP (WGBLUP). All models were implemented using R package GROAN [66].

The rrBLUP model [67] assumes a linear mixed additive model where each marker is
assigned an effect as a solution of the following equation:

y = 1µ + Wq + ε (5)

where, y is the vector of observed phenotypes; µ is the mean of y; W is the genotype matrix
(e.g., {0,1,2} for biallelic SNPs); q ~ N (0, Iσ2

q) is the vector of marker effects; and ε is the
vector of residuals. The model is solved in a maximum likelihood context estimating the
ridge parameter λ = σ2

e/σ2
q representing the ratio between residual and markers variance.
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When the population structure is included in the model the above formula is updated
as follows:

y = 1µ + Wq +Xb + ε (6)

where, X is the is structure matrix with one row per sample and one column per considered
DPCA component and b ~ N (0, Iσ2

b) is the vector of (fixed) effects corresponding to the
population structure.

BL [68] solves the same general model than rrBLUP but in the bayesian context where
regression parameters have independent Laplace double-exponential priors. The system
is solved via Gibbs sampling with proper iteration count (10,000 repetitions) and burn-
in period (1000 repetitions) so as to ensure convergence. When present, the population
structure was added to the model as a fixed (i.e., flat prior) component.

RKHS model is used to solve the so-called genomic BLUP (G-BLUP) in the Bayesian
context. First, a genomic kinship additive matrix G is computed following [69]. The matrix
is then used in the following model:

y = 1µ + Zg + ε (7)

where, Z is a design matrix allocating samples to genetic values and g is a vector of additive
genetic effects for a sample with var(g) = Gσ2

g where G is the genomic relationship matrix
and σ2

g is the genetic variance for this model. In the context of RKHS the G matrix is
considered as the reproducing kernel function mapping from each pair of markers to
covariance. The system is then solved with a standard Gibbs sampling as done in BL, with
the same configuration to accommodate for population structure if required.

WGBLUP [70] is very similar to RKHS and operatively follows the same implemen-
tation, with the main difference being that matrix G is substituted by matrix G*, which is
computed weighing the SNP markers by the p values resulting from an association study.
The association scores were computed programmatically inside each cross-validation cycle
on the training set using statgenGWAS R package [71]. Once the scores were obtained, the
G* matrix was computed as:

G* = ZDZ′/[2Σpi (1 − pi)] (8)

where, Z is an identity matrix for the markers; D is a diagonal matrix where each ele-
ment of the diagonal corresponds to SNP weights; and pi is the observed MAF of all
genotyped individuals.

Supplementary Materials: Supplementary Materials can be downloaded at: https://www.mdpi.com/
article/10.3390/ijms24032351/s1. Table S1: List of genes potentially associated with the significant
SNPs detected by a GWAS based on 9828 SNPs and 134 white lupin inbred lines for grain yield under
moisture-favourable (Yield_NS) and drought conditions (Yield_S), and onset of flowering (Flowering),
identified by scanning a region as long as the mean chromosome distance at which LD dropped to
0.2 in both directions from each significant SNP and reported with the relative annotated function
(https://www.whitelupin.fr/; accessed on 3 November 2022). Table S2: List of 138 white lupin test
inbred lines and their parent germplasm. Figure S1: LD decay plots for white lupin chromosomes based
on Pearson’s correlation (r2) (Y-axis) and physical distance (X-axis) estimated on pairwise combinations
of 9828 SNPs within a 50 kb window for 134 inbred lines. Figure S2: Comparison of genome-enabled
predictions. Each panel represents regressions on one of the studied traits, either in a single-environment
scenario (top four panels) or a cross-environment scenario (bottom two panels). In the cross-environment
scenario, the first reported trait (before the arrow) is used for training the model to predict the second
trait. On the x-axis, the maximum allowed level of missing rate per SNP marker is reported. On the
y-axis, the predicted ability, as the Pearson’s correlation between true and predicted phenotypes, is
reported. Line colours represent different regression models. Dashed-line models include information
on population structure as derived from DPCA; continuous-line models do not include population
structure. Figure S3: Portion of the phenotyping platform including four large, bottomless containers,
in which moisture-favourable and drought-stress water treatments were assigned to outer and inner

https://www.mdpi.com/article/10.3390/ijms24032351/s1
https://www.mdpi.com/article/10.3390/ijms24032351/s1
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containers, respectively, from 16 April until 16 June. Figure S4: Quantile-quantile plots comparing the
observed trait-marker association scores with those expected in case of no significant association for
a GWAS based on 9828 SNPs and 134 white lupin inbred lines and performed for grain yield under
moisture-favourable (Yield_NS) and drought conditions (Yield_S), onset of flowering (Flowering), and
adjusted grain yield (Adjusted Yield). Data repository S1: Genotypic data (file S1_SNP_markers.csv),
phenotypic data (file S2_phenotypes.csv), square matrix of kinships computed using the Astle and
Balding method (file S3_kinship.csv), and first seven DPCA components resulting after clustering with
K = 17 (file S4_DPCA.csv), and legends of data repository files.
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