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Abstract: Genodermatoses encompass a wide range of inherited skin diseases, many of which are
monogenic. Genodermatoses range in severity and result in early-onset cancers or life-threatening
damage to the skin, and there are few curative options. As such, there is a clinical need for single-
intervention treatments with curative potential. Here, we discuss the nascent field of gene editing
for the treatment of genodermatoses, exploring CRISPR–Cas9 and homology-directed repair, base
editing, and prime editing tools for correcting pathogenic mutations. We specifically focus on the
optimisation of editing efficiency, the minimisation off-targets edits, and the tools for delivery for
potential future therapies. Honing each of these factors is essential for translating gene editing
therapies into the clinical setting. Therefore, the aim of this review article is to raise important
considerations for investigators aiming to develop gene editing approaches for genodermatoses.

Keywords: genodermatoses; gene editing; CRISPR; base editing; prime editing; gene editing
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1. Introduction

Monogenic genodermatoses encompass numerous genetic skin conditions, including
malignancy-causing disorders, blistering disorders such as epidermolysis bullosa (EB), and
keratinisation disorders such as ichthyoses [1,2]. These can range in severity from skin
rashes that cause pain to life-threatening chronic wounds, cancers, and systemic effects. All
are caused by genetic mutations in one or both copies of an allele resulting in abnormal
protein function in the skin. In severe cases, there is growing interest in treating the cause
of the disease rather than the symptoms, such as via gene therapy.

Gene editing is typically performed using nucleases that recognise specific DNA
sequences through either protein structure or through RNA interactions. The nucleases
cleave the DNA at this precise locus to cause a double-stranded break (DSB), triggering
one of the cellular repair mechanisms for changing the DNA sequences. Broadly, these
endonucleases can be categorised by whether protein structures or RNA molecules are used
to recognise the specific target DNA sequence. Meganucleases and transcription activator-
like (TAL) effector nucleases (TALENs) use protein structures that can be modified to target
specific sites [3]. CRISPR–Cas9, on the other hand, uses a single guide RNA (sgRNA) to
direct the nuclease to the site of interest containing desirable protospacer adjacent motifs
(PAMs). In both cases, DSBs are induced, and these may then be repaired by the cell using
non-homologous end joining (NHEJ), which is error-prone but efficient as DNA strands
are blunted then ligated together. The other option is homology-directed repair (HDR),
which uses template DNA to encode the repair with a low error frequency. Typically,
the other chromosome copy is used, but one can introduce an oligonucleotide donor
template, through which the edit is installed (Figure 1). Through this mechanism, TALENs
and meganucleases have been used to target disease-causing mutations of epidermolytic
ichthyosis in keratinocytes, xeroderma pigmentosum, recessive dystrophic EB (RDEB), and
EB, to name some examples [4–7]. CRISPR–Cas9 has been employed to correct pathogenic
mutations in dominant dystrophic EB (DDEB), junctional EB (JEB), EB simplex (EBS), RDEB,
and epidermolytic palmoplantar keratoderma, among other genodermatoses in fibroblasts,
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keratinocytes and induced pluripotent stem cells (iPSCs) [8–10]. This has resulted in
high-efficiency edits, with much lower costs than protein-structure-directed nucleases.
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Figure 1. Comparison of CRISPR–Cas9, base editor and prime editor. CRISPR–Cas9 causes double-
stranded breaks, resulting in uncontrolled indels when paired with non-homologous end joining.
When used with a donor template, this can trigger the homology-directed repair pathway, resulting
in a mix of indels and precise edits. Base editor and prime editor both generate single-stranded
breaks. Base editor combines this with deamination and mismatch repair to generate single nucleotide
conversions. Prime editor instead uses a reverse transcriptase to encode many possible types of
precise edits. Figure was created in BioRender.

While CRISPR–Cas9 has revolutionised the field of gene editing, inducing DSBs come
with risks, especially in therapeutic applications. As such, DSB-free DNA editing strategies
are highly desirable. Base editors (BEs) are fusion proteins containing a modified nickase
Cas9 (nCas9) that causes single-stranded breaks (SSBs) and a cytidine or adenine deaminase
domain [11] called a cytosine base editor (CBE) or an adenine base editor (ABE), respectively.
This allows the sgRNA to be used to recognise a specific sequence, as in traditional CRISPR
strategies; however, instead of inducing a DSB, a transition mutation is induced within
an editing window determined by localisation to the PAM site. BEs are attractive for use
in slowly dividing post-mitotic cells such as fibroblasts and keratinocytes because this
bypasses the need for HDR, which is less common in post-mitotic cells (Figure 1). Adenine
base editors have been trialled in genodermatoses [12–14], and cytosine base editors could
be used to address many disease-causing mutations.

Prime editors (PEs) are similar to base editors, but a reverse transcriptase is fused
to nickase Cas9 (nCas9) instead of deaminase, resulting in a protein that can nick DNA,
bind the single-stranded DNA post-nicking, and use an RNA template located in the prime
editing guide RNA (pegRNA) to encode an edit onto the DNA [15] (Figure 1). PEs can
address all types of mutations and can edit mutations a greater distance from the PAM
sequence than base editors, thus demonstrating the wider applicability of prime editing
for genodermatoses. Prime editing is a recent development, so it has only been tested for
RDEB, resulting in corrections of up to 10.5% [16].

PAM sites limit which mutations can be targeted. As such, there is interest in modifying
existing Cas9, base editors, and prime editors to relax the PAM requirements from classical
5′-‘NGG’. Near-PAMless base editors and Cas9 proteins have been developed; these can
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target most of the genome and have been used to edit human cells [17]. Although they have
not been tested in genodermatoses, in silico analysis predicts that an increased number of
RDEB-causing mutations can be targeted with PAM-less editors [16].

