
Citation: Raith, F.; O’Donovan, D.H.;

Lemos, C.; Politz, O.; Haendler, B.

Addressing the Reciprocal Crosstalk

between the AR and the

PI3K/AKT/mTOR Signaling

Pathways for Prostate Cancer

Treatment. Int. J. Mol. Sci. 2023, 24,

2289. https://doi.org/10.3390/

ijms24032289

Academic Editor: Hidayat Hussain

Received: 22 December 2022

Revised: 17 January 2023

Accepted: 20 January 2023

Published: 24 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Addressing the Reciprocal Crosstalk between the AR and
the PI3K/AKT/mTOR Signaling Pathways for Prostate
Cancer Treatment
Fabio Raith 1 , Daniel H. O’Donovan 1, Clara Lemos 2 , Oliver Politz 1 and Bernard Haendler 1,*

1 Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
2 Bayer Research and Innovation Center, Bayer US LLC, 238 Main Street, Cambridge, MA 02142, USA
* Correspondence: bernard.haendler@bayer.com; Tel.: +49-30-2215-41198

Abstract: The reduction in androgen synthesis and the blockade of the androgen receptor (AR)
function by chemical castration and AR signaling inhibitors represent the main treatment lines for
the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to
alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of
alternative pathways that render the tumor less or, more rarely, completely independent of androgen
activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-
kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent
alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating
mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen
signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play
an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing
different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a
limited benefit has been reported in prostate cancer up to now due to the associated side effects, so
novel combination approaches and biomarkers predictive of patient response are urgently needed.
Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR
pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on
combination treatments. A deeper understanding of the complex molecular mechanisms involved
in disease progression and treatment resistance is essential to further guide therapeutic approaches
with improved outcomes.
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1. Introduction

Prostate cancer is the second most frequently diagnosed tumor and the sixth leading
cause of cancer death in men, with 1,414,259 new cases and 375,304 deaths reported
worldwide in 2020 [1]. The incidence rates and mortality have remained stable for several
years, following a sharp decline linked to prostate-specific antigen testing [2]. The main
risk factors are age and ethnicity, with family history and diet playing additional important
roles [3,4]. Germline mutations are altogether rare in prostate cancer and affect mainly the
genes involved in DNA damage response [5,6].

Men with localized or regionally spread prostate cancer have a favorable prognosis
and may first undergo prostatectomy or radiotherapy [7]. Once the disease progresses,
hormone-sensitive prostate cancer (HSPC) is treated by orchiectomy or chemical castra-
tion using gonadotropin-releasing hormone (GnRH) agonists or antagonists to suppress
androgen synthesis in the testes [6,8]. A complete androgen blockade is achieved with the
cytochrome P450 17A1 (CYP17A) inhibitor abiraterone acetate, which locally reduces andro-
gen synthesis, and with competitive antagonists of androgen receptor (AR) function [6,8].
Despite an initial good response, therapy resistance leading to castration-resistant prostate
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cancer (CRPC) ultimately occurs, for which the outcome is poor. Resistance mechanisms
include AR gene amplification and overexpression, the emergence of AR mutations and
splice variants, as well as increased intra-tumoral androgen synthesis [6,8]. Late-stage
treatment options include taxanes, radium-223, poly (ADP-ribose) polymerase (PARP)
inhibitors, autologous cellular immunotherapy with sipuleucel-T, and more recently, the
radioconjugate 177Lu-PSMA-617 [9]. The anti-PD-1 antibody pembrolizumab, which re-
ceived tumor-agnostic approval for patients with high microsatellite instability, is used for
the treatment of metastatic CRPC (mCRPC) patients [9], but immune checkpoint inhibitors
have so far shown little benefit as single agents or in combination studies in unselected
prostate cancer patients [6]. Only a few direct comparisons between all of these treatments
exist, making individual therapy choices difficult so predictive biomarkers are highly
needed [9]. The transformation to neuroendocrine prostate cancer (NEPC), a lethal form of
prostate cancer, represents an increasing form of therapeutic resistance characterized by
little or no AR activity and high levels of neuroendocrine markers [10–12]. Unfortunately,
no effective treatment options are currently available for NEPC, but the recent identification
of different subtypes based on genomic and transcriptomic classification has the potential
to guide future therapy decisions [13–15].

The genomic profiling of samples from patients at different stages of prostate cancer led
to the identification of numerous alterations with varying frequencies along disease progres-
sion [6,16]. The main somatic change reported in localized prostate cancer is Ets-related gene
(ERG) fusion with androgen-responsive promoters, which is detected in nearly 50% of cases
in Western patients but far less frequently in men of Asian or African descent [6,17]. Next,
come phosphatase and tensin homolog (PTEN) deletions, inactivating mutations, and silencing
by promoter methylation, with increased frequencies along disease progression [6,18–20].
In addition, activating mutations of the phosphatidylinositol-3-kinase (PI3K) can also be ob-
served, mainly in mCRPC, so that the oncogenic activation of the PI3K/AKT/mammalian
target of rapamycin (mTOR) pathway represents an important event involved in resistance
to androgen deprivation therapy (ADT) [19,21]. As AR overexpression and mutations are
also detected in the majority of mCRPC patients [8,16], increasing attention has been given
to the molecular mechanisms underlying the reciprocal crosstalk and feedback mechanisms
between these two pathways and their role in tumor progression. Recently, a novel prostate
cancer classification based on gene expression profiles from the PI3K and AR pathways
has been proposed, and a worse progression-free survival was evidenced for the subgroup
with a mixed PI3K and AR signature [22].

2. AR Signaling in Prostate Cancer
2.1. AR Pathway Overview

Androgens play an essential role in spermatogenesis and in the development of male
secondary sexual characteristics [23]. Androgen synthesis is under the control of the
hypothalamic-pituitary-gonadal axis, starting with the gonadotropin-releasing hormone,
which stimulates the synthesis and secretion of the follicle-stimulating hormone and the
luteinizing hormone [24,25]. This promotes spermatogenesis and androgen production
in the testis. Testosterone is the primary male sex hormone and is converted by 5-alpha-
reductase to the more potent dihydrotestosterone in the prostate and in other tissues [26].

