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Abstract: Central nervous system (CNS) metastases and acquired resistance complicate the treatment
of anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) advanced non-small cell lung
cancer (NSCLC). Thus, this review aimed to provide a comprehensive overview of brain metastasis,
acquired resistance, and prospects for overcoming these challenges. A network meta-analysis of
relevant phase III randomized controlled trials was performed to compare the efficacies of multiple
ALK inhibitors by drug and generation in overall patients with ALK-p untreated advanced NSCLC
and a subgroup of patients with CNS metastases. The primary endpoint was progression-free survival
(PFS). Generation-specific comparison results showed that third-generation ALK inhibitors were
significantly more effective than second-generation ALK inhibitors in prolonging the PFS of the
subgroup of patients with CNS metastases. Drug-specific comparison results demonstrated that
lorlatinib was the most effective in prolonging PFS, followed by brigatinib, alectinib, ensartinib,
ceritinib, crizotinib, and chemotherapy. While lorlatinib was superior to brigatinib for PFS in the
overall patient population, no significant difference between the two was found in the subgroup
of patients with CNS metastases. These results can serve as a foundation for basic, clinical, and
translational research and guide clinical oncologists in developing individualized treatment strategies
for patients with ALK-p, ALK inhibitor-naive advanced NSCLC.

Keywords: brain metastasis; ALK rearrangement; acquired resistance; network meta-analysis

1. Introduction
1.1. Overview

The tremendous advances in tumor molecular research over the past two decades have
contributed enormously to our understanding of the etiology of non-small cell lung cancer
(NSCLC), which constitutes 84% of all primary lung cancers [1–5]. As a result, therapeutic
strategies for NSCLC have evolved remarkably and are still undergoing further develop-
ment [1,3]. Despite these advances, lung carcinoma currently remains the primary cause of
cancer-related mortality, representing 13% of all deaths related to cancer. Localized NSCLC
has a reported 5-year survival rate of 63%. However, most NSCLC cases are diagnosed in an
advanced stage. The 5-year survival rate of patients with progressive cancer is currently ap-
proximately 7%, even with current recommended therapeutic regimens [2,5,6]. Thus, further
improvements and developments are needed to treat NSCLC. Along with the expansion of

Int. J. Mol. Sci. 2023, 24, 2242. https://doi.org/10.3390/ijms24032242 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032242
https://doi.org/10.3390/ijms24032242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6535-8279
https://orcid.org/0000-0002-6182-6047
https://orcid.org/0000-0003-2376-1606
https://doi.org/10.3390/ijms24032242
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032242?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 2242 2 of 21

cancer genome medicine, genetic diagnostic technologies, treatment options, cancer gene
panel tests (cancer genome profiling tests) and liquid biopsy, which examines numerous
genes in cancer tissue samples, is being standardized [3,7–11]. These technologies have
contributed to a further paradigm shift toward personalized medicine for NSCLC. Three
to five percent of NSCLC cases harbor anaplastic lymphoma kinase (ALK) gene fusions,
the most common of which is echinoderm microtubule-associated protein-like 4-ALK
(EML4-ALK) [12–16].

As shown in Figure 1, EML4-ALK activates downstream signals such as phosphatidyli-
nositol 3-kinase-AKT (PI3K-AKT), Janus kinase/signaling transcription and activation
factor (JAK/STAT) signaling cascade, reticular activation system (RAS), and various ki-
nase activity, which consequently promote the production of fusion proteins that inhibit
apoptosis [12,17–19]. This phenomenon promotes tumor survival, growth, progression,
and metastasis to other organs, including metastasis to the central nervous system (CNS),
and in different cancer types, including NSCLC [1,2,8,15,18–23].
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Figure 1. Mechanisms of ALK translocation cancer progression. EML4-ALK translation trig-
gers the initiation of the PI3K-AKT, RAS, and JAK/STAT signaling cascades that influence
tumor growth, proliferation, and viability. ERK, extracellular signal-regulated kinase EML4-
ALK, echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase; PI3K,
phosphatidylinositol-3 kinase; mTOR, STAT, signal transducer and activator of transcription. ALK,
anaplastic lymphoma kinase; mammalian target of rapamycin; JAK, Janus kinase; MEK, mitogen-
activated extracellular signal regulated kinase; RAS, reticular activating system.

Lung cancer has a high probability of metastasis to the CNS, and patients with ad-
vanced NSCLC involving driver gene alterations, such as EGFR mutations and ALK
rearrangements, frequently have brain metastases (BM). The incidence of BM in such
patients is 37–64% [14,24,25]. Hence, treatment strategies focusing on BM are essential
to manage patients with advanced NSCLC, especially those with ALK rearrangements.
Whole-brain radiotherapy (WBRT) is the primary treatment option for patients with BM
from NSCLC. However, tyrosine kinase inhibitor (TKI)-targeted driver gene alteration has
marked antitumor activity against BM in tumors with driver alterations [14,26]. Therefore,
systemic pharmacotherapy with TKIs is a promising treatment option for BM from ALK
rearrangement-positive (ALK-p) NSCLC. Multiple therapies have been introduced. In 2011,
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the U.S. FDA first approved crizotinib as the leading ALK inhibitor. Subsequently, second-
and third-generation ALK inhibitors have been approved and reported to have superior
efficacy and antitumor activity to crizotinib in patients with CNS metastases.

Nevertheless, therapeutic strategies targeting ALK-p NSCLC with CNS metastases
remain to be developed, and current strategies need to be improved [2,12,14].

Even patients who respond well to initial therapy with ALK inhibitors may experience
tumor recurrence because of acquired resistance to these drugs via multiple mechanisms,
including secondary ALK resistance mutations and tumor growth promoting molecular
pathways. Therefore, the mechanisms underlying acquired resistance to ALK inhibitors
must be elucidated to develop novel strategies to treat patients with ALK-p advanced
NSCLC, especially those with CNS metastases [4,12].