There are three fundamental approaches to gene editing therapies that may be suitable
for genodermatoses. The first is the most commonly explored approach, wherein the variant
that causes the genodermatoses is corrected to the wild-type sequence (Figure 2A). This
has been demonstrated in in vitro models for EBS, which is caused by mutations in KRT14
and KRT5 [18], as well as in JEB [10,19]. This restores functional protein expression, thus
treating the disorder. Alternatively, gene editors can be used to install silencing mutations
that cause gene knockout (Figure 2B). This can be achieved by installing specific edits to
create a premature ‘stop codon’ or through the NHEJ pathway causing indels that result
in frameshifts. [20,21]. This approach is advantageous in dominant genodermatoses such
as some forms of EBS, DDEB and epidermolytic ichthyosis. Hypermorphic mutations
encoding the KRT10 gene in keratinocytes (causing epidermolysis ichthyoses), have been
silenced by NHEJ-induced frameshift mutations [6]. The third approach that is being
explored is to target non-variant loci to induce an alternate change to the gene sequence,
such as deleting an exon (Figure 2C). This has been explored in RDEB in deleting COL7A1
exon 73 and 80. These deletions are in frame, so they do not significantly alter protein
structure, and they result in potential therapeutic approaches that would benefit many
people with variants on the same exon [7,22]. All three of these approaches can be used for
the development of gene editing therapies for genodermatoses.
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Figure 2. Overview of correction approaches to genetic disorders. Mutated genes and proteins (red)
can be treated through several genetic correction methods, creating less harmful genes and proteins
(green). (A): Mutant genes can be corrected to the wild type using gene editing tools or gene addition
therapy. (B): Hypermorphic mutations can be silenced through the induction of a ‘STOP’ codon.
(C): Where there are in-frame exons of a gene of which many possible disease-causing variants have
been identified, the entire exon can be removed with gene editing to restore healthy protein function.
Created with BioRender.

Most gene therapy research to date has focused on gene replacement therapy, using
vectors to insert functional copies of the mutated gene into patient cells either in vivo
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directly onto the skin or ex vivo, where gene-modified cells are therapeutically injected
or engrafted into a patient. This has resulted in successful Phase I and Phase II trials
in progress for JEB, RDEB, and Netherton syndrome [23–25] (Table 1). However, one
of the major challenges of gene replacement therapy is insertional mutagenesis, where
the gene product is inserted and disrupts gene expression, resulting in the inhibition of
tumour suppressors or the activation of oncogenes. This may occur through enhancer
or promotor insertion, insertion directly into the gene, or through mutations by mRNA
3′ end substitution [26]. This has resulted in cases such as oncogenesis in patients treated
with gene therapy for X-linked severe combined immunodeficiency (X-SCID) [27], and
lymphoma has been reported in two patients after chimeric antigen receptor T-cell (CAR-T)
therapy [28,29]. Additionally, the non-physiological expression levels of the transgene is
a concern in many gene replacement therapies, leading to the toxic overexpression of the
therapeutic transgene [30]. This, in turn, has been observed to cause the cell to silence the
inserted gene, as seen in some animal studies with transgene therapies [31,32]. As such,
there is a growing interest in gene editing tools for addressing genodermatoses.

Table 1. Gene therapy trials in genodermatoses as listed on ClinicalTrials.gov (accessed on 29
November 2022) with reported results or in progress.

Disease Therapeutic Gene Therapy
Delivery Method Phase Outcome Reference

Netherton syndrome
Autologous skin sheets
containing additional

SPINK5 gene
Lentiviral Vector I Transient functional

correction in 1 Patient [23]

Recessive dystrophic
epidermolysis bullosa

(RDEB)

Autologous skin sheets
containing additional

COL7A1 gene

Retroviral Self
Inactivating I/II In progress [33]

RDEB
Autologous epidermal

sheets containing
additional COL7A1 gene

Retroviral I/II

Favourable safety and
efficacy

outcomes—Phase III
in progress

[34]

DEB

Topical beremagene
geperpavec (carries

HSV1-COL7) applied to
wounds

Self-inactivating
HSV1 I/II

Durable wound
closure with minimal

adverse events—Phase
III in progress

[25]

Autosomal recessive
congenital ichthyosis

Topically administered
KB105 containing

TGM-1

Self-inactivating
HSV-1 I/II In progress [35]

junctional
epidermolysis bullosa

Epidermal autograft
containing LAMB5 Gamma-retroviral II/III In progress [24]

RDEB
Intradermal Injections of

COL7A1-modified
autologous fibroblasts

Self-inactivating
lentivirus I

Increased C7 observed
after 12 months but no

mature anchoring
Fibrils

[36]

Gene editing tools directly correct the mutation in the relevant gene, restoring the
physiological expression of the gene without the risk of insertional mutagenesis. However,
there are still many challenges to consider before gene editing therapies can be applied
to genodermatoses in the clinical setting. These include gene editing efficiency, reducing
off-target effects, effective delivery, and animal modelling.

2. Gene Editing Efficiency

Efficiency in any gene editing approach is crucial in order to restore sufficient protein
function to reverse the phenotype. The efficiency of installing precise gene edits with
CRISPR-based technologies can be highly variable and is dependent on the technologies



Int. J. Mol. Sci. 2023, 24, 2298 5 of 22

used, the sequence of the target DNA, heterochromatin [37], and sgRNA design. Variations
exist both between approaches (Cas9/HDR, base editing, and prime editing) and within
approaches due to designed differences in protein structures and additional molecules
added, which affect the efficiency and specificity of the editing.

2.1. Editing Efficiencies Already Achieved in Genodermatoses

Editing efficiencies with CRISPR, base editing, and prime editing can be highly variable
and dependent on the specific tool used, cell type targeted, and the mutation. Of the
three, CRISPR–Cas9 is the most extensively tested for RDEB, DDEB, and JEB, resulting
in up to 94% editing efficiency when cells are selected for GFP/dsRED co-transfection,
puromycin resistance selection, or single clone expansion [8,19,38–41]. This makes CRISPR
highly desirable for ex vivo therapies. However, efficiency has typically been lower when
selection methods are not used, posing a challenge for in vivo delivery approaches for gene
editing therapies.

ABE have also been tested in the context of RDEB. ABEmax was used to achieve
editing efficiencies of 23.6 and 30.6% in RDEB patient-derived fibroblasts, as well as suc-
cessfully editing RDEB-derived iPSCs and restoring functional collagen VII (C7) in human
skin equivalents. ABE8e, a novel base editor variant with a 590-fold increased enzymatic
activity [42], resulted in 95% editing efficiency in RDEB patient fibroblasts in a bulk popula-
tion without the need for any GFP selection. This suggests that base editors are potentially
powerful tools for therapeutics [43].