Androgens act by binding to the cytoplasmic AR, which is a member of the steroid
hormone receptor family. This is followed by the shedding of heat-shock proteins and
chaperones, conformational changes, nuclear translocation, homodimerization, and binding
to specific DNA response elements. The AR dimer forms complexes with a range of pioneer
factors and coactivator proteins [4,27–29]. This activation chain ultimately induces a
dramatic change in downstream gene expression and corresponding protein levels, which
can be reverted by treatment with an AR pathway inhibitor [30–33].

Three functional domains and a hinge region have been identified in the AR [34–36].
The ligand-binding domain is bound by androgens and also by the approved competitive
antagonists and contains the transactivation region AF-2 [8,37,38]. The DNA-binding
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domain is highly conserved among steroid receptors and is responsible for the recognition
and binding to consensus DNA motifs named androgen-responsive elements (AREs) via
two zinc finger regions. It also contains the dimerization surface D-box. The N-terminal
domain harbors the important transactivation regions TAU-1 and TAU-5 and short motifs
involved in coactivator recruitment. Inter- and intramolecular interactions mediated by
specific motifs located in different AR domains play important functional roles [39]. The
AR also undergoes post-translational modifications, such as phosphorylation or acetylation,
at specific sites, but the overall impact on normal physiology and pathology is not clearly
understood [40–43].

Recent studies indicate that the AR N-terminal domain contains flexible, intrinsically
disordered regions, which are also found in other transcription factors and involved in the
formation of liquid condensates [44,45]. The N-terminal domain has a predominant role
in AR phase separation in the nucleus, but other regions are involved as well [46]. This
mechanism allows high local AR concentration followed by sustained downstream gene
expression [35,44,45,47] and may also impact the efficacy of inhibitors [46]. Conformational
changes in the three-dimensional chromatin structure and the emergence of topologically
associating domains favoring promoter and enhancer interactions have furthermore been
described as essential components involved in AR target gene regulation [35,48–50].

2.2. AR Reprogramming in Prostate Cancer

Adenocarcinoma is the most frequently diagnosed form of prostate cancer, and the
essential role of AR signaling is evidenced by the different approved therapies addressing
this pathway (see above). Understanding the differences between normal AR signaling as
needed for the proper physiological function and abnormal signaling eliciting pathogenesis
has been the subject of intensive research efforts in recent years. The reprogramming of
the AR cistrome leading to increased plasticity, de-differentiation, and the reactivation of
developmental programs is associated with tumor progression and poor outcomes [51–53].
Differences in AR cistromes have been reported between early and late-stage prostate
cancer samples [54–56]. AR-V7 is a constitutively active splice variant lacking the ligand-
binding domain and found predominantly in CRPC [57]. Its cistrome differs from that of
full-length AR and also undergoes changes along prostate cancer progression [58,59]. The
cistromes of the forkhead box protein A1 (FOXA1) and homeobox protein HOXB13, two
essential pioneer factors associated with the AR and AR-V7, are also altered in prostate
tumors [52,58]. Interestingly, AR-binding sites are highly mutated in clinical samples of
prostate cancer, and this may affect enhancer activity [60]. Therapy resistance has been
linked to the reprogramming of the AR cistrome and involves epigenetic regulators [61].
AR overexpression, a frequent resistance mechanism in CRPC, leads to modifications in
DNA binding [62]. Changes in the cistrome of AR splice variants also take place, and
preferential binding sites impacting downstream regulated genes have been described [63].

The comparison of AR transcriptomes between normal prostate and samples from
different tumor stages indicates dramatic differences. Gene sets corresponding to AR-
binding sites lost or gained between normal prostate and tumors have been defined,
and their association with treatment outcomes analyzed [53]. In another study, different
subgroups based on AR activity levels have been defined [64]. AR target genes selectively
regulated between untreated and treated prostate tumors or associated with response or
resistance to therapy have been reported [54,65]. RNA sequencing performed on samples
from CRPC patients treated with enzalutamide revealed that non-responders expressed
gene sets linked to low AR activity and to a stemness program [66]. AR-V7 preferentially
associates with corepressors, and transcriptomic data show that it is a negative regulator of
antiproliferative genes [67].

2.3. Neuroendocrine Prostate Cancer

De novo neuroendocrine prostate cancer is rarely observed, but treatment-emergent
forms are now more frequently diagnosed due to the increased and earlier use of potent
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AR signaling inhibitors [10–12]. Numerous genetic aberrations, as well as expression
changes in transcription factors and epigenetic regulators, are involved in NEPC emer-
gence, and AR expression is low or undetectable [10–12,68,69]. Neuroendocrine-specific
DNA regulatory elements recognized by the FOXA1 pioneer factor following local changes
in histone modifications have been evidenced [68]. RNA sequencing and the histological
assessment of neuroendocrine prostate cancer have allowed detailed phenotypic characteri-
zation. Neuroendocrine tumors are mainly of the basal subtype, and a subgroup leading
to liver metastases has furthermore been described [14,15]. A chromatin accessibility ap-
proach combined with transcriptomic analysis confirmed the existence of a neuroendocrine
subgroup beside three other CRPC subgroups [13].

3. PI3K/AKT/mTOR Signaling in Prostate Cancer
3.1. PI3K/AKT/mTOR Pathway Overview

PI3K/AKT/mTOR signaling plays an essential role in prostate cancer and in resistance
to therapies. Genetic alterations are common and mainly affect the PTEN gene, which is
the major regulator of the pathway [70–72]. Moreover, numerous mutations in the catalytic
and regulatory subunits of PI3K complexes and in the downstream effectors have been
evidenced [21,71,72].

