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Abstract: Frailty is a clinical condition closely related to aging which is characterized by a multidi-
mensional decline in biological reserves, a failure of physiological mechanisms and vulnerability to
minor stressors. Chronic inflammation, the impairment of endothelial function, age-related endocrine
system modifications and immunosenescence are important mechanisms in the pathophysiology of
frailty. Endothelial progenitor cells (EPCs) are considered important contributors of the endothelium
homeostasis and turn-over. In the elderly, EPCs are impaired in terms of function, number and
survival. In addition, the modification of EPCs’ level and function has been widely demonstrated
in atherosclerosis, hypertension and diabetes mellitus, which are the most common age-related
diseases. The purpose of this review is to illustrate the role of EPCs in frailty. Initially, we describe the
endothelial dysfunction in frailty, the response of EPCs to the endothelial dysfunction associated with
frailty and, finally, interventions which may restore the EPCs expression and function in frail people.
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1. Introduction

Population aging is a global phenomenon, and the number of persons aged 65 years
or over reached 727 million in 2020 [1]. By 2050, the number of older persons is expected to
double, and the proportion of the elderly is projected to increase by up to 16% such that
one in six persons will be over the age of 65 [2].

Frailty is a clinical condition closely related to ageing which is characterized by a
multidimensional decline in biological reserves, a failure of physiological mechanisms and
vulnerability to minor stressors [3,4]. Frailty is associated with an increased risk of adverse
outcomes including disability, falls, delirium and mortality [5–8]. The clinical presentation
of frailty is characterized by fatigue, unexplained weight loss, frequent infections, balance
and gait impairment, impaired awareness and fluctuating disability. Demographic and
social factors, physical performance, impaired cognition, multiple chronic diseases and
malnutrition are considered crucial risk factors for the onset and progression of frailty [9].

Chronic inflammation, the impairment of endothelial function, the age-related mod-
ification of the endocrine system and immunosenescence cross-linked to genetic and en-
vironmental factors are important mechanisms in the pathophysiology of frailty. Several
inflammatory cytokines including IL-6, tumor necrosis factor-α (TNFα) and the acute phase
protein C-reactive protein (CRP) have been independently associated with frailty [10].
Inflammation is associated with the catabolism of skeletal muscles and a reduction in
muscle strength, which characterize frailty [11]. The alteration of insulin growth factor
(IGF-1) signaling, the reduction in testosterone and estradiol levels and the modification of
cortisol release influence the development of vulnerability and frailty [12]. Furthermore, the
blunting of the B-cell-controlled antibody response, changes in T-lymphocyte production,
the impaired activity of macrophages and a reduction in the number of stem cells respond
inappropriately to inflammation, injury and endothelial damage [13].

Endothelium represents a functional barrier between tissues and circulating blood,
prevents platelet and leukocyte aggregation and adhesion and produces a variety of va-
soregulation factors such as nitric oxide (NO) and endothelins [14]. Alteration in the
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endothelial cells (ECs) damage/repair balance leads to vascular remodeling and the im-
pairment of NO availability and is a key element in endothelial dysfunction and the
atherosclerosis process [14,15]. Atherosclerosis is considered an age-dependent disease and
leads to the development of cardiovascular comorbidities [15]. Furthermore, endothelial
dysfunction has been suggested as an early predictor of frailty phenotype onset [16].

Endothelial progenitor cells (EPCs) are considered important contributors in the
endothelium homeostasis and turn-over. They replace dysfunctional ECs, facilitate re-
endothelization and influence the process of age-related vascular remodeling [17]. In the
elderly, EPCs are impaired in terms of function, number and survival, and the modification
of the circulating EPCs level in relation to physical frailty has been reported [18]. In
addition, the modification of the EPCs level and function has been widely demonstrated in
atherosclerosis, hypertension, diabetes mellitus, rheumatic disorders and dementia, which
are the most common age-related diseases [19–23].