In this meta-analysis report we first summarize the different ALK inhibitors (crizotinib,
ceritinib, alectinib, brigatinib, antacatinib, and loratinib) used in patients with ALK-p
advanced NSCLC. We then discussed the treatment of patients with CNS metastases and
the prospects for overcoming acquired resistance mutations in these patients.

1.2. ALK Inhibitors

ALK inhibitors bind to the ATP-binding pocket of the intracellular tyrosine kinase
domain, and regulate their downstream signals such as the RAS, PI3K-AKT, JAK/STAT
signaling cascades which are involved in tumor progression; attenuation of these cascades
produces an antitumor effect [8,20,27]. At present, several ALK inhibitors, including
crizotinib, alectinib, ceritinib, brigatinib, ensartinib, and lorlatinib, have been approved as
standard therapy for ALK-p NSCLC [1,3,17].

1.2.1. Crizotinib

Crizotinib is a first generation ALK inhibitor authorized for the potential therapeutic
application in the treatment of ALK-p NSCLC. Two phase III trials (PROFILE1014 [28]
and PROFILE1029 [29]) reported that progression-free survival (PFS) is longer in patients
treated with crizotinib monotherapy than in those treated with platinum combination
therapy (hazard ratio [HR] 0.45, 95% confidence interval [CI]: 0.35–0.60; HR 0.402, 95% CI:
0.286–0.565). Drug resistance usually develops within a year, and the disease metastasizes
to the brain because crizotinib cannot penetrate the blood–brain barrier (BBB) [2,30–32]. The
major toxicities of crizotinib monotherapy include liver dysfunction, visual disturbances,
and gastrointestinal toxicities such as diarrhea and nausea. Although PFS is longer with
crizotinib monotherapy than with platinum combination therapy, multiple phase III trials
have shown that other ALK-TKI monotherapies (alectinib, brigatinib, and lorlatinib) are
more effective than crizotinib in prolonging PFS [1,33–35]. Previous clinical trials and our
previous NMA showed that a toxicity level of Grade 3 or higher is more frequent with
crizotinib monotherapy than with alectinib monotherapy [35].

1.2.2. Ceritinib

Ceritinib is a second-generation ALK inhibitor developed to improve the low activity
of first-generation ALK-TKIs against CNS diseases and overcome resistance. A phase III
study (ASCEND-4) found that the PFS of patients with stage IV ALK-p NSCLC and PS 0–1
is longer with ceritinib monotherapy than with platinum combination therapy (HR 0.55,
95% CI: 0.42–0.73) [36]. However, Grade 3 or higher adverse events are more frequent with
ceritinib monotherapy (65%) than with platinum combination therapy (49%). The main
toxicities of ceritinib include liver dysfunction and gastrointestinal toxicities, including
anorexia, diarrhea, nausea, and vomiting [1,36].

1.2.3. Alectinib

Three phase III trials (J-ALEX [37], ALEX [35], and ALESIA [38]) involving patients
with ALK-p stage IV NSCLC and PS 0–1 found that PFS is significantly longer in patients
treated with alectinib monotherapy than in those treated with crizotinib monotherapy
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(HR 0.38, 95% CI: 0.26–0.55; HR 0.47, 95% CI: 0.34–0.65; HR 0.22, 95% CI: 0.13–0.38).
Updated results of the ALEX trial reported that overall survival (OS) is longer with alectinib
monotherapy than with crizotinib monotherapy (HR 0.67, 95% CI: 0.46–0.98) [35]. The
J-ALEX study showed that like ceritinib, alectinib has a high response rate and excellent
brain penetration and that Grade 3 or higher adverse events are less frequent with alectinib
monotherapy (32%) than with crizotinib monotherapy (57%) [37]. Our previous NMA has
shown that alectinib monotherapy has superior efficacy to other ALK inhibitors [39]. The
main toxicities of alectinib monotherapy include dysgeusia, myalgia, and skin rash; as with
other kinase inhibitors, interstitial pneumonitis should also be noted [1,35,37,38].

1.2.4. Brigatinib

A phase III trial (ALTA-1L [34]) that included patients with stage IV ALK-p NSCLC
and PS 0–1 revealed that the PFS of these patients is longer with brigatinib monotherapy
than with crizotinib monotherapy (HR 0.49, 95% CI: 0.33–0.74) [34]. Our NMA reported that
brigatinib monotherapy has a relatively favorable efficacy in patients with BM. However,
no significant difference was demonstrated when brigatinib monotherapy was compared
with alectinib monotherapy [39,40]. Grade 3 or higher adverse events are more frequent
with brigatinib monotherapy (61%) than with crizotinib monotherapy (55%) [34]. The
major toxicities associated with brigatinib monotherapy include hypertension, interstitial
pneumonia, elevated creatine kinase, skin rash, and gastrointestinal toxicities, such as
nausea, vomiting, and diarrhea [1,34].

1.2.5. Ensartinib

A phase III eXalt3 trial demonstrated that ensartinib (X-396) monotherapy, as a first-line
treatment for patients with ALK-p advanced NSCLC, is better than crizotinib monotherapy
in prolonging PFS (HR 0.51, 95% CI: 0.35–0.72) [41]. In addition, the intracranial response
efficiency of ensartinib monotherapy is higher (63.6%; n = 7/11 patients) than that of
crizotinib monotherapy (21.1%; n = 4/19 patients). However, the incidence of treatment-
related serious adverse events is higher with ensartinib monotherapy (7.7%) than with
crizotinib monotherapy (6.1%), with no new safety signals [41].

1.2.6. Lorlatinib

A phase III trial (CROWN [33]) showed that the PFS of patients with stage IV ALK-p
NSCLC and PS 0–1 is significantly longer with lorlatinib monotherapy than with crizotinib
in the overall patient population and a subgroup of patients with CNS metastases (HR 0.28,
95% CI: 0.19–0.41). However, the incidence of Grade 3 or higher adverse events is higher
(72%) with lorlatinib monotherapy than with crizotinib monotherapy (56%). The major
toxicities of lorlatinib monotherapy include hypercholesterolemia, hypertriglyceridemia,
weight gain, and hypertension, with cognitive dysfunction (2%) reported as the most
common adverse event [1,33].