The PI3K family of lipid kinases is at the interface between extracellular activation
signals and intracellular pathways controlling multiple processes. Different classes have
been defined based on the structure and function of the individual family members. Class
IA and IB members are the best studied regarding their role in prostate cancer [19,21].
They form heterodimers composed of a catalytic p110 subunit and a smaller regulatory
subunit. Class IA includes three catalytic subunits, named p110α, p110β, and p110δ,
and five regulatory subunits named p85α, p55α, p50α, p85β, and p55γ, while class IB
is composed of a single catalytic subunit p110γ, that binds to the p101-p84 regulatory
subunits. Class I PI3 kinases are mainly activated by extracellular signals that trigger
growth factor receptors and by the Ras GTPase, leading to their recruitment to the plasma
membrane where they phosphorylate phosphatidylinositol-4,5-biphosphate (PI(4,5)P2)
to produce phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P3). This is followed by the
downstream activation of several kinases, including 3-phosphoinositide-dependent protein
kinase-1 (PDK1) and the mTOR complex 2 (mTORC2), which then sequentially phos-
phorylates the serine/threonine kinase AKT at two different sites [73]. There are three
related AKT isoforms with a broad tissue distribution and largely overlapping functions,
but non-redundant roles have been defined in different tumor types, including prostate
cancer [74]. Activated AKT phosphorylates multiple downstream proteins at a specific
consensus motif, thus leading to stimulation or inhibition [75]. This, in turn, prompts
the regulation of many cellular processes, including proliferation, invasion, survival, and
apoptosis [21]. The protein complexes mTOR complex 1 (mTORC1) and mTORC2 play
important, distinct tasks in the AKT signaling pathway. mTORC1 stimulates transcription
and translation and contains several proteins, including the regulatory-associated protein
of mTOR (RAPTOR) and the DEP domain-containing mTOR-interacting protein (DEPTOR),
which is often overexpressed in late-stage prostate cancer. mTORC2 is involved in multiple
aspects of cell proliferation and survival and is composed of the rapamycin-insensitive
companion of mTOR (RICTOR), DEPTOR, and a few other proteins [19,76]. It promotes the
autophosphorylation of multiple kinases, including AKT, for their full activation [77]. The
forkhead box O (FOXO) transcription factors are further important regulatory components
of the PI3K/AKT/mTOR pathway, and they are inactivated following phosphorylation
by AKT [19].

Members of the more distantly related phosphatidylinositol phosphate kinase (PIPK)
superfamily, which phosphorylate phosphoinositides play a role in prostate cancer as
well [78]. PIKfyve is responsible for the generation of phosphatidylinositol 3,5-biphosphate
(PI(3,5)P2), and its blockade or expression knock-down in different prostate cancer mod-
els leads to reduced autophagy and potentiates the response to immune checkpoint in-
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hibitors [79]. The lipid kinase phosphatidylinositol 4-phosphate 5 kinase PIP5K1α is
involved in prostate cancer cell growth as evidenced by expression knock-down and inhibi-
tion [80], and this was shown to involve its N-terminal domain by using in vivo xenograft
studies [81].

PTEN is a critical regulator of the PI3K/AKT/mTOR signaling cascade, which acts as
a gatekeeper by dephosphorylating PI(3,4,5)P3 to PI(4,5)P2 [70]. PTEN gene inactivation is
observed in many tumor types, including prostate cancer, and can occur by diverse mecha-
nisms, ultimately leading to the constitutive activity of the PI3K/AKT/mTOR pathway.
Inositol polyphosphate 4-phosphatase type II (INPP4B) is another important regulator
of the PI3K/AKT/mTOR pathway, which is responsible for the dephosphorylation of
PI(3,4)P2 [82].

In addition to its pro-survival and anti-apoptotic impact, the PI3K/AKT/mTOR
pathway is also an important player in cellular metabolism [21]. The role of mitochondrial
rewiring in prostate cancer was shown by the transcriptomic and proteomic analysis
of patient-derived models [83]. Metabolic rewiring is also seen after the activation of
mTOR, which is followed by important changes in anabolic processes [84]. This includes
increased fatty acid synthesis and uptake, which are both essential to the fueling of prostate
cancer cells which are particularly dependent on lipid metabolism for growth, especially at
advanced stages [85–87].

3.2. PI3K Alterations in Prostate Cancer

PI3K mutations are observed both in the context of the PTEN gene wild-type and
PTEN gene loss. An analysis of a large number of prostate cancer models shows frequent
alterations of p110α and p110β and feedback between the isoforms [88]. Hotspots for
activating mutations that are responsible for unregulated cell proliferation have been
revealed in different regions of p110α, including the helical and kinase domains [89,90].
A recent study reported that elevation in specific circulating lipids measured in mCRPC
patients combined with different genetic abnormalities, including PI3K alterations, are
associated with decreased overall survival [91]. Mutations in p110δ are less frequent and
mainly found in mCRPC [19,92]. Importantly, PI3K mutations act as oncogenic drivers in
prostate cancer and cooperate with PTEN loss to accelerate disease progression [93]. Driver
mutations in catalytic subunits reduce autoinhibition and thereby cause the exposure of
the kinase domain or an increase in membrane interaction, ultimately leading to enhanced
activity [94,95].

Reduced expression and inactivating mutations have furthermore been reported in
prostate cancer for the repressive PIK3R1 regulatory unit, mainly at the metastatic stage,
and are associated with unfavorable clinical outcomes [88,96].

3.3. AKT Alterations in Prostate Cancer

AKT gene amplification is observed in 2–5% of advanced prostate cancer cases, but
activating mutations are rare [19]. The analysis of cell-free DNA from mCRPC patients
reveals a 6% incidence of activating mutations in AKT or PIK3CA (which encodes the p110α
catalytic subunit) and a negative correlation with AR gene copy gain [97]. Additionally,
AKT1 activating mutations are mutually exclusive with PTEN alterations [97]. Importantly,
the AKT regulator PDK1 is stabilized by the E3 ligase speckle-type POZ protein (SPOP),
which is mutated in about 15% of early and late-stage prostate cancer [98]. Mouse bearing
the SPOP mutation F133V which is the most frequently found in prostate cancer patients,
show little changes in their prostate [99]. The situation is, however, different in a PTEN loss
background where invasive prostate cancer develops [99].

The role of AKT in NEPC has furthermore been reported. Early studies in prostate can-
cer cell lines showed AKT activation to promote neuroendocrine differentiation [100,101].
Another work describes that constitutively activated AKT, together with c-Myc, induces the
de novo neuroendocrine differentiation of luminal epithelial cells from the prostate [102].
The AKT3 isoform was highlighted as playing an essential role in neuroendocrine differ-
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entiation based on overexpression and co-localization with marker genes [103]. A survey
of available genomic and RNA-seq data of human NEPC samples revealed frequent al-
terations in the PI3K/AKT/mTOR pathway, mainly in the PTEN gene, but no significant
differences in the gene expression levels of AKT isoforms were observed [104].