Prime editing, as a highly novel tool, has only been used with RDEB, resulting in an
editing efficiency of up to 10.5% [16]. This was achieved using PE2, with a nicking guide
RNA included to utilise the PE3 system. While prime editing can target many mutations
that base editing cannot, there is much optimisation needed before the efficiency of prime
editors can be compared to that of base editors.

2.2. Improving Gene Editing Efficiency in the Future

Currently, there are new tools available that may increase editing efficiencies in gen-
odermatoses, so they are worth considering for clinical applications. Crucially, efficient
guide design is required. For CRISPR–Cas9, many tools have been developed for guide
design, performing specificity and efficiency analysis to help choose the best sgRNA.
CHOPCHOP is one of the most cited tools for gene editing gRNA design. CRISPOR is also
highly recommended, as it also include cloning, validation and expression help [44,45].
For base editing, there are multiple tools such as BE-designer and BEditor, although
optimizing for efficiency is more challenging due to the editing window [46,47]. As prime
editing is a newer technology, fewer tools are available—Prime Design and PnB Designer
have been used to design pegRNAs for prime editor [48,49]. Efficiency prediction in
prime editing is more challenging due to the number of variables within pegRNAs [15].
Modified CRISPR–Cas9 proteins that increase the site recognition and cleaving efficiency
of the protein, as well as enabling the targeting of novel sites, are regularly researched.
One example is CRISPR-PLUS, a Cas9 fusion with recombination J protein, which can
increase mutagenesis efficiency by up to 600% [50]. However, one of the main challenges
for CRISPR–Cas9-based editing is the need to increase HDR efficiency. One option is
to inhibit the NHEJ pathway with small molecules such as SCR7, which prevents ligase
IV from binding to DNA and therefore favouring the HDR pathway. This was found to
produce a 2-fold increase in HDR-mediated knock-in corrections in porcine foetal fibrob-
lasts [51,52]. However, there is some risk in inhibiting the NHEJ pathway in a therapeutic
context. NHEJ inhibition has increased levels of DNA damage, growth inhibition, and
cell death in pancreatic tumour and Dalton’s lymphoma cells [53,54]. It is likely that the
same impact would be had on non-cancerous cells. Using these tools in a therapeutic
in vivo or ex vivo context would need extensive safety testing. An alternative approach,
namely enhancing HDR with molecules such as RS-1 that stimulates RAD51, has shown
promise for increasing knock-in efficiency in vivo in rabbits by more than two-fold. Simi-
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lar approaches enhance RAD51 or CtIP at the target locus [55,56]. By avoiding the risk of
inhibiting a DNA repair mechanism, it can be speculated that enhancing HDR carries less
risk than inhibiting NHEJ; however, this requires further work.

Much like CRISPR, many novel base editing proteins have been developed since their
initial publication. The addition of uracil glycosylase inhibitors and nickase activity resulted
in the improved cytosine base editors BE2, BE3 [11], and BE4. Codon optimisation further
improved the editing efficiency of BE4max by 1.8 fold over its predecessor [57]. When
the ABE was first introduced, seven iterations were published in a single paper, resulting
in ABE7.10. Later publications optimised codon usage, resulting in ABEmax [57]. The
further phage-assisted evolution of the TadA domain resulted in the development of ABE8e
that demonstrated 590-fold improved deamination kinetics, resulting in a higher editing
efficiency (albeit with higher off-target effects) [42]. The difference in editing efficiency
seen in RDEB editing papers using ABEmax compared with ABE8e demonstrates the
value of considering novel variants of proteins for improving gene editing efficiency in
genodermatoses. Recently, it was also demonstrated that the inhibition of p53 improves
base and prime editing efficiency in iPSCs; however, this approach poses challenges in a
clinical setting due to the importance of p53 in cell cycle maintenance [58].

In 2021, a new prime editing protein was published—PEmax; this protein has im-
proved codon optimisation as well as additional nuclear localisation signals and mutations
in the spCas9 site. This again improved editing efficiency up to 2-fold over PE2. However,
PEmax results in higher indels as a consequence of its higher editing efficiency [59]. As
mentioned previously, the addition of a second sgRNA to nick the unedited strand can be
used to improve prime editing efficiency by up to 5 fold, but with the significant risk of
double-stranded breaks, in a system referred to as PE3 [15]. Alternatively, the PE4 system
uses a dominant negative form of MLH1 to inhibit the mismatch repair system, with editing
efficiency increased by up to 7.7 fold. By combining both PE3 and PE4 approaches in PE5,
1.2-to-2.5-fold editing efficiency improvements were achieved over PE3 [59]. Due to the
length of pegRNAs, they are rapidly intracellularly degraded. In a recent publication, this
was addressed by engineering pegRNA to contain either a tevopreq1 or an mpknot motif,
which stabilised the engineered pegRNA (epegRNA) and prevented degradation [60]. Com-
bining epegRNA and PE5max was found to result in a 12-fold increase in editing efficiency
over PE3 [59]. Many of these approaches have not yet been tested in genodermatoses but
show promise in addressing diseases caused by point mutations, insertions and deletions.

2.3. Improving Efficiency by Selecting for Edited Cells

Editing efficiency can be improved by selecting for edited cells by using either GFP
markers or other methods such as antibiotic resistance, which has improved the editing
efficiency of CRISPR–Cas9 in DDEB and RDEB by up to 94% [9,38,61]. This approach
is also not possible in vivo. Increasingly, other good manufacturing practice (GMP) ap-
proaches [62] are being pursued for isolating edited cells, but the secreted nature of C7
makes it hard to select for cells expressing it. One approach may be to edit patient-derived
iPSCs. As a colony can grow from a single cell, a colony can be separately grown and
sequenced, and a colony that has come from a single edited cell can be selected, resulting
in a 100% editing efficiency. These iPSCs can then be differentiated into ex vivo gene
therapies. However, this can result in a high genetic drift, increased risk of chromosomal
abnormalities, and risks of tumorigenicity [63–66].