1.3. Current Insights and Future Prospects on Treatment Strategies for ALK-p NSCLC with BM

In this section we discuss the treatment options for asymptomatic and symptomatic
BM cases and the future direction of drug therapy development.

For asymptomatic BM cases, single-drug therapy with TKIs is the preferred and
recommended treatment option because the patients’ tumors, including BM, are expected
to have high responsiveness to these drugs [14,26].

However, BM progression can easily cause neurological symptoms and rapidly de-
teriorate the patient’s condition. For example, BM lesions in the brain stem or close to
the pyramidal tract can rapidly deteriorate, even if their size is small. Thus, intracranial
radiotherapy is preferred for such patients, even those who are asymptomatic. Close
monitoring of BM and the timing of radiotherapy intervention are critical in managing
asymptomatic cases [1,12,14].
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For symptomatic BM cases intracranial radiotherapy is the primary treatment option
because robust local control of BM and neurological improvement are expected. The drugs
selected by treating physicians are also essential in managing symptomatic BM cases.
Several phase III clinical trials demonstrated that the intracranial antitumor activity of
second- or further-generation ALK-TKIs is higher than that of crizotinib [42,43]. Lorlatinib,
a third-generation ALK-TKI that can be delivered to the CNS, shows robust intracranial
tumor response [33]. In a previous clinical trial the objective response rate (ORR) of
lorlatinib (82%) in ALK-TKI-naïve patients with BM is higher than that of crizotinib [44].
However, hyperlipidemia and neurological adverse events such as cognitive impairment,
anxiety, and depression are specific to lorlatinib [44]. Given the differences in adverse
events induced by ALK-TKIs [33,42,43,45], patients’ conditions and concomitant diseases
should be considered when selecting ALK-TKIs.

Drug delivery into the CNS is generally prevented and primarily regulated by the BBB.
WBRT can irreversibly disrupt the BBB and improve the delivery of ALK-TKIs [46,47]. WBRT
is effective against BM and can enhance drug delivery to intracranial lesions. However,
the incidence of cognitive impairment after WBRT is higher than that after stereotactic
radiotherapy [48]. Assumption of the remaining neurological function after cranial radio-
therapies and individualized treatment options should be discussed on a case-by-case basis
by a multidisciplinary team.

Drug therapy combined with other agents and fourth-generation ALK-TKIs are future
treatment options for ALK-p NSCLC with BM.

Glycogen synthase kinase 3 (GSK3) is a serine-threonine kinase that serves an essential
role in many cellular processes; thus, it has been considered as a promising target in various
malignant diseases including brain tumors [49]. A preclinical study demonstrated that a
GSK3 inhibitor in combination with lorlatinib can overcome lorlatinib resistance [50]. In
addition to its antitumor effects, GSK3 inhibition also exerts neuroprotective effects by
promoting DNA repair. Thus, lorlatinib treatment combined with GSK3 inhibitors can
be more potent and neurologically less toxic for patients with BM from ALK-p NSCLC.
Fourth-generation ALK-TKIs, such as TPX-0131 and NUV-655, have been developed and
are now under investigation. These drugs can penetrate the CNS and thus are more
potent than conventional ALK-TKIs [51,52]. They are active against ALK-p NSCLC with
L1196M and G1202R mutations, which are resistant to third-generation ALK-TKIs such as
lorlatinib [51,52]. Thus, fourth-generation ALK-TKIs are a promising treatment option for
BM from ALK-p NSCLC, especially for those cases where other ALK-TKIs failed.

Radiotherapy, drug therapy, and their combinations have markedly progressed and
prolonged the survival of patients with BM from ALK-p NSCLC. However, individualized
treatment selection is a critical component for managing such patients. Thus, a multidisci-
plinary team comprising thoracic and radiation oncologists should conduct individualized
treatment discussions to prolong the survival of patients with BM from ALK-p NSCLC.

1.4. Mechanisms of Acquired Resistance to ALK Inhibitors and Prospects for Novel Strategies

Although crizotinib can significantly prolong the response rate and PFS of patients
with ALK-p NSCLC, disease progression inevitably occurs after treatment because of
the acquired resistance of 1–2 years [33]. The mechanisms underlying the acquired re-
sistance to ALK inhibitors are classified into two categories: (1) ALK-dependent resis-
tance mechanisms, such as secondary ALK resistance mutations and ALK amplification;
and (2) ALK-independent resistance mechanisms, such as bypass signaling pathway acti-
vation and lineage changes [53].

Secondary ALK inhibitor resistance mutations were previously identified in 20–30%
of tumor samples with crizotinib failure [54]. Among the crizotinib-resistant secondary
mutations, L1196M and G1269A are the most frequently detected in clinical samples [55].
The L1196M and G1269A mutations are located in the ATP-binding pocket and hinder
crizotinib binding. Other crizotinib-resistant mutations include I1151T, L1152P/R, C1156Y,
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G1128A, I1171T/N/S, F1174V, E1201K, G1202R, S1206C/Y, and V11180L [56–58], which
may enhance the ATP-binding affinity and enzymatic activity of the kinase.