3.4. mTOR Complex Alterations in Prostate Cancer

mTOR is a central hub of metabolic sensors with a key role in cell survival and prolifer-
ation. A proteomic profiling of the mTOR complex bound to chromatin in different prostate
cancer cell lines shows the androgen-dependent binding of the AR and the additional
important function of the nucleosome remodeling deacetylase NuRD complex for the regu-
lation of gene expression [105]. Different components of mTOR-associated complexes are
modified in prostate cancer but usually in small frequencies. The most frequently altered
mTOR complex component is DEPTOR which is amplified in about 5% of mCRPC cases,
and this is linked to worse disease outcomes [19]. DEPTOR suppresses the activity of both
mTORC1 and mTORC2 [106] but activates AKT via negative feedback [107,108]. On the
other hand, a tumor suppressor action has also been described, and a mouse DEPTOR
knock-out model was recently reported to develop prostate tumorigenesis, suggesting a
dual, context-dependent action [109]. RICTOR is involved in prostate cancer progression
in the PTEN-deficient context via the stimulation of AKT phosphorylation [110–112]. As
mentioned, prostate cancer growth is particularly dependent on altered lipid metabolism, a
process controlled at least in part by mTOR.

3.5. FOXO Alterations in Prostate Cancer

The FOXO transcription factors are important downstream targets of AKT. Gene
deletion of the tumor suppressors FOXO1 and FOXO3 is frequently observed in late-stage
prostate cancer [19]. FOXO1 has an inhibitory impact on prostate cancer which is lost
following phosphorylation and cytosolic migration [113]. The binding of FOXO1 to the
AR N-terminal domain, followed by the impaired recruitment of co-activators and loss of
activity, has been evidenced [114]. FOXO1 also binds to and inhibits the ERG transcription
factor, which is overexpressed in about 50% of early prostate tumors, and its deletion
promotes tumors in mice with high ERG levels [115]. FOXO activation after the knock-out
of AKT1 and AKT2 impairs AR nuclear translocation [116]. The modulation of FOXO3
activity and levels affects the growth and proliferation of numerous prostate cancer cell
lines [117]. In vivo, the repression of FOXO3 activity leads to increased prostate cancer
progression in the transgenic adenocarcinoma of the mouse prostate (TRAMP) mice [118].

3.6. PTEN Loss in Prostate Cancer

PTEN inactivation is the main genetic alteration reported in prostate cancer. Ge-
nomic homozygous deletions and somatic inactivating alterations, such as truncations or
frameshift mutations, are observed in about 20–30% of primary tumors and 40–60% of
mCRPC cases [70]. Regulatory action of some microRNAs in controlling PTEN gene expres-
sion and protein ubiquitylation leads to diminished activity and has been reported [119,120].
Both homozygous and heterozygous PTEN loss is associated with biochemical recurrence,
quicker tumor relapse, and reduced responses to therapy at different stages of prostate
cancer [70]. Importantly, PTEN loss is often accompanied by inactivating mutations of
other tumor suppressor genes, such as those for retinoblastoma (Rb) or for TP53, or by the
activation of oncogenes, altogether inducing stronger tumor progression, metastasis forma-
tion, and resistance to ADT [121]. PTEN-deficient prostate cancer patients often also harbor
inactivating mutations in lysine N-methyltransferase 2C (KMT2C) and mice bearing both alter-
ations develop prostate cancer metastases with a hallmark c-Myc gene signature [122]. The
expression loss of PTEN and other tumor suppressors based on 5-hydroxymethylcytosine
counts over the corresponding gene body is part of a signature that is predictive of worse
survival in mCRPC patients [123].
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The effect of PTEN loss on tumor growth and survival has been evidenced in numerous
experimental prostate cancer models [124]. Mice with conditional, selective knock-out of
the PTEN gene in the prostate develop invasive tumors that recapitulate many aspects
observed in patients [125,126]. PTEN haploinsufficiency leads to prostate lesions in mouse
transgenic models but not to malignant tumors, so this alteration is often combined with
additional genetic changes such as Rb or p53 inactivation in tumor models to mimic more
closely the clinical situation [124]. Primary tumors and epithelial cell lines derived from
mouse prostate cancer with PTEN deletion respond similarly to PI3K inhibition [127].
Several studies with different preclinical models, including genetically engineered mice,
suggest that p110β is the main driver in PTEN-deficient models of prostate cancer [128–130].
However, a recent detailed analysis of patient-derived prostate cancer organoids reported
that PTEN loss did not cause selective sensitivity to PI3K isoform inhibitors and that
changes in isoform dependency might take place [88]. Additionally, AKT inhibition is more
effective than PI3K blockade in the context of PTEN loss [88].

The first attempts to restore function by the delivery of recombinant PTEN protein or
mRNA, by targeting negative regulators or microRNAs, by transcriptional reactivation us-
ing CRISPR/Cas9 technology, or by reverting the epigenetic silencing of the corresponding
promoter have shown positive results in preclinical models [70].

4. Crosstalk between PI3K/AKT/mTOR and AR Signaling

Reciprocal feedback between the PI3K/AKT/mTOR and AR pathways has been
evidenced in multiple preclinical models, with the blockade of one pathway leading to the
stimulation of the other one (Figure 1) [21,131–133]. This has led to the extensive evaluation
of dual inhibitory approaches initially in preclinical models and, more recently, in patients
with late-stage prostate cancer [21,133–135].
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4.1. AR Signaling Impacts the PI3K/AK/mTOR Pathway

There is a negative regulatory effect of AR signaling on AKT function, and AR overex-
pression reduces AKT activity [136]. The castration of mice with conditional PTEN deletion
leads to an elevation in the expression and phosphorylation of AKT in prostate tumor
cells [136]. Several other studies also show that androgen ablation elicits enhanced AKT
activity, which, in turn, impaired the anti-tumor efficacy of AR inhibitors in preclinical
models [137–140]. The role of the PH domain and leucine-rich repeat protein phosphatase
(PHLPP)/FK506-binding protein 51 (FKBP51)/I kappa B kinase α (IKKα) complex in the
crosstalk between AR and AKT signaling was evidenced [140,141]. The downregulation
of FKBP5 gene expression by AR deletion prevented the inhibitory effects of PHLPP on
AKT [140]. Very recently, the isomerase activity of the corresponding protein FKBP51 was
additionally shown to be essential for AR dimerization and function [142].