2.4. How Much Efficiency Is Really Needed?

While optimising for efficiency is a crucial part of therapeutics, the goal may not
be 100% in gene editing. In dominant forms of a disease, the correction efficiency only
needs to be high enough that the normal proteins form sufficient complexes with other
normal proteins without being inhibited by the dominant negative form. In recessive
disorders, one functional copy of a gene is sufficient to restore healthy protein expression.
In RDEB, blistering in patients is caused by the loss of function of C7, which is an integral
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protein in anchoring fibrils (AFs), which ordinarily tethers the epidermis to the dermis.
Therefore, the restoration of C7 is critical to reverse the phenotype; however, it is noteworthy
that even 15.7% gene correction in primary fibroblasts was shown to be sufficient to
recapitulate anchoring fibrils following the grafting of human skin equivalents (HSEs) onto
mice [19,67]. Additionally, gene correction can result in disproportionate improvements in
mRNA expression [16]; however, this has not been demonstrated in the clinical setting yet.

Compound heterozygosity seen in certain genodermatoses such as RDEB may mean
that a higher editing efficiency is needed, as only one allele is being targeted for correction.
Multiplexing may be possible to target both alleles for correction in future.

It is possible to optimise gene editing efficiency; however, this goal often has to
be balanced with corresponding increases in safety concerns such as off-target editing.
Pinpointing the balance between a correction efficiency that can sufficiently restore protein
levels but still minimise off-target effects is key to future therapy in genodermatoses.

3. Off-Targets

Despite immense potential, the clinical translation of CRISPR–Cas9-based therapy
for genodermatoses has been significantly hindered by their propensity to target regions
of the genome outside of the intended locus, known as off-target editing. If double-
stranded DNA cleavage occurs at the off-target site, stochastic indel mutations via NHEJ
or even chromosomal rearrangements can occur. Off-target editing can therefore cause
oncogenesis or undesirable changes to gene function that demand an evaluation of off-target
events to understand and diminish them. Based on experimental data and sophisticated
bioinformatic algorithms, multiple off-target prediction tools have been designed, allowing
for not only the selection of gRNAs with favourable safety profiles and properties but also
the streamlined and more affordable testing of potential unintended mutations. These are
described next.

3.1. Interrogating Off-Target Genomic DNA Editing

In recent years, a number of different methodologies have been proposed to analyse
off-target changes to genomic DNA post-editing. These can be broadly classed into ‘in-silico’
prediction methods and ‘experimental’ methods [68].

3.1.1. In Silico Prediction Methods

The likelihood of an off-target event occurring at a particular site depends on its
similarity to the target sequence and the affinity of the nuclease to this region. Off-target
editing is therefore more likely to cluster at loci that share these characteristics, and re-
searchers have described in silico tools that predict these and obviate the cumbersome task
of analysing the entire genome. ‘CRISPOR’ [44] employs a validated algorithm known as
‘cutting-frequency determination’ (CFD) [69] to accurately rank thousands of putative off-
target sites by those most likely to be edited and allow these sites to be chosen and screened.
This approach has been used to analyse base editing off-target effects in RDEB, finding
very low off-target analyses [14,70]. The two machine-learning algorithms found to most
accurately predict and rank off-target sites are the ‘Elevation’ and ‘CRISTA’ tools [68,71,72].
Another tool, CCtop, has been used to predict off-target sites for the CRISPR–Cas9 editing
of RDEB iPSCs [39]. Once predicted off-target regions have been ranked, investigators can
then amplify these genomic regions of interest and probe them for off- target editing.

The Surveyor [73] and T7E1 [74] assays—previously used for probing predicted off-
target regions in multiple genodermatoses editing studies [61,75]—have now fallen out
of favour due to their limitations in detecting small indels [76]. A common approach is
to perform the Sanger sequencing of DNA amplicons followed by the analysis of Sanger
traces for the insertion or deletion events using the ‘Tracking of insertions, deletions and
recombination events (TIDER)’ software [77]. TIDER aligns Sanger chromatographs from
edited and unedited samples and determines if indels have occurred as an imprint of
aberrant Cas9 cleavage and subsequent NHEJ. TIDER, and the similar bioinformatic tool
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Inference of CRISPR Edits (ICE) [78], can also detect shifts of nucleotide changes in non-
indel-generating off-target editing, such as following base editing.

Although fast and cost-effective, Sanger sequencing methods nonetheless suffer from
a poor sensitivity that can leave undetected mutations with a low prevalence in a pool of
edited cells [79]. Next-generation sequencing (NGS) techniques, on the other hand, offer
gold-standard sensitivity and can be combined with in silico predicted tools to enable
the powerful ‘targeted’ NGS sequencing of genomic DNA amplicons. NGS can screen
amplicons of predicted off-target sites and detect mutations with a prevalence of less than
0.1% [80], as tested by Sheriff et al. [70]. NGS analysis can reveal background mutations
unrelated to off-target activity, which necessitates the sequencing of unedited samples as
controls [68].

3.1.2. Experimental Methods

However, all in silico methods share the disadvantage of missing rare unpredicted
off-target events [76]. Studies have revealed that SpCas9, which traditionally binds to a
‘5′-NGG-3′ PAM site, has a mild affinity to 5′-NAG-3′ or 5′-NGA-3′ sequences and can also
tolerate up to six ‘mismatches’ (six different nucleotides in the protospacer to the target)
and still bind [81]. This challenges even the most robust prediction algorithms and explains
the finding that selecting the top 10 or 20 predicted off-target sites risks overlooking true
off-target editing. To solve this, researchers have described experimental techniques not
biased by a priori prediction that can assess the genome in an unrestricted manner for
off-target cleavage activity. Digenome-seq [82], one of the first developed techniques,
performs the sequencing of purified genomic DNA digested by Cas9 nucleases to find
off-target editing with a sensitivity of 0.1%. An updated version, DIG-seq [83], is able to
perform this on chromatinic DNA, which better reflects real off-target events in a cell. In
comparison, CIRCLE-seq is a method that possesses both a higher sensitivity (0.01%) and a
higher signal-to-noise ratio than Digenome-seq and DIG-seq, as off-target fragments are
enriched with ligating adapters [84]. CIRCLE-seq, however, requires a greater starting
quantity of DNA and suffers from high false-positive rates because it cannot use chromatin
as a substrate, unlike DIG-seq. GUIDE-seq is yet another method that detects DSB repair at
off-target sites instead of Cas9 cleavage activity like the aforementioned tools [85]. GUIDE-
seq incubates cells with double-stranded DNA oligodeoxynucleotides (dsODNs), which are
incorporated at Cas9 cleavage sites during repair processes, and has been shown to offer a
high sensitivity whilst maintaining low background signals and false-positive rates. These
qualities have made it the dominant choice for the experimental evaluation of off-target
editing. However, a disadvantage is that not all primary cells respond well to dsODN
transfection, which may limit its use in keratinocytes, fibroblasts, and other patient-derived
skin cells, although this has not been tested to our knowledge. In these cases, CIRCLE-seq
may remain a suitable alternative for sensitive genome-wide off-target evaluation [84], as
demonstrated by Osborn et al.; however, in their application, CIRCLE-seq did not identify
any of the off-target sites that were edited, as identified by CRISPOR [14].