Second-generation ALK inhibitors, such as ceritinib, alectinib, and brigatinib, have
been developed and approved clinically to overcome crizotinib-resistant mutations.
These inhibitors are potent against common crizotinib-resistant mutations, L1196M, and
G1269A [32,59–61]. Patients whose ALK-p NSCLC conditions have been treated with
second-generation ALK inhibitors inevitably develop acquired resistance, and secondary
acquired resistance mutations have been determined in approximately 50–70% of these
patients. Figure 2 shows the pharmacological activities of alectinib and lorlatinib against
ALK fusion proteins with resistant mutations. The G1202R mutation occurs in the
solvent-front ATP-binding site region of ALK and weakens the binding of all first- and
second-generation ALK inhibitors because of steric hindrance [62,63].
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Figure 2. Different pharmacological activities of (a) alectinib and (b) lorlatinib toward ALK fusion
proteins with resistance mutations. (a) Resistance mutations (e.g., G1202R) prevent alectinib from
combining with the ATP-binding domain of the ALK fusion protein. (b) Lorlatinib successfully asso-
ciated with the ALK fusion protein’s ATP-binding pocket with resistance mutations, and downstream
signals associated with tumor progression are downregulated; ATP, adenosine triphosphate; RM,
resistance mutation; ALK, anaplastic lymphoma kinase.

Although the G1202R mutation is rarely detected in crizotinib-relapsed clinical sam-
ples (2%), it is the most frequent resistance mutation following the administration of
second-generation ALK inhibitors, accounting for 40–65% of all acquired resistance muta-
tions [31,64,65]. Second-generation ALK inhibitors have greater potency than crizotinib;
thus, resistance mutation purification is suggested. Given its poor potency against ALK
kinase activity, crizotinib may select less potent resistance mutations. Alectinib-resistant mu-
tations include G1202R and I1171N. Interestingly, heterogeneous tumor evolution and high
tumor mutation levels possibly contribute to the rapid acquisition of alectinib resistance [66].
Ceritinib resistance mutations include T1151K, T1151R, F1174V, and G1202R [58,67,68],
whereas brigatinib resistance mutations include D1203N and E1210K [69,70].
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In 2018 lorlatinib was approved by the U.S. FDA for the treatment of patients with
ALK-p NSCLC. Lorlatinib displays activity against all potential ALK-TKI resistance mu-
tations, including L1196M, G1269A, and G1202R [64]. Lorlatinib is considered to be one
of ALK inhibitors that may hold promise for overcoming the high frequency of ALK in-
hibitor resistance mutations, particularly G1202R [64]. Next-generation sequencing results
showed that ALK mutations in several lorlatinib-resistant individuals accumulate dur-
ing consecutive dosing of an ALK inhibitor. ALK combined mutations reported to date
include L1196M/D1203N, F1174L/G1202R, and C1156Y/G1269A [71]. ALK D1203N is
more common during failure of lorlatinib than during failure of second-generation ALK
inhibitors [69]. Interestingly, some ALK inhibitor-related compound mutations conferring
lorlatinib resistance led to re-sensitization to first- or second-generation ALK inhibitors [13].
ALK amplification involves an ALK-dependent resistance mechanism. Crizotinib causes
ALK gene amplification as a resistance mechanism; however, its occurrence is rarer than
that of ALK resistance mutations. Moreover, second- and third-generation ALK inhibitors
are not identified, suggesting that they may not be clinically relevant as highly potent ALK
inhibitors [64].

Activating bypass signaling pathways is important in ALK-independent resistance mech-
anisms via gene alterations, autocrine signaling with ligand overexpression, and feedback
signaling. Such pathways include epidermal growth factor receptor signaling [30,72], KIT
amplification [31], MET amplification [73–75], IGF-1R activation [76], BRAF V600E mu-
tation [74], and increased expression of the MET ligand of hepatocyte growth factor [77].
Different from the previous addicted ALK activation, the bypass signal activation leads to
the activation of downstream factors such as the RAF/MEK/ERK and PI3K/AKT path-
ways, and provides survival signals. P-glycoproteins (P-gp) encoded by the multidrug
resistance 1 (MDR1) gene can induce multidrug resistance through the ATP-dependent
efflux of chemotherapeutical agents [78]. P-gp actively excludes the substrate from the
blood at the BBB, thereby limiting CNS penetration [79]. In most patients with crizotinib
failure the CNS is the primary metastatic site [80]. Brain accumulation of ceritinib is re-
stricted by P-gp and BCRP [81]; otherwise, alectinib and lorlatinib are non P-gp substrates
that can achieve higher concentrations in the CNS. As a potential resistance mechanism,
P-gp overexpression was determined in patients with tumor tissues of crizotinib- and
ceritinib-resistant ALK mutant NSCLC [82]. Phenotypic changes are also a mechanism of
ALK inhibitor resistance in ALK-mutated NSCLC. Epithelial-to-mesenchymal transition
(EMT) and small cell lung cancer (SCLC) or squamous cell carcinoma conversion have
been reported after ALK inhibitor therapy for ALK-p adenocarcinoma [83–86]. Histological
changes in tumors from adenocarcinoma to SCLC have been reported in 3–10% of patients
with EGFR-TKI-resistant NSCLC [87]. The histological changes may be associated with
retinoblastoma loss acquisition and genetic/epigenetic features of SCLC, such as EGFR-TKI
resistance [88]. With regard EMT, molecular mechanisms such as inhibitor resistance are
unknown. Moreover, histone deacetylase inhibitors can overcome this EMT-mediated ALK
inhibitor resistance by reversing EMT pre-clinically.

1.5. Significance of the Present Meta-Analysis

Based on these prospects, we conducted a comprehensive literature search and net-
work meta-analysis (NMA; UMIN 000049680). The results of this meta-analysis provide
important information to guide clinical oncologists treating non-small cell lung cancer
when considering treatment strategies for patients with ALK-p, ALK inhibitor-naive
advanced NSCLC.