Androgens stimulate mTOR activity in prostate cancer cells with PTEN deficiency by
the upregulation of genes involved in nutrient availability and independently of PI3K/AKT
activation [143]. AR signaling also impacts the cellular metabolism reprogramming ob-
served in prostate cancer via binding, together with mTOR, to regulatory regions of the
sterol regulatory element-binding transcription factor 1 (SREBF1) gene, which leads to increased
expression [144]. Androgen stimulation additionally enhances SREBF1 stimulation of its
target genes, including the essential lipogenic player fatty acid synthase (FASN), and this is
prevented by mTOR inhibitors [144]. Activated AR also directly stimulates the expression
of FASN and of numerous other genes involved in the fatty acid synthesis, and this pro-
motes tumor growth, as evidenced in a variety of preclinical models [86]. The androgen
stimulation of metabolic reprogramming is not seen after the inhibition of mTOR activ-
ity [145]. Following androgen deprivation of an orthotopic mouse PTEN-deleted prostate
tumor, the stimulation of AKT led to elevated levels of mitochondrial hexokinase 2 (HK2),
and metabolic reprogramming was observed [146]. The impact of AR blockade on the lipid
profiles of prostate cancer patients has furthermore been outlined [147].

4.2. The PI3K/AKT/mTOR Pathway Impacts AR Signaling

Most data on the importance of PI3K and AKT in the modulation of AR function and
effects on prostate cancer proliferation were generated with specific inhibitors, thus provid-
ing strong evidence for the relevance of the pathway for therapeutic targeting [148]. Several
studies using PI3K and AKT inhibitors revealed a remarkable impact on prostate cancer cell
lines and patient-derived xenografts, also in castration-resistant models [130,131,149–152].
The dual inhibition of PI3K and mTOR led to an enhanced AR target gene expression in a
PTEN-deficient cell line and stabilization of the AR by HER kinases [138]. The blockade of a
CRPC cell line by an AKT inhibitor was found to be transient and linked to the increased AR
binding and activation of AR target genes, and this was overcome by additional treatment
with an anti-androgen [153]. A compensatory rise of glucocorticoid receptor expression
following AKT inhibitor treatment was identified by another group, and this was also
prevented by AR inhibition [151]. Indeed, several reports support the superior efficacy of
combining inhibitors of the PI3K/AKT/mTOR and AR signaling pathways in reducing
tumor growth, both in vitro and in vivo preclinical studies [124,131,150,154].

Concerning mTOR, direct interaction with the AR following nuclear translocation
eliciting transcriptional reprogramming has been reported [76,105]. Importantly, an mTOR
gene signature that discriminates between normal and tumor prostate and that is predictive
of progression has been proposed [76].

Another approach to assess crosstalk is the downregulation or overexpression of
regulators of the PI3K/AKT/mTOR pathway. The deletion of PTEN in prostate cancer
cells is followed by diminished androgen-dependent gene expression and progression to
androgen-independent proliferation [140]. A direct effect on endogenous AR expression is
furthermore observed in PTEN-deleted mice [136]. The atypical mitogen-activated protein
kinase MAPK4 activates the AKT/mTOR signaling pathway and transforms prostate ep-
ithelial cells [155]. MAPK4 also enhances AR function via the stimulation of GATA2 gene
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expression and protein stability, thus leading to increased prostate cancer cell prolifera-
tion [156]. In line with this, MAPK4 overexpression stimulates, whereas its knock-down
inhibits the growth of prostate cancer xenografts in vivo [156]. The histone deacetylase
HDAC3 is another common activator of the AKT/mTOR and AR pathways. It increases
AKT phosphorylation, whereas its conditional deletion or inhibition in PTEN knock-out
mice reduces both AKT and AR signaling [157]. HDAC3 knockdown or blockade causes
the impaired growth of prostate cancer organoids and xenografts in the context of PTEN
deletion or SPOP mutation [157]. Reduced INPP4B levels are seen in prostate cancer, and
overexpression leads to the inactivation of the PI3K/AKT/mTOR pathway and suppres-
sion of prostate cancer cell migration and invasion [158]. This was confirmed in another
study which documented how INPP4B impacts the AR transcriptional program and that
its depletion stimulates prostate cancer cell proliferation [159]. The zinc finger homeobox
protein 3 (ZFHX3) is a transcription factor often mutated in prostate cancer and it sup-
presses PI3K/AKT/mTOR signaling [160]. Its expression is under androgen control [161],
and the concomitant deletion of ZFHX3 and PTEN leads to increased prostate neoplasia in
a mouse model [162]. 5′-adenosine monophosphate-activated protein kinase (AMPK) is a
target phosphorylated by AKT and an upstream regulator of mTOR involved in prostate
cancer metabolism, but its impact on cell survival remains complex due to the numerous
pathways it interacts with [163]. A highly specific AMPK inhibitor has recently been shown
to have strong anti-proliferative action on androgen-dependent prostate cancer cell lines
and it down-regulates the expression of several genes involved in lipid metabolism [164].

5. AR Inhibitors
5.1. Approved and Clinically Advanced AR Inhibitors

The first generation of AR inhibitors approved by the American Food and Drug
Administration (FDA) for prostate cancer treatment included bicalutamide, flutamide, and
nilutamide, which were launched between 1989 and 1996 [38]. However, the response to
these compounds is of limited duration, so more potent second-generation AR inhibitors
have later been developed. In recent years, the FDA has approved three new competitive
AR antagonists for the treatment of prostate cancer [165]. The FDA granted approval of
enzalutamide for the treatment of mCRPC in 2012, for non-metastatic castration-sensitive
prostate cancer in 2018, and for metastatic castration-sensitive prostate cancer in 2019 [166].
Apalutamide was approved for non-metastatic CRPC in 2018 and for metastatic castration-
sensitive prostate cancer in 2019 [167]. Darolutamide achieved FDA approval for the
treatment of non-metastatic CRPC in 2019 [168,169] and very recently for metastatic HSPC,
in combination with docetaxel, in 2022 [170]. Rezvilutamide has been approved in China
since 2022 for metastatic HSPC with a high tumor burden [171]. Numerous clinical studies
are ongoing for these compounds to broaden their indication space, either as single agents
or in combination with other drugs.