3.1.3. Base and Prime Editors

As the potential for base editing as therapy for genodermatoses grows, a strong
foundation for characterising its off-target effects is required. Although BEs are thought
to share the same mechanism of Cas9-dependent off-target mutation formation, currently
available prediction algorithms fail to efficiently recognise most likely edited sites [86,87].
Unlike basic CRISPR–Cas9, base editors possess an additional source of Cas9-independent
off-target modifications—deaminases [88]. Genome-wide, seemingly random deaminations
can be detected after treatment with cytosine base editors [89]. Alternative approaches
to controlling both Cas9-dependent and independent off-target mutations came from the
works of Rees et al. [90] and Gaudelli et al. [12].

Two studies in mice and rice demonstrated the viability of these alternatives and
found that sgRNA-independent off-target editing has a predilection for highly transcribed
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regions of the genome and is more common in CBEs than ABEs [91,92]. Tools such as
Endo-Digenome-seq21 and EndoV-seq [93] can successfully characterise sgRNA-dependent
editing profiles for BEs, but they may underestimate sgRNA-independent editing. Whole-
genome sequencing (WGS) methods may be effective for sgRNA-independent off-target
assessment but are expensive, low-throughput and time-consuming [94]. Recently, meth-
ods employing rifampicin selection, orthogonal R loops, and kinetics assays have been
validated for comparing sgRNA-independent off-target editing between CBE variants
without using WGS [88]. These methods may be a basis for further work enabling the
sensitive, cost-effective evaluation of sgRNA-independent off-targets in gene correction
studies. Their unpredictable nature poses a great challenge, as the detection of single-
nucleotide mutations caused by deaminases requires costly whole-genome sequencing and
the careful interpretation of obtained data. Both CBE and ABE have also been shown to
extensively deaminate nucleotides in RNA molecules, independently of DNA changes, and
to cause considerable differences in gene expression and splicing [95–97]. Several modi-
fied deaminases have been developed to combat Cas9-independent off-target mutations:
SECURE, RrA3F, AmAPOBEC1, PpAPOBEC1 and SsAPOBEC3B for cytosine base editors
and SECURE-ABE for ABEs [96,98,99].

As a still-emerging technology, there are a paucity of studies on the off-target profile
of prime editing; however, early data characterising its effects using ‘nDigenome-seq’
suggest that it is extremely precise [100]. A recent study demonstrated that PE3 produced
undetectable pegRNA-independent off-target activity [101].

3.2. Designing Gene Editing Systems to Limit Off-Target Effects

Careful planning can mitigate off-target effects when deploying gene editing ther-
apy. Web-based tools such as ‘CRISPick’ (Broad Institute) can be used to streamline the
selection of sgRNAs based on the degree of their predicted off-target editing. However,
selecting sgRNAs for CRISPR–Cas9 gene editing often involves maintaining an equilib-
rium between maximising on-target editing and off-target effects. For double-stranded
cleavage to efficiently drive HDR repair and the excision of the mutation, the sgRNA
must create a cut within approximately 30 nucleotides of the proximal ends of the dsODN
donor template [102], which limits the choice of potential sgRNAs. Furthermore, the strict
requirement of an ‘NGG’ trinucleotide PAM site downstream of the sgRNA limited the
design of sgRNAs for base editing to only one or two possibilities, with no consideration of
off-target editing potential. However, the emergence of base editors with Cas9 orthologs
other than streptococcus pyogenes (sp), which recognise non-NGG PAM sites, enables
greater flexibility for sgRNA choice.

In addition to sgRNA selection, one can use high-fidelity Cas9 (Cas9-HF1) nucleases,
which are highly specific and cause almost undetectable levels of off-target editing [103]. A
different approach that uses Cas9n to create single-strand staggered ‘nicks’ separately on
both strands of the target DNA [104] led to reduced off-target editing following COL7A1
gene correction in RDEB keratinocytes [40]. Delivery methods also impact off-target editing
rates. The mRNA and RNP delivery of gene editors enables transient, controllable dosing
in nuclei because these are quickly degraded, whereas plasmid or viral vectors can lead to
higher off-target activity [88,105].

To mitigate base editor off-target editing, researchers have engineered new suites
of CBEs, such as ‘YE1-BE424’ and ‘tCDA1EQ’, which offer 10–100-fold lower sgRNA-
independent off-target editing than BE4 whilst largely maintaining on-target efficien-
cies [106]. In addition to their effects on the genome, an important study found that CBE
and ABE cause the widespread deamination of RNA across the transcriptome [96]. These
changes are independent of the sgRNA or any genomic mutations but could be diminished
through pioneering ‘SECURE’ (Selective Curbing of Unwanted RNA Editing) CBE variants
with specific mutations. Further work confirmed the transcriptomic editing profile of base
editors and also developed ABE variants with lower proclivities to induce RNA edits for
therapeutic applications [107]. To further reduce the risk of sgRNA-dependent off-target
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editing in base editing, it is additionally possible to use bubble hairpin sgRNAs, which
reduce off-targets while maintaining a similar editing efficiency [108].