2. Results
2.1. Systematic Review

A systematic literature search identified 2724 studies (478 from PubMed [89], 834 from
Cochrane Central Register of Controlled Trials [CENTRAL] [90], 356 from EMBASE [91],
and 1056 from SCOPUS [92]), with 1907 that remained after removing duplicates. After
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employing the Patients, Interventions, Comparisons, Outcomes, and Study Design (PICOS)
approach, nine research studies were selected for inclusion in the NMA, of which two
articles compared crizotinib with platinum based chemotherapy (PROFILE1014 [28] and
PROFILE1029 [29]), three compared alectinib with crizotinib (ALEX [35], J-ALEX [37], and
ALESIA [38]), and one each compared ceritinib with chemotherapy, brigatinib with crizo-
tinib, lorlatinib with crizotinib, and ensartinib with crizotinib (ACEND-4 [36], ALTA-1L [34],
CROWN [33], and eXalt3 [41], respectively). The study selection process is summarized in
Figure 3. The primary inclusion criteria are summarized in Table S1, and the main char-
acteristics of the included studies are summarized in Table S2. The data of 2484 patients
from the nine studies (chemotherapy: 461, crizotinib: 1025, ceritinib: 189, alectinib: 380,
brigatinib: 137, lorlatinib: 149, ensartinib 143) were used for the analysis. A network map
of the present network meta-analysis is shown in Figure 4.
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2.2. Comparison of ALK Inhibitors by Generation
2.2.1. PFS in Overall Patients

The efficacies of chemotherapy, first-generation ALK inhibitors (crizotinib), second-
generation ALK inhibitors (ceritinib, alectinib, brigatinib, and ensartinib), and third-
generation ALK inhibitors (lorlatinib) in prolonging PFS were compared between genera-
tions in the overall patient population of ALK-p, ALK inhibitor-naive advanced NSCLC.
Statistically significant differences were found among all generations compared (3rd vs.
2nd, 3rd vs. 1st, 2nd vs. 1st, 3rd vs. Chemo, 2nd vs. Chemo, and 1st vs. Chemo) (Figure 5a,
Table S3). Ranking by generation showed that third-generation ALK inhibitors had the best
PFS benefit, followed by second-generation ALK inhibitors, first-generation ALK inhibitors,
and chemotherapy (Table S4).
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Figure 4. Network map of the seven therapeutic groups: ensartinib, lorlatinib, brigatinib, alectinib,
ceritinib, crizotinib, and chemotherapy. In this network map randomized controlled trials (RCTs)
were represented by a solid line, with the breadth of the solid line correlated with the numbers of
studies included. Broken lines represent no head-to-head RCTs and trial to comparison of treatments.
n is the total number of patients in each group; Ensa, ensartinib; Lorl, lorlatinib; Brig, brigatinib; Alec,
alectinib; Criz, crizotinib; Ceri, ceritinib; Chem, chemotherapy.

2.2.2. PFS in a Subgroup of Patients with CNS Metastases

The efficacies of chemotherapy, first-generation ALK inhibitors (crizotinib), second-
generation ALK inhibitors (ceritinib, alectinib, brigatinib, and ersatinib), and third-generation
ALK inhibitor (lorlatinib) in prolonging the PFS in a subgroup of patients with CNS
metastases were compared. Statistically significant differences were found between third-
and second-generation ALK inhibitors, third- and first-generation ALK inhibitors, second-
and first-generation ALK inhibitors, third-generation ALK inhibitors and chemotherapy,
and second-generation ALK inhibitors and chemotherapy, but not between first-generation
ALK inhibitors and chemotherapy (Figure 5b, Table S3). Ranking by generation showed
that third-generation ALK inhibitors had the highest PFS efficacy, followed by second-
generation ALK inhibitors, first-generation ALK inhibitors, and chemotherapy (Table S4).
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Figure 5. Comparison of the efficacies of chemotherapy, first-generation ALK inhibitors (crizo-
tinib), second-generation ALK inhibitors (ceritinib, alectinib, brigatinib, and ensartinib), and third-
generation ALK inhibitors (lorlatinib) in prolonging the PFS of (a) overall patients with ALK-p, ALK
inhibitor-naive advanced NSCLC and (b) a subgroup of patients with CNS metastases. Data are
expressed as hazard ratios (HRs) and 95% credible intervals (CrIs); ALK, anaplastic lymphoma kinase;
ALK-p, anaplastic lymphoma kinase rearrangement positive; NSCLC, non-small cell lung cancer;
CNS, central nervous system.

2.3. Comparison among ALK Inhibitors
2.3.1. PFS in Overall Patients

A paired comparison of the efficacies of ensartinib, lorlatinib, brigatinib, alectinib,
ceritinib, crizotinib, and chemotherapy in prolonging the PFS of the overall patients is
presented in Table S5. Ranking by drug showed that lorlatinib was the most effective
in prolonging PFS, followed by alectinib, brigatinib, ensartinib, crizotinib, ceritinib, and
chemotherapy (Table S6).
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2.3.2. PFS in a Subgroup of Patients with CNS Metastases

A paired comparison of the efficacies of ensartinib, lorlatinib, brigatinib, alectinib,
ceritinib, crizotinib, and chemotherapy in prolonging the PFS in the subgroup of patients
with CNS metastases is presented in Table S5. Ranking by drug showed that lorlatinib was
the most effective in prolonging PFS, followed by brigatinib, alectinib, ensartinib, crizotinib,
ceritinib, and chemotherapy (Table S6).

2.3.3. PFS in Non-Asian Subgroup

A paired comparison of the efficacies of ensartinib, lorlatinib, brigatinib, alectinib,
ceritinib, crizotinib, and chemotherapy in prolonging the PFS in non-Asian subgroup was
presented in Table S7. Ranking by drug showed that lorlatinib was the most effective
in prolonging PFS, followed by alectinib, brigatinib, ensartinib, ceritinib, crizotinib, and
chemotherapy (Table S8).

2.3.4. PFS in Asian Subgroup

A paired comparison of the efficacies of ensartinib, lorlatinib, brigatinib, alectinib,
ceritinib, crizotinib, and chemotherapy in prolonging the PFS in the subgroup of patients
with CNS metastases is presented in Table S7. Ranking by drug showed that ensartinib was
the most effective in prolonging PFS, followed by alectinib, brigatinib, lorlatinib, crizotinib,
ceritinib, and chemotherapy (Table S8).