Currently, there are also additional AR antagonists in clinical trials. Proxalutamide
is in several phase 2 trials for the treatment of mCRPC [172].TRC-253 is an AR antagonist
that has completed a phase 1/2a clinical study for the treatment of mCRPC [173].

Chemical structures of AR antagonists are shown in Figure 2.
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5.2. Emerging Strategies for Inhibition of AR Signaling

In addition to classical small molecule inhibitors, new modalities that address AR
signaling have emerged in recent years. Proteolysis targeting chimeras (PROTACs) are
bifunctional molecules that recruit a cellular E3 ligase to drive ubiquitylation and the
degradation of a target protein [174]. Several PROTACs targeting the AR have been
reported, the most advanced of which being bavdegalutamide (ARV-110), which is currently
in phase 2 clinical trials (Figure 3) [175]. It is hoped that the PROTAC-mediated degradation
of the AR will yield clinical benefits beyond that which can be achieved with traditional
small molecule antagonists, thus overcoming or delaying resistance mechanisms commonly
seen with other AR-targeting drugs [176].
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Other research groups have sought to develop new AR small molecules that can bind
to the N-terminal domain (NTD) rather than to the ligand-binding domain (LBD) [177].
In contrast to the LBD, the NTD is considered far more difficult to drug, owing to an
intrinsically disordered structure and lack of a suitable binding pocket. However, NTD
binders could potentially retain activity in AR splice variants in which the LBD has been
truncated. AR-V7 and other AR splice variants have been linked to worsened prognosis
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and a lack of druggable LBD, however, it may be druggable using NTD binder drugs [177].
Several compounds aiming to inhibit AR function through binding to the NTD have been
described [178,179]. The first of these agents was ralaniten acetate (EPI-506, Figure 4), which
has however been superseded by a next-generation compound named EPI-7386 which
entered a phase 1/2 clinical trial in late 2021 (structure not disclosed). An NTD binder that
drives AR degradation, named EPI-8207, has also been described, but its chemical structure
is not yet disclosed [180]. Another recently described AR NTD binder and degrader is
ONCT-534, formerly named GTx-534 (structure not disclosed) [181]. It showed strong
efficacy in a patient-derived prostate cancer model expressing AR splice variants. While
potentially promising, it remains to be seen how these agents will perform in advanced
clinical studies.
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6. PI3K/AKT/mTOR Inhibitors
6.1. Clinically Advanced PI3K/AKT/mTOR Inhibitors
6.1.1. FDA-Approved and Clinically Advanced PI3K Inhibitors and Dual
PI3K/mTOR Inhibitors

Small molecule inhibitors for PI3K can either inhibit multiple isoforms (pan-PI3K
inhibitors) or be isoform-specific. Additionally, such drugs may be dual inhibitors that can
also target mTOR. In this section, we focus on FDA-approved and clinically advanced PI3K
inhibitors which have moved to or beyond phase 2 clinical trials (Figures 5 and 6).
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Idelalisib is specific for the δ-isoform and was the first PI3K inhibitor to be approved
by the FDA in 2014 for the treatment of chronic lymphocytic lymphoma (CLL) [182,183].

Copanlisib is a pan-class I PI3K inhibitor, which has received orphan drug and fast-
track designation by the FDA [184]. It was approved for the treatment of relapsed/refractory
follicular lymphoma (FL) in 2017. A phase 1b/2 study combining copanlisib with the PARP
inhibitor rucaparib is currently ongoing in mCRPC [185]. In addition, copanlisib has been
included in a clinical phase 2 study enrolling patients with activating PI3Kα mutations and
has shown activity based on an objective response rate [186].

Alpelisib is an α-isoform-specific PI3K inhibitor that has received orphan drug des-
ignation by the FDA. It was approved in combination with the selective ER degrader
fulvestrant for the treatment of hormone receptor (HR)-positive, human epidermal growth
factor receptor 2 (HER2)-negative and PI3Kα-mutated breast cancer at an advanced or
metastatic stage in 2019 [187].

Umbralisib is a δ-isoform-specific PI3K inhibitor that was approved for the treatment
of marginal zone lymphoma (MZL) and FL in 2021 [188,189]. The compound was recently
withdrawn from the market due to the possibility of an increased risk of death [190].

Duvelisib targets the γ and δ isoforms of PI3K [191]. It was approved in 2018 for the
treatment of relapsed or refractory CLL and small lymphocytic lymphoma (SLL).

In addition to FDA-approved drugs, there are also several PI3K inhibitors that have
progressed to advanced clinical trials. Dactolisib is a pan-PI3K inhibitor that also inhibits
mTOR [192] and was the first PI3K inhibitor to enter clinical trials. It was investigated in
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phase 3 clinical trials for clinically symptomatic respiratory illness and respiratory tract
infections. Additionally, there were several phase 2 clinical trials for the treatment of
various cancers, including metastatic breast cancer (mBC) [193,194]

Gedatolisib is a dual-form PI3K inhibitor that addresses the different PI3K isoforms
while also targeting mTOR [195]. It showed encouraging results when combined with
palbociclib, an inhibitor of the cyclin-dependent kinases CDK4 and CDK6, for the treatment
of estrogen receptor (ER)-positive, HER2-negative mBC and is currently being investigated
in phase 3 clinical trial [196]. Gedatolisib is also undergoing several phase 1/2 clinical trials
as a treatment option for different solid tumors, including triple-negative breast cancer
(TNBC) [197].

Paxalisib is a dual form pan-PI3K inhibitor that furthermore targets mTOR [198,199].
Paxalisib received orphan drug designation by the FDA in 2022 for the treatment of atypical
rhabdoid or teratoid tumors in rare and aggressive childhood brain cancer. The therapeutic
lead indication of paxalisib is glioblastoma, and it is currently being investigated in phase 2
and 3 clinical trials [200].