Base editing displays a further characteristic by which nucleotides adjacent and of
the same type to the targeted mutation can be aberrantly converted in a process known
as ‘bystander editing’ [109]. Bystander editing occurred in a couple of studies using ABE
to correct COL7A1 mutations in RDEB fibroblasts [14,70]. These undesired substitutions
always arise within the base editor activity window and can therefore be easily detected
when sequencing the region of interest using NGS. Furthermore, ‘BeHIVE’, a machine
learning model, can be used to accurately predict base editing outcomes and determine the
degree of bystander editing when designing experiments [110].

For both CRISPR–Cas9 and base editing, off-target editing remains a safety issue that
can pose risks in clinical translation. Off-target mutations only need to be introduced in
a small number of cells for potentially grave deleterious effects on patients to transpire;
however, completely eradicating them is challenging. Important work has taken strides to
address this by improving Cas9 and BE specificities and by enhancing off-target detection
sensitivities. CRISPR–Cas9 has now been deemed sufficiently safe to enter over thirty
clinical trials, and base editing has been featured in three trials by this year (although none
yet for genodermatoses). Investigators designing CRISPR–Cas9 or base editing experiments
for skin disease should follow the general principles discussed here to minimise off-target
effects and deploy complementary in silico prediction algorithms and experimental tools
in tandem to screen off-target editing.

4. Delivery

The delivery of gene editing tools to target cells is a fundamental requirement for gene
editing therapies. Gene editing tools can be delivered as plasmids, mRNA, ribonucleic
proteins (RNPs), or viral nucleic particles, each of which have varying advantages and
disadvantages for specificity, efficiency and off-target effects. Delivering the editing tools
can be achieved with viral vectors, injection, lipid nanoparticles, micro/nanoneedles or
electroporation. Some of these tools can be used in vivo (Figure 3) or ex vivo on cells
collected from a patient. Here, we describe first the available mechanisms of delivering
gene therapy components into the cell, then describe how genetically modified cells can be
used as ex vivo cell therapies for patients.

4.1. Electroporation

Electroporation is a method that efficiently delivers genetic payloads to cells by altering
the cellular transmembrane potential (TMP). The TMP is created by different ion pumps and
channels on the surface; when external electric pulses are applied, the TMP will increase,
leading to a higher permeability of the cell as membranous pores form. The pores then
allow cargo (e.g., nucleic acids) to pass through and enter the cell. Electroporation is now
widely used in preclinical studies to deliver gene editing cargo into cells. For instance,
Bonafont and colleagues used electroporation to deliver ex vivo dual sgRNA-guided Cas9
nuclease to delete COL7A1 exon 80 in RDEB patient keratinocytes. Patient P2 and P1 cells
analysed by NGS showed 95% and 87% exon 80 deletion, respectively [41].

Several advantages of electroporation have been demonstrated. Electroporation-based
gene transfer can deliver a wider range of cargo to a variety of cell types [111] with a high
efficiency. However, applied electric pulses will lead to local temperature increases that can
denature cell surface proteins and limit normal cellular trafficking [112]. Electroporation
can be cytotoxic and lead to necrosis and apoptosis [113,114]. These potential threats to
the cell require a more in-depth analysis of its causation and more precise techniques to
bypass these problems. In addition to ex vivo electroporation, gene editing tools can be
directly injected into the dermis, which is then electroporated. This has been successfully
conducted on RDEB mouse models in vivo as a proof of concept [115]. However, in vivo
electroporation suffers from challenges relating to its invasiveness and small area of effect,
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which means that the method can currently be exclusively used for cells in an in vitro
environment.
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4.2. Viral Vectors

Viral vectors are currently the most popular choice for encapsulating gene editing
tech during in vivo applications, with 35% of gene therapy clinical trials using them for
delivery [116]. This is due to their low immunogenicity and long-term use for genetic
transfections [117]. Although viral vectors cannot directly penetrate the intact stratum
corneum, they can be applied to broken skin to reach target cells. This is the case for B-VEC,
which uses herpes simplex virus 1 to deliver a full-length DNA copy of COL7A1 into RDEB
patients at wound sites [25]. B-VEC is currently in Phase III trials and is proving to be a
promising next step in topical gene delivery.

Gene editing machinery can also be packaged into viral vectors and be injected into a
target site for therapeutic delivery [25]. This has been achieved in vivo in humanized skin
mouse models, in which CRISPR–Cas9 was delivered to remove exon 80 of COL7A1, result-
ing in the restoration of C7 expression and reduced skin fragility [22], thus demonstrating
potential value for genodermatoses.

Despite their widespread use, viral vectors have several limitations. Viruses with a
small immunogenic profile, namely adeno-associated viruses (AAVs), have a small payload
size of ~4.7 Kb, meaning larger genes such as the 8.9 Kb COL7A1 gene are unable to be
fully encapsulated and thus making them unsuitable for gene addition. Cas9 and sgRNA
are more appropriate for AAVs as they can be fully encapsulated, benefiting from a low
immunogenicity [118]. Larger editing tools, such as base editor and prime editor, previously
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had to be dually administered when using AAVs, increasing the risk of immune responses
that would target and degrade AAVs along with their therapeutic cargo [119]. Advances
in ABE optimisation have since shown that it is possible to encode size-optimised ABE8e
within a single AAV [119], improving the therapeutic potential of ABE.

Larger retroviruses such as lentiviruses (LVs) are used for larger cargo that AAVs are
not suited for but cause a stronger immune response. This means that treatments utilising
LVs as vectors are more likely to be degraded by immune cells [120]. This is especially
relevant within the context of genodermatoses due to the population of Langerhans cells
in the skin, which would increase the immune response [121,122]. Furthermore, multiple
therapeutic administrations of LVs may trigger an adaptive immune response, reducing
the efficacy of further treatment [123]. These drawbacks have caused investigators to seek
novel non-viral vectors to overcome the challenges associated with viral vectors [124].

4.3. Non-Viral Nanoparticle Vectors

Non-viral vectors, particularly lipid nanoparticles (LNPs), are emerging as useful
alternatives to viral vectors as they are less immunogenic and their modifiable nature
allows them to fit most physical and payload size constraints [123]. These benefits make
non-viral vectors attractive for in vivo and ex vivo genetic payload delivery (Figure 3).