2.4. Evaluation of Bias

The qualities of the studies that were included were appraised on the basis of the
Cochrane-recommended Risk of Bias tool 2 (RoB2) [93]. Nine studies that were included in
the present systematic review and NMA were judged as “some concerns” in the overall
assessment. Specifically, they were all open-label studies judged as some concerns in
terms of bias due to deviations from intended interventions or bias in measurement of the
outcome. PROFILE 1029 [29] was also judged as some concerns in terms of bias arising
from randomization because this process was not sufficiently detailed. No domains were
identified as high risk (Figure S1).

2.5. Sensitivity Analysis

Of the nine studies included in this analysis, three (ALTA-1L [34], J-ALEX [37] and
eXalt3 [41]) included a group of patients who had received partial chemotherapy. To
address this heterogeneity, a sensitivity analysis [94,95] was performed by eliminating
patients with previous exposure to chemotherapy from these three trials. Consequently,
the paired comparison results of the four treatment groups were sustained (Table S9).
Further, comparable results were achieved for the ranking of the four treatment groups
(Table S10). These results indicated that the inclusion or exclusion of the patients with
previous chemotherapy did not impact the overall definitive conclusions.

2.6. Assessment of Study-to-Study Heterogeneity

In addition, ALEX [35], J-ALEX [37], ALESIA [38], ALTA-L1 [34], and eXalt3 [41]
compared crizotinib with second-generation ALK inhibitors. Therefore, we also evaluated
the inter-trial heterogeneity of PFS in these five trials [96]. Results showed that I2 was 49.8%
(p = 0.093), indicating mild between-trial heterogeneity (Figure S2).

3. Discussion

This review provides a comprehensive overview of future therapeutic strategies
for ALK-p, ALK inhibitor-naïve advanced NSCLC with CNS metastases, mechanisms
underlying acquired resistance, and strategies to overcome this challenge.

The efficacies of six ALK inhibitors (ensartinib, lorlatinib, brigatinib, alectinib, ceritinib,
and crizotinib) were compared with that of chemotherapy in the overall patients with
ALK-p, ALK inhibitor-naïve advanced NSCLC and in the subgroup of patients with CNS
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metastases. The comparisons were conducted by ALK inhibitor generation and by drug.
Generation-specific comparison results showed that third-generation ALK inhibitors had
the best efficacy in prolonging the PFS of the overall patient population and in the subgroup
of patients with CNS metastases. Statistically significant differences in efficacy were found
between third-generation ALK inhibitors and second- and first-generation ALK inhibitors
in the overall patients and in the subgroup of patients with CNS metastases. Significant
differences in efficacy in prolonging PFS were also demonstrated between second- and first-
generation ALK inhibitors. Drug-specific comparison results showed that lorlatinib had
the best efficacy in prolonging PFS in the overall patients, followed by alectinib, brigatinib,
ensartinib, ceritinib, crizotinib, and chemotherapy. The differences between lorlatinib and
brigatinib, ensartinib, ceritinib, crizotinib, and chemotherapy were statistically significant.
Analysis of the subgroup of patients with CNS metastases showed that lorlatinib exerted
the most favorable effect, followed by brigatinib, ensartinib, ceritinib, crizotinib, and
chemotherapy. The differences between lorlatinib and ensartinib, ceritinib, crizotinib, and
chemotherapy were statistically significant.

Several previous meta-analyses have compared the efficacies of ALK inhibitors in
patients with ALK-p, ALK inhibitor-naive advanced NSCLC [39,40,97–104]. However, a
generation-specific comparison of the efficacies of six ALK inhibitors (ensartinib, lorlatinib,
alectinib, brigatinib, ceritinib, and crizotinib) in patients with CNS metastases remains
lacking. For the first time, we compared the efficiencies of these six ALK inhibitors by
generation in prolonging the PFS of the overall patient population and a subgroup of
patients with CNS metastases. Results showed that the third-generation ALK inhibitors
were better than the other generations in prolonging the PFS of the overall patients and the
subgroup of patients with CNS metastases, respectively.

Notable findings were also obtained in drug-specific comparisons. For instance,
lorlatinib was significantly better than brigatinib in prolonging the PFS of the overall
patients, but their difference was not significant in the subgroup of patients with CNS
metastases. In addition, evaluation results showed that brigatinib ranked third in the
overall participant population but second, above alectinib, in the subgroup of patients with
CNS metastases. These results support the theory that brigatinib, along with lorlatinib, is a
potential first-line treatment option for ALK-p, ALK inhibitor-naïve advanced NSCLC with
CNS metastases.

Our results also suggest that lorlatinib has potential as a novel first-line treatment
for ALK-p, ALK inhibitor-naive advanced NSCLC. However, lorlatinib should not be
recommended for all patients with this disease because its tolerability is reportedly lower
than that of alectinib, and its effect on OS was not evaluated. Furthermore, in our analysis
of racial differences lorlatinib ranked highest in PFS among non-Asians, whereas ensartinib
ranked highest among Asians. Further clinical studies are warranted to develop a detailed
treatment strategy for first-line treatment of ALK-p ALK-untreated advanced NSCLC.