Buparlisib was developed as a pan-PI3K inhibitor and received fast-track designation
by the FDA in combination with the tubulin-targeting drug paclitaxel for the treatment of
recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) [201,202]. It was
evaluated in clinical trials for different additional indications, including breast and prostate
cancer [203,204].

Samotolisib is a dual PI3K/mTOR inhibitor that was originally assessed in patients
with diverse solid tumors [205]. It is currently being evaluated in mCRPC in combination
with enzalutamide [206].

AZD8186 is a selective PI3K β/δ inhibitor that is being clinically tested in advanced
solid tumors, including prostate and breast cancer [133].

Leniolisib is a δ isoform-specific PI3K inhibitor [207]. It has received orphan drug
designation and priority review by the FDA for the treatment of activated phosphoinositide
3-kinase delta syndrome (APDS) a rare genetic immunodeficiency disease [208]. This
treatment option is currently being evaluated in phase 3 clinical trials.

Zandelisib is another PI3K inhibitor with selectivity for the δ isoform [209]. It was
initially evaluated in patients with B-cell malignancy, but development outside Japan was
recently discontinued.

Eganelisib targets the γ isoform of PI3K [210]. The FDA has granted fast-track des-
ignation for the treatment of TNBC in combination with the PD-1-targeting monoclonal
antibody nivolumab [211].

GSK2636771 is a phase 2 clinical candidate that targets the β isoform of PI3K [212].
It is being evaluated as a treatment option for different indications, including prostate
cancer [213].

Inavolisib (GDC-077) is an α-isoform-targeting PI3K inhibitor currently in phase 3
trials for breast cancer. It not only inhibits PI3Kα but also induces the degradation of its
target protein [214]. At the time of writing, no prostate cancer trials have yet been reported
for this compound.

6.1.2. AKT Inhibitors

In contrast to PI3K inhibitors, no small molecule inhibitors for AKT have been ap-
proved by the FDA. AKT inhibitors can either be allosteric or ATP-competitive. In this
section, we have focused on clinically advanced AKT inhibitors, which are in phase 2 or
beyond (Figure 7).
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MK-2206 is an allosteric AKT inhibitor that targets the isoforms 1, 2, and 3. It was
evaluated in clinical trials for the treatment of different tumor types, including breast,
endometrial and uterine cancer, but the clinical benefit was limited [215–219].

The allosteric pan-AKT inhibitor TAS-117 is a clinical candidate for advanced solid
tumors with germline PTEN-inactivating mutations. It is being investigated in phase 2
clinical trials for advanced or metastatic solid tumors [220,221].

Afuresertib is an ATP-competitive AKT inhibitor that targets the isoforms 1, 2, and
3 [222]. It is in phase 2 clinical trials for the treatment of various cancers, including non-
small cell lung cancer, cervical cancer, TNBC, and prostate cancer [223,224].

Capivasertib is also an ATP-competitive pan-AKT inhibitor that is currently being
evaluated in several phase 3 clinical trials for the treatment of solid tumors, including
prostate [225,226] and breast [227] cancer. In addition, phase 2 studies are ongoing for
ovarian and endometrial cancer [228], as well as for bladder cancer, meningioma, and
non-Hodgkin lymphoma.

Another ATP-competitive pan-AKT inhibitor which is currently in the phase 3 clinical-
stage is ipatasertib [229]. Similarly to capivasertib, it is being evaluated in clinical trials
for the treatment of prostate [230–232] and breast [233–235] cancer, as well as in other
tumor types.

6.1.3. mTOR Inhibitors

The first mTOR inhibitors were originally approved for the prevention of graft rejec-
tion [236]. They are allosteric inhibitors derived from the natural macrolide rapamycin
(sirolimus) and include temsirolimus and everolimus (Figure 8). Later, small molecules
acting as ATP-competitive inhibitors and dual-binding site inhibitors have been described.
Currently, there are two mTOR inhibitors that have been approved for different cancer
indications with, however, limited efficacy [237]. Therefore, the combined PI3K/mTOR
blockade might be more effective (see above). Several clinical studies combining mTOR
inhibitors with AR signaling inhibitors are currently ongoing, but dose-limiting toxicity
has been observed [70]. Detailed reviews on mTOR inhibitors have recently been pub-
lished [133,238,239].
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6.2. Emerging Strategies for PI3K/AKT/mTOR Inhibition

In addition to the identification of classical small molecule inhibitors, there have
been recent advances in the application of new therapeutic modalities to address the
PI3K/AKT/mTOR signaling axis. Among the most advanced of these are allosteric in-
hibitors of PI3Kα, which are claimed to target H1047x oncogenic mutants while sparing
wild-type PI3Kα. It is hoped that mutant selectivity will improve upon the safety profile
and therapeutic index of wild-type PI3Kα inhibitors. To our knowledge, three mutant-
selective allosteric small molecules are currently under development. LOXO-783 is claimed
to target the H1047R mutant and shows antiproliferative activity in different breast cancer
models, leading to the initiation of phase 1 clinical study [240]. RLY-2608 is purported to
be pan-PI3Kα mutant selective. It inhibits AKT phosphorylation and the viability of cell
lines originating from breast cancer and other tumors. This compound has just started a
phase 1 clinical trial [241]. STX-478 is also a pan-PI3Kα mutant-selective compound and
shows potent activity in several tumor types [242]. Although most frequent in breast cancer,
PI3Kα mutations are also found in mCRPC, where they can be involved in worse disease
progression, which suggests that allosteric PI3Kα mutant-selective inhibitors may find
future applications for the treatment of prostate cancer [96]. While the structures of the
mentioned clinical candidate molecules have not been disclosed, representative structures
taken from the patent literature are presented in Figure 9.
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Figure 9. Mutant-selective allosteric inhibitors of PI3Kα.