Considering the age-related modification of EPCs, the effect of multiple comorbidities
and chronic conditions on EPCs and endothelial dysfunction, EPCs may have an important
role in the underlying mechanisms of frailty. In addition, the negative impact of frailty is
also characterized by a low quality of life for older people, the failure of the therapeutic
management of chronic conditions and increased healthcare costs. Interventions guided by
comprehensive geriatric assessments (CGA), which include nutritional support, physical
activity and the revision of drug therapy, are beneficial for frail people, but no specific
therapy for frailty exists. The purpose of this review is to illustrate the role of EPCs in
frailty. Initially, we describe the endothelial dysfunction in frailty, the response of EPCs
to the endothelial dysfunction associated with frailty and, finally, interventions that may
restore the EPCs expression and function in frail people.

1.1. Main Characteristics of EPCs

EPCs are a heterogeneous group of cells of different origins and in different stages
of maturation which contribute to endothelial regeneration and vascular repair [24,25].
The mobilization of EPCs from bone marrow to circulation is controlled by a variety of
angiogenic factors, including endothelial NO synthetase (eNOS) and vascular endothelial
growth factor (VEGF), which play an important role by enhancing the growth of EPCs,
tube formation and the angiogenesis process [26,27].

Based on the phenotype and biological functions of EPCs, two distinct subtypes have
been proposed: endothelial colony-forming cells (ECFCs) and myeloid angiogenic cells
(MACs) [28].

ECFCs derive from umbilical cord blood or peripheral blood mononuclear cells and are
characterized by CD31+, CD45, CD14, CD146+, VE-Cadherin+, von Willebrand factor+ and
VEGFR2+ phenotype. Their vasculogenic properties are linked to platelet-derived growth
factor BB (PDGF-BB)/platelet-derived growth factor receptor (PDGFR) signaling [29,30].

MACs derive from peripheral blood mononuclear cells grown under endothelial cell
culture conditions and are characterized by the following surface cell markers: CD45+,
CD14+, CD31+, CD146, CD133 and Tie2. MACs promote angiogenesis through the activa-
tion of IL-8/VEGFR2/ERK signaling pathways, which results in endothelial proliferation,
migration and tube formation. MACs do not differentiate into ECs but enhance the mi-
gration of circulating or vascular wall ECFCs to the injury area, where ECFCs proliferate,
differentiate into mature ECs and restore the endothelial integrity of the vascular wall [25].

EPCs homing in the site of injury is characterized by recruitment, mobilization, adhe-
sion and CXCR2, CXCR4 and CCR2 signaling. EPCs’ functional capacity has been reported
to ameliorate after CXCR4 increased the expression via AKT/endothelial NO synthase path-
ways [31], and the augmentation of integrin receptor subunits present in EPCs promotes
adhesion properties [32].

Endothelial injury is characterized by the up-regulation of intracellular and vascular
adhesion molecules (ICAM-1) (VCAM-1) and hypoxia-inducible factor-1a (HIF-1a), which
regulates the release of stromal-derived factor-I alfa (SDF-1a) and VEGF. These factors



Int. J. Mol. Sci. 2023, 24, 2139 3 of 14

mediate the trafficking and recruitment of MACs to the target tissue [33,34]. MACs do not
directly supply new ECs but activate the resident ECs through the release of growth factors,
cytokines and transcription factors [35,36]. The paracrine release of VEGF, hepatic growth
factor (HGF), Ang-1, SDF-1a, insulin-like growth factor (IGF)-1 and eNOS by MACs recruits
and incorporates ECFCs to the network of new capillary vessels [37,38]. In addition, ECFCs
release pro-angiogenic factors [39] and regulate the regenerative potential of mesenchymal
stem cells [29]. Despite the exact origin of ECFCs not being clear, the identification of the
endothelial progenitor/stem like population at the inner surface of the pre-existing blood
vessels with colony-forming abilities has been reported [40]. ECFCs are crucial for the
vascular repair and endothelial regeneration in different organs. Indeed, ECFCs have been
shown to promote neovascularization and increase microvascular density in myocardial
ischemia [41], ischemic stroke [42] and hindlimb ischemia [43].