This NMA has several limitations. First, the study compared the efficacies of six ALK
inhibitors in the overall patients and subgroup of patients with CNS metastases. How-
ever, OS and safety outcomes were not analyzed because of insufficient data reported for
CNS metastases. Further validation is needed to determine whether the results of this
comparative analysis of PFS in the subgroup with CNS metastases will be consistent with
the results of the comparative analyses of OS and safety outcomes. Second, this analysis
included patients who had received systemic anticancer chemotherapy and those who had
not. Although the results of sensitivity analysis showed that the inclusion and exclusion of
patients who had undergone systemic anti-cancer chemotherapy did not apparently influ-
ence the results, we cannot completely rule out the potential impact of this heterogeneity
on the final conclusions. Third, mild heterogeneity, although not statistically significant,
was demonstrated in the five studies comparing second-generation ALK inhibitors with
crizotinib (ALEX [35], J-ALEX [37], ALESIA [38], ALTA-L1 [34], and eXalt3 [41]). Although
the NMA used a Bayesian model that assumed potential heterogeneity among the included
studies, we cannot completely rule out the possibility that individual potential heterogene-
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ity may have influenced the final conclusions. Finally, the number of included studies
is as few as nine references, and we cannot completely exclude the possibility that the
insufficient number of included studies may affect the convergence status of the models in
the Bayesian network meta-analysis. To address this issue, the convergence status of our
model was visually assessed. The results confirmed the favorable convergence status of
our analysis. These results suggest that the number of studies covered was sufficient, at
least in terms of model convergence.

4. Materials and Methods
4.1. Comprehensive Literature Search

A comprehensive literature search was conducted to identify relevant reports pub-
lished from 1946 to the present. On 3 December 2022, four databases (PubMed [89],
CENTRAL [90], EMBASE [91], and SCOPUS [92]) were searched for studies on NSCLC
and ALK inhibitors by using keywords such as “ensartinib”, “lorlatinib”, “brigatinib”,
“alectinib”, “ceritinib”, “crizotinib”, and their Medical Subject Headings terms. Appendix A
shows the keywords used in the search. The strategy was also used for searching the EM-
BASE, CENTRAL, and SCOPUS databases to ensure comprehensiveness, robustness, and
certainty of the search. The strategy used for searching PubMed was also used for searching
EMBASE, CENTRAL, and SCOPUS. If data necessary for the analysis were not available
from the journals, the authors were consulted by e-mailing the corresponding authors. The
main purpose of this systematic review was to verify all publicized phase III clinical trials in
order to make comparisons and rank the efficacy of the seven therapeutic groups in terms
of efficacy; namely, ensartinib, lorlatinib, brigatinib, alectinib, ceritinib, crizotinib, and
chemotherapy in patients with ALK-p advanced NSCLC. The analyses in this review were
based on the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA)
guidelines [105] and the PRISMA extension statement for reporting of systematic reviews
incorporating network meta-analyses of health care interventions (PRISMA-NMA) [106].
Two investigators (KA and AA) independently conducted the literature search. Inclusion
and exclusion criteria were adapted to the retrieved studies using the PICOS approach to
ensure the currency of indirect comparative analyses by handling potential heterogeneity
in clinical and methodological aspects between studies.

4.2. Quality Assessment

We assessed the quality of the RCTs included in the NMA using the RoB2 recom-
mended by the Cochrane Collaboration [93]. The following parameters were rated as low
risk, some concerns, or high risk: (1) bias arising from the randomization process; (2) bias
due to deviations from the intended intervention; (3) bias due to missing outcome data;
(4) bias in measurement of the outcome; and (5) bias in selection of the reported result.
Evaluations were performed independently by two researchers (KA and SK), and any
discrepancies were resolved by a third researcher (TY).

4.3. Inclusion Criteria (Pre-Defined PICOS)
4.3.1. Patients

The following inclusion criteria were used: (1) age 18 years or older; (2) histologically
or cytologically confirmed progressive or metastatic ALK-p NSCLC; (3) performance status
of 0 to 2 (on a 5-point scale, higher numbers indicating more severe disability); (4) at
least one measurable lesion assessed according to RECIST version 1.1,25; and (5) no prior
exposure to ALK-targeted therapy.

4.3.2. Intervention

In this analysis, patients treated with ensartinib (225 mg/day), lorlatinib (100 mg/day),
brigatinib (180 mg/day), alectinib (300 or 600 mg/day), ceritinib (750 mg/day), crizotinib
(250 mg/day), and platinum-based chemotherapy (all doses and dosage forms were ap-
proved, recommended, or specified in the Phase III study) were considered. Phase III
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trials that included any of these agents were eligible for inclusion. Crizotinib was the first
approved ALK inhibitor and the former first-line agent for initial therapy, and platinum-
based chemotherapy was the first-line agent for ALK-p treatment-naive NSCLC prior to
the approval of crizotinib. Thus, crizotinib or platinum-based chemotherapy was assumed
as the common comparator for each treatment.

4.3.3. Outcome

The primary efficacy endpoint was PFS in all participants and in the subgroup of patients
with CNS metastases, with corresponding HRs and 95% credible intervals (CrIs). To rank
the relative efficacy of each therapeutic approach, the surface under the cumulative rank
under the curve (SUCRA) values were calculated for each endpoint, with higher SUCRA
values corresponding to a more preferred therapeutic approach for the corresponding
endpoints [107]. These analyses were performed on the overall participants and on each
subgroup with CNMS. In addition, analyses were performed also by race (Asian and
non-Asian) to account for demographics. To be eligible for this systematic review and
NMA, the trial under analysis had to include at least one defined efficacy endpoint. These
defined endpoints were analyzed only if data were available from the included trials. Two
authors (KA and SK) independently extracted relevant data and resolved discrepancies in
consultation with the third author (TY).

4.3.4. Study Design

The research for this systematic review and meta-analysis was a phase III trial of a
parallel-group RCT.

4.4. Statistical Analysis

The Bayesian NMA was performed following robustly established methods developed
at the National Institute of Medical Research [108,109]. We applied a non-informative prior
distribution, employed the standard Bayesian model described by Dias et al. [108,109], and
assumed inconsistency and heterogeneity among the included studies. Gibbs sampling
on the basis of a Markov chain Monte Carlo method was utilized to evaluate the posterior
distribution of the effect size [110,111]. The number of iterations was set to 50,000, with
the first 10,000 being a burn-in sample to eliminate the influence of initial values. Effect
sizes were expressed as HR and its 95% CrI, and the difference in effect size between
treatment groups for each endpoint was considered significant if the 95% CrI did not
include 1. SUCRA values ranged from 0% to 100%, with higher SUCRA values indicating
better treatment outcomes [107]. The Brooks–Gelman–Rubin (BGR) diagnostic method was
also used for the convergent diagnosis of all comparisons [112,113]. Both visual and BGR
diagnostics confirmed the convergence of the model. OpenBUGS 1.4.0 (MRC Biostatistics
Unit, Cambridge Public Health Research Institute, /jk, Cambridge, UK) was used for the
Bayesian analysis, and STATA (ver. 14, StataCorp., College Station, TX, USA) was used to
visualize the results (College Station, TX, USA).