The main challenge faced by non-viral vectors (particularly lipid-based vectors) is
their susceptibility to degradation via the lysosomal pathway, therefore lowering drug
efficacy as editing efficiency decreases due to rapid drug clearance [125,126]. This can be
reduced in lipid-based vectors with the incorporation of lipids with added polyethylene
glycol (PEG) into the nanoparticle (NP) structure. The PEG group is thought to create a
‘hydrophilic cloud’ around the NP, preventing cellular interaction proteins from recognising
the NP, therefore preventing aggregation and integration into the lysosomal pathway and
decreasing clearance [127,128]. It has been observed that some patients produce anti-PEG
antibodies; however, these antibodies do not crosslink and are not associated with any
pathology, and more investigation is required in this field [129].

Non-viral vectors are new to the field, so less research has been conducted in regard
to their in vivo safety and efficacy. While non-viral approaches may one day replace viral
vectors as the top gene editing delivery method, more in vivo research aimed at increasing
editing efficiency is required before this can happen [124].

4.4. Micro/Nanoneedles

A highly novel delivery method that can be considered for the development of gene
editing therapeutics for genodermatoses is that of micro/nanoneedle delivery. Silicon-
based needles with a diameter of <50 nm can penetrate the stratum corneum through
<50 nm diameter silicon-based needles [130], allowing for direct therapeutic delivery to the
dermal layer [131].

Microneedles and nanoneedles trigger minimal cytotoxicity and have a low immuno-
genic profile due to the inert silicon used to synthesise nanoneedles. They also result in a
high transfection efficiency, with a 90% transfection efficiency seen after 48 h using small
interfering RNA (siRNA) to transfect HeLa cells in vitro [130], and they are appropriate for
difficult-to-transfect cells [132]. The successful in vivo transfection of GFP-expressing DNA
and labelled siRNA has been accomplished in mouse models [130]. Furthermore, as mi-
cro/nanoneedles must be directly applied to the region of desired editing, they are suitable
candidates for in vivo therapy for genodermatoses [133,134]. This is particularly viable
when considering the ease of synthesis in constructing nanoneedles compared with the con-
siderations one must take when encapsulating gene editing components in viral/non-viral
vectors; optimising nanoneedle manufacturing processes could mass-produce nanoneedles
for general genetic transfection purposes [135]. Once completed, nanoneedles could be
commercially bought and genetic payloads could be simply loaded into the needles for
therapeutic/experimental use.
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Microneedles have been successfully used to deliver CRISPR–Cas9 to mouse skin in
inflammatory skin disease models such as atopic dermatitis to disrupt the NLRP3 gene,
thus increasing gene modification efficiency [136]. While extensive research if still required
to demonstrate efficacy and safety in human patients, there is potential with microneedle
delivery for painless in vivo therapeutics [115,135].

5. Ex Vivo Therapies

Many of the delivery tools discussed above can be used to deliver therapies in vivo
(Figure 3)—however, when ex vivo approaches are considered, after the genetic editing of
patient cells ex vivo, it is then necessary to introduce the cells back into the skin as a cell
therapy. In genodermatoses, this has typically been conducted as injections or skin grafts.

5.1. Injections

Intradermal injections can be used to directly introduce gene-edited cells back into the
skin [137]. The advantages of intradermal injections is that hospitalisation is not necessary
and patients do not typically require anaesthesia [36]. This was performed in a Phase I
clinical study on four adults with RDEB who received intra-dermal injections of modified
autologous fibroblasts that were well-tolerated and led to a significant increase in C7,
although no AFs were formed [138]. In another Phase I/II study by Marinkovich et al.,
five RDEB patients were recruited, and their biopsies were collected to extract fibroblasts.
LVs were then employed to introduce a wild-type COL7A1 gene to the fibroblast culture
and sufficiently expand the fibroblasts for treatment. Finally, the genetically modified
fibroblasts were injected into both blistering and intact skin. For 12 weeks, the injection
sites were monitored. C7 expression was increased, and AFs were detected 3 months
after injection, with 80% of wounds demonstrating good healing ability and no severe
adverse events reported nor replicative viruses detected [139]. A similar principle could be
followed after gene editing fibroblasts for therapy. However, the treatment was transient,
as a 100% healing rate was observed at week 4 but declined to only 80% at week 12. This
may have been due to the genetically modified fibroblasts entering senescence and failing
to proliferate. For long-term treatment, this approach would need to be frequently applied.

Stem cells may be a valuable resource for injection gene editing therapy for genoder-
matoses. Mesenchymal stromal cells (MSCs) are multipotent, self-renewing stem cells that
can be derived from a wide range of body tissues, such as bone marrow, adipose, and
iPSCs [140,141]. MSCs also have immunomodulatory properties that regulate immune cells
and can provide further benefits [142]. In a clinical trial, Rashidghamat et al. harvested
allogenic bone marrow-derived MSCs (BM-MSCs) from healthy donors and administered
these to 10 RDEB patients via intravenous infusion. Four of the nine patients developed
encouraging increases in C7 expression, whereas five patients developed partial expression
or no expression. The total blister count over the body of the participants decreased by
2.78 fold at day 28 and 2.88 fold at day 60 on average [143]. However, the selection and
extraction of donor MSCs is a complex and robust process that requires extensive regulatory
oversight. Before transplantation, cells need to be screened against any infectious diseases
and the genomic DNA needs to be checked to see if the gene associated with the disease is
mutation-free [143]. MSCs can also be delivered through topical applications, which are a
less invasive method that has been shown to improve wound healing and skin grafting
survival rate following surgery [144]. These challenges could be ameliorated with the use
of autologous, genetically modified MSCs, which may provide a promising future avenue.