Targeted protein degradation is another emerging therapeutic modality that has been
applied to address the PI3K/AKT/mTOR pathway. A PI3K/mTOR-targeting PROTAC
(Compound HL-8, Figure 10) showing strong degradation of PI3K kinase at a concentra-
tion of 10 µM has been reported [243]. At the same concentration, this compound also
showed significant phosphorylation inhibition of the downstream marker AKT, and this
was coupled with anti-proliferative effects in HeLa cells.
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AKT kinase has also been targeted using the PROTAC modality. Two research teams
independently reported the identification of AKT PROTACs, one named INY-03-041 and
the other one MS98, both of which employ the same AKT-targeting moiety but which differ
in the E3 ligase binding component (Figure 11) [244,245]. Both compounds are effective
degraders of AKT. They inhibit downstream signaling, leading to the prolonged inhibition
of the AKT pathway, and have antiproliferative effects in diverse tumor cell lines, including
prostate cancer models.
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At the time of writing, there are no clinical trials reporting the use of PROTAC de-
graders of the PI3K/AKT/mTOR pathway. However, the clinical PI3Kα inhibitor inavolisib
(GDC-077) has been purported to drive the degradation of mutant PI3Kα, preventing nega-
tive feedback loops and driving prolonged pathway inhibition in PI3Kα mutant preclinical
models [214,246]. However, the mechanism of degradation is not yet clear. Inavolisib is
under clinical development for breast cancer, with no published applications related to AR
signaling or for the indication of prostate cancer. Nonetheless, given the potential benefits
and differentiation of protein degradation versus traditional small molecule inhibition, the
future may bring further PI3K/AKT/mTOR degraders into clinical development.

7. Recent Clinical Studies Combining Inhibitors of the PI3K/AKT/mTOR and AR
Pathways for Prostate Cancer Treatment

Different compounds inhibiting the PI3K/AKT/mTOR pathway have been evalu-
ated or are currently undergoing clinical studies in prostate cancer patients, mainly at
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the mCRPC stage [21,71,133,134,247–249]. However, reciprocal feedback loops leading to
the activation of resistance mechanisms and dose-limiting side effects have so far limited
the impact of these treatments. Combination therapies with AR inhibitors are now being
evaluated in late-stage clinical studies (Table 1). Examples of advanced studies with results
include the combination of the PI3K inhibitor samotolisib with enzalutamide, which causes
an improved progression-free survival in mCRPC patients progressing on abiraterone [206].
Another example is the phase 3 study combining the AKT inhibitor ipatasertib with abi-
raterone acetate, which has shown a significant positive impact on progression-free survival
in mCRPC patients with PTEN loss [230].

Table 1. Selection of prostate cancer clinical trials combining PI3K/AKT/mTOR and AR
pathway inhibitors.

Drug Combination Targets Indication Status Phase Identifier

Samotolisib + enzalutamide PI3K-mTOR/AR mCRPC Completed 2 NCT02407054

Buparlisib + enzalutamide PI3K/AR mCRPC Terminated 2 NCT01385293

Apitolisib + abiraterone acetate PI3K-
mTOR/CYP17A CRPC Completed 1b/2 NCT01485861

GSK2636771 + enzalutamide PI3K/AR mCRPC Completed 1 NCT02215096

AZD8186 + abiraterone acetate PI3K/CYP17A Advanced CRPC Completed 1 NCT01884285

Ipatasertib + abiraterone acetate AKT/CYP17A mCRPC Active, not
recruiting 3 NCT03072238

Capivasertib + abiraterone
acetate AKT/CYP17A mHSPC with

PTEN deficiency Recruiting 3 NCT04493853

MK-2206 + bicalutamide AKT/AR Recurrent prostate
cancer

Active, not
recruiting 2 NCT01251861

Capivasertib + abiraterone
acetate AKT/CYP17A

High-risk localized
prostate cancer

with PTEN
deficiency

Not yet recruiting 2 NCT05593497

Capivasertib + enzalutamide AKT/AR mCRPC Unknown 2 NCT02525068

Ipatasertib + abiraterone acetate AKT/CYP17A CRPC Completed 1b/2 NCT01485861

Ipatasertib + darolutamide AKT/AR
Localized CRPC

with PTEN
deficiency

Terminated 1/2 NCT04737109

Everolimus + bicalutamide mTOR/AR Recurrent or
metastatic CRPC Completed 2 NCT00814788

Everolimus + enzalutamide mTOR/AR mCRPC Completed 1 NCT02125084

Everolimus + apalutamide mTOR/AR mCRPC Completed 1 NCT02106507

8. Conclusions and Perspectives

Both the AR and the PI3K/AKT/mTOR pathways are essential players in prostate
cancer, and reciprocal feedback has been outlined in numerous studies. AR signaling
inhibitors are established therapies for different stages of the disease, and combination
treatments with other targeted agents are currently being clinically tested. Five PI3K
inhibitors with different isoform selectivity profiles are now approved, mainly for the
treatment of different leukemia and lymphoma forms and for breast cancer, whereas two
mTOR inhibitors are marketed mainly for renal cell carcinoma and breast cancer [71,72].
Several other compounds, including dual PI3K/mTOR inhibitors and AKT inhibitors, are
currently in clinical studies and are being evaluated for monotherapy or in combination
treatments [21,71,72,90,133,247,248].
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Concerning prostate cancer, the most advanced study reports that the AKT inhibitor
ipatasertib, when given in combination with abiraterone acetate, leads to a significant
improvement in the radiographic progression-free survival of mCRPC patients with PTEN
loss [230]. Several other PI3K/AKT/mTOR pathway inhibitors have been evaluated in
clinical trials, but in many instances, the occurrence of adverse events was dose-limiting,
and no clear benefit could be observed [71,248]. More targeted approaches with compounds
addressing the tumor-specific p110α mutations are currently in the early phases of clinical
development and may constitute a more promising therapeutic strategy [250]. Additionally,
compounds leading to the cellular degradation of PI3K or AKT when using the PROTAC
approach and which may have superior efficacy have been described [143,243,251,252].

In view of the dose-limiting effects observed in the clinic with most PI3K/AKT/mTOR
pathway inhibitors, it will be essential to identify stratification biomarkers to determine
which patient groups are most likely to benefit from these treatments. This may prove
challenging in prostate cancer due to the high inter- and intra-tumor heterogeneity, which
makes the investigation of the precise status difficult. Recent advances include the use
of artificial intelligence-based approaches for the automated detection of PTEN loss in
prostate cancer samples stained by immunohistochemistry [253]. Additionally, liquid
biopsies are now taken to purify circulating tumor DNA for subsequent analysis by deep
sequencing [254]. This should soon help to decide on improved treatment strategies for the
benefit of prostate cancer patients.
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