4.5. Sensitivity Analysis

A sensitivity analysis [95] was conducted by including or excluding research that
was deemed heterogeneous based on the existence of conceptual heterogeneity between
the included studies. This analysis was performed to evaluate whether the inclusion or
exclusion of conceptually heterogeneous studies impacts the overall final conclusions.

4.6. Assessment for between-Study Heterogeneity

We evaluated the statistical heterogeneity among the included studies to determine
whether it impacts the final conclusions [96]. Statistical heterogeneity between studies
was expressed as I2 statistic (%). A heterogeneity between 30% and less than 50% was
considered to indicate mild heterogeneity between studies, between 50% and 70% moderate
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heterogeneity, and greater than 70% high heterogeneity. The I2 statistic was calculated
using pairwise meta-analysis with a random-effects model.

4.7. Ethical Aspects

Institutional Review Board approval and patient consent were waived because of the
retrospective nature of this systematic review.

5. Conclusions

This review outlines future treatment strategies and future prospects for ALK-p, ALK
inhibitor-naïve advanced NSCLC with CNS metastasis, with a focus on elucidating and
overcoming acquired resistance mechanisms. In addition, the therapeutic efficacies of
ALK inhibitors in prolonging the PFS of the overall patients with ALK-p, ALK inhibitor-
naïve advanced NSCLC and a subgroup of patients with CNS metastases are compared by
drug and by generation. Generation-specific comparison shows that third-generation ALK
inhibitors are significantly more efficient than second-generation and first-generation ALK
inhibitors in prolonging the PFS of the overall patients and subgroup of patients with CNS
metastases. Drug-specific comparison demonstrates that lorlatinib is the most efficient in
prolonging the PFS of the overall patients and subgroup of patients with CNS metastases.
Notably, although a significant difference in efficacy of prolonging PFS was found between
lorlatinib and brigatinib in the overall patient population, no such significant difference
was found in the subgroup of patients with CNS metastases. These results indicate a
trend toward brigatinib as a promising first-line treatment option along with lorlatinib in
the subgroup of patients with CNS metastases. These results can serve as a foundation
for basic, clinical, and translational research and guide clinical oncologists in developing
individualized treatment strategies for ALK-p ALK inhibitor-naïve advanced NSCLC. This
NMA includes direct and indirect comparisons, and additional studies are warranted to
confirm the results. The results of this analyses can serve as a basis for further clinical
studies formulating novel treatment strategies for ALK-p ALK inhibitor-naïve advanced
NSCLC with CNS metastases or acquired resistance mutations.
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Appendix A. Search Strategies in PubMed

Table A1. Search Strategies in PubMed (Searched on 3 December 2022).

Search Query Results

#1
(“Non-Small Cell Lung Cancer” OR “Non-Small Cell Lung Carcinoma” OR “Non Small Cell Lung

Carcinoma” OR “Non-Small-Cell Lung Carcinoma” OR “Non small Cell Lung Cancer” OR
“Non-Small-Cell Lung Carcinomas” OR “NSCLC”)

95,433

#2

(“crizotinib” [ALL] OR (“crizotinib” [Supplementary Concept] OR “PF-02341066” [ALL] OR “PF
02341066” [ALL] OR “PF02341066” [ALL] OR “xalkori” [ALL] OR “ceritinib” [ALL] OR “ceritinib”

[Supplementary Concept] OR “LDK-378” [ALL] OR “LDK 378” [ALL] OR “LDK378” [ALL] OR
“zykadia” [ALL]) OR “alectinib” [ALL] OR (“alectinib” [Supplementary Concept] OR “CH-5424802”
[ALL] OR “CH 5424802” [ALL] OR “CH5424802” [ALL] OR “RO-5424802” [ALL] OR “RO 5424802”

[ALL] “RO5424802” [ALL] OR “alecensa” [ALL]) OR “brigatinib” [ALL] OR (“brigatinib”
[Supplementary Concept] OR “AP-26113” [ALL] OR “AP 26113” [ALL] OR “AP26113” [ALL] OR

“alunbrig” [ALL]) OR “lorlatinib” [ALL] OR (“lorlatinib” [Supplementary Concept] OR “PF-06463922”
[ALL] OR “PF 06463922” [ALL] OR “PF06463922” [ALL] OR “lorbrena” [ALL]) OR “ensartinib” [ALL]

OR (“ensartinib” [Supplementary Concept] OR “X-396” [ALL]) OR “cisplatin” [ALL] OR “cisplatin”
[Supplementary Concept] OR “CDDP” [ALL] OR “carboplatin” [ALL] OR “carboplatin” [Supplementary

Concept] OR “CBDCA” [ALL] OR “Platinum” [ALL])

141,836

#3 (“anaplastic lymphoma kinase” OR “ALK inhibitor” OR “ALK“ OR “ALKI”) 14,355

#4
(“Randomized Controlled trial” [Title/Abstract] OR “Controlled clinical trial” [Title/Abstract] OR

“Randomized” [Title/Abstract] OR “Placebo” [Title/Abstract] OR “Randomly” [Title/Abstract] OR
“Trial” [Title/Abstract] OR “Drug Therapy” [Title/Abstract] OR ”Groups” [Title/Abstract])

3,510,441

#5 #1 AND #2 AND #3 AND #4 478
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