5.2. Grafting

The skin grafting of patient-derived, gene-corrected cells is another avenue for ex
vivo therapies. This could be achieved with holoclones, somatic stem cells that generate
keratinocytes in the epidermis [115]. DrozGeorget Lathion et al. transfected epidermal
stem cell holoclones with a replicative defective retrovirus containing full-length COL7A1
complementary DNA. Cells were then transplanted into immunodeficient mice to form a
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non-blistering epidermis. The results showed that many anchoring fibrils self-renewed, and
C7 was found in the basement membrane using an electron microscope [116]. A standout
example of skin grafting was performed by Hirsch et al., who treated a 7-year-old patient
with JEB that was caused by mutations in LAMB3 [145]. They collected biopsies from the
patient’s inguinal region and used retroviral vector-based therapy to add a full-length
LAMB3 cDNA to the patient-derived keratinocytes. The keratinocytes were grown into
skin grafts that were applied to the patient. At 21 months post-engraftment, 80% of the
patient’s total body surface area was restored. Even under mechanical stress, no blisters or
erosion was observed [145]. This regeneration of almost the entire epidermis was sustained
by transgenic holoclone-derived cells [146], demonstrating that the skin grafting of these
cells is a promising approach for ex vivo genetically engineered cell delivery.

Skin grafting presents several advantages, as epidermal skin grafting does not usually
leave scars during application and patients can therefore heal quickly [147]. This prevents
the creation of secondary injuries to the patient. General anaesthesia is also not required for
skin grafting, which makes it more cost- and time-effective [148]. However, limitations do
exist. Graft failure is a threat to patients, especially in the case of large-area grafting, which
may cause severe infection and issues with blood circulation. Additionally, skin grafting is
usually a last step solution for severe skin disorders, as previously described [145], and the
process to grow transgenic skin grafts is extensive and time-consuming.

6. Animal Models

Finally, a brief note about animal models. Mouse and similar mammalian models are
most commonly used for genodermatoses research due to their similarity in skin structure,
genome, and relevance for drug testing. Many mouse models have been developed,
especially for dystrophic EB (DEB). As new treatment strategies for gene therapies, cell
therapies, and protein therapies are developed, it is crucial to demonstrate efficacy in animal
models prior to clinical testing. Transgenic mice are particularly valuable for demonstrating
the efficacy of gene editing therapies.

The first DEB model mouse was generated by Heinonen et al. in 1999 by knocking
out Col7a1 [149]. This resulted in severe blistering below the lamina densa and a complete
absence of anchoring fibrils. However, the mice died during the first two weeks of life due
to the severity of the phenotype, posing a challenge for testing therapeutics. In 2008, a new
mouse model with hypomorphic Col7a1 expression was described [150]. This mouse grew to
adulthood and modelled severe RDEB with only 10% wild-type C7, which would allow for
the more in-depth pathophysiological modelling of RDEB [151]. Furthermore, to investigate
the role of the immune system of the RDEB phenotype, NOD/SCID IL2rγcnull (NSG)
mice embryos were edited with CRISPR–Cas9 to knock out Col7a1, resulting in a milder
phenotype than seen in previous mouse models. Furthermore, the immunodeficiency
allowed for the trial of human cell therapies in mice models without triggering an immune
response, which would prove valuable for ex vivo gene therapies [152]. For gene editing
therapies, it is also important that the mutations in mouse models match mutations found
in human patients, which was achieved with DDEB mutations in 2021 [153]. In the future,
this would allow gene editing technologies to be trialled on mouse models as part of
pre-clinical work to see the systemic effects of gene editing tools. Currently, gene editing
therapies are trialled on immunodeficient mouse models with human skin equivalents
xenografted onto them, allowing for studies to be conducted on human cells supported by
mouse skin tissues and other organs.

While non-human primates would be well-suited for modelling the systemic effects
that accumulate in genodermatoses, none are currently available. Macaques with homozy-
gous KRT5 mutations have been identified; however, those were stillborn, likely due to the
severe EBS morphology. The studied heterozygous macaques did not have EBS [154]. As
such, these primates are not appropriate for gene editing studies.

Other animals, such as zebrafish and Drosophila, have also been used to model geno-
dermatoses. This may be achieved with knockdowns, such as those of col17a1 homologues,
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which are relevant in JEB pathology [155]. Snap29 mutant zebrafish larvae have shown
skin defects comparable to cerebral dysgenesis, neuropathy, ichthyosis and keratoderma
(CEDNIK) disease caused by the homologous SNAP29 gene variants in humans [156].
Beyond vertebrates, Drosophila has also been used to model EBS [157], demonstrating
similar keratinization networks and blistering to patients. However, these animal models
are less suited for trialling gene editing therapies than mouse models due to the genomic
differences between the species.

In the future, mouse models would ideally be developed with mutations in a wider
range of genes that cause genodermatoses, such as Lamb3 or Krt14. A repository of mice
with precise disease-causing mutations, as achieved in DEB, would allow for the most
precise testing of specific gene editing technologies possible in pre-clinical trial testing. For
now, xenografted mice models with human skin equivalents remain the gold standard for
gene editing testing.

7. Conclusions and Future Directions

Gene editing therapies have yet to reach the clinical setting for genodermatoses, but
recent work in both patient-derived cells and animal models has shown promise, thus
far focussing on the rare and severe forms of EB. Challenges regarding gene correction
efficiency, off-target safety, and delivery methods remain; however, the continuous ad-
vancement of better, more precise gene editors in all areas of medicine will only benefit
the field. It will also be essential to optimise different gene editing tools for different cell
types due to the difference in mitotic and post-mitotic cells. Mouse studies looking at the
long-term outcomes of gene editing will become more necessary for pre-clinical studies.
Fortunately, gene replacement therapies are providing a blueprint, and using the lessons
learned from them will allow for the rapid development of clinical trials for gene editing
in genodermatoses, especially approaches for delivery and the investigation of off-target
safety concerns. Gene editing therapies for other diseases have begun to enter the clinical
setting, which will provide further insight into gene editing for use in genodermatoses.
The first clinical trials involving gene editors for genodermatoses will undoubtably occur
soon and offer hope for a permanent cure for people living with genetic skin disorders.
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110. Arbab, M.; Shen, M.W.; Mok, B.; Wilson, C.; Matuszek, Ż.; Cassa, C.A.; Liu, D.R. Determinants of Base Editing Outcomes from

Target Library Analysis and Machine Learning. Cell 2020, 182, 463–480.e30. [CrossRef]
111. Stewart, M.P.; Sharei, A.; Ding, X.; Sahay, G.; Langer, R.; Jensen, K.F. In Vitro and Ex Vivo Strategies for Intracellular Delivery.

Nature 2016, 538, 183–192. [CrossRef] [PubMed]
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