Chronic inflammation and the release of inflammatory cytokines lead to the excessive
proliferation of smooth muscle cells (SMCs), extracellular-matrix (ECM) deposition and the
trans-differentiation of SMCs in myofibroblasts (MFs) [44]. MFs promote the activation of
pro-inflammatory angiogenic factors and the modification of ECM. The excessive produc-
tion of IL-6 and VEGF may negatively affect EPCs’ mobilization and recruitment, leading
to an overactivation and defective vascular remodeling [17].

Increasing age was associated with lower circulating EPCs and lower VEGF levels in
patients undergoing coronary artery bypass grafting. Notably, by-pass surgery could not
provide a significant mobilization in EPCs in patients aged 69 years and older [45].

Another study including heart failure with preserved ejection fraction reported that
the EPCs of older patients with heart failure with mild reduced ejection fraction presented
lower migratory, proliferative and adhesion properties [46]. Compared to younger patients
with NSTEMI myocardial infarction, the EPCs presented impaired function, and this was
associated with the severity of the disease [47].

A significant reduction in CXCR4 expression in EPCs with aging has been described,
and the modification of calcium-regulated functions of the CXCR4/ SDF-1a axis has been
suggested as a possible mechanism [48,49]. Notably, the upregulation of CXCR4/JAK-2
signaling has been associated with the amelioration of EPCs properties and the restoration
of endothelial dysfunction related to age [50].

Isolation, Culturing and Measurement of Human EPCs

A variety of methods are used for the isolation and quantification of EPCs from
peripheral blood. However, cell surface phenotyping and cell cultures have been proposed
as the main approaches [28,51,52].

Cell surface phenotyping is based on flow cytometry and fluorescent labeled antibod-
ies. Flow cytometry requires a small amount of blood, and circulating EPCs are quantified
as the percentage of the mononuclear cells that express VEGFR2 and CD34 [53]. In ad-
dition, CD133 surface protein has been associated with properties of EPCs by different
studies [54,55]. Based on these studies, EPCs were identified as circulating CD34 cells
that co-express VEGFR2 and CD133 as well. Furthermore, the quantification of EPCs by
this approach could provide information regarding the relationship between the number
of EPCs and the different diseases state. It should be mentioned that CD34, CD133 and
VEGFR2 are not unique for EPCs, and their expression is also present in hematopoietic
cells [56]. Other studies have reported that CD34 and CD45 cells enriched for hematopoietic
cells co-expressed CD133 without VEGFR2. In addition, the CD34CD45 population of cells,
which gave rise to colonies of ECs with high proliferative properties, expressed VEGFR2
without CD133 [51,57].

The isolation of EPCs by the cell culture approach was initially described by Asahara
and colleagues [58]. Peripheral blood mononuclear cells were plated on fibronectin-coated
dishes within five days, and the adherend cells expressed similar cell surface proteins
to human umbilical vein ECs. To deplete the population of macrophages and mono-
cytes that could contaminate the isolation of EPCs, Ito and co-workers [59] after a twenty
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four-hour period of adhesion, removed the non-adherent cells and re-plated them onto
fibronectin-coated dishes for seven days. The cells that emerged after one week of the
culture were considered as EPCs colonies. Another study cultured mononuclear cells from
peripheral blood for forty-eight hours, and the non-adherent fraction was re-plated in a
specific medium onto fibronectin-treated petri dishes. After five to seven days, colony-
forming units (ECs) were obtained and named as CFU-Hill [60]. However, other studies
demonstrated that CFU-Hill colonies include monocytes, myeloid progenitor cells and T
lymphocytes [61,62].

The adherent cells obtained from circulating mononuclear cells plated in culture dishes
in an endothelial growth medium present a morphology resembling the spindle-shape cells
similar to CFU- Hill after three to four days of the culture and express markers typical of
the ECs, such as von Willebrand factor VE-cadherin, CD31 and Tie2. Furthermore, these
cells were demonstrated to promote vascularization [63] and are identified as early EPCs or
circulating angiogenic cells (CACs). Considering that these cells are generated in in vitro
conditions, it has been suggested to refer to them as MACs [28].

Late-outgrowth EPCs are isolated from the mononuclear cells of peripheral blood or
umbilical cord blood adherent to collagen-I-coated culture dishes after two weeks of the
culture. These cells are defined as ECFCs, differentiate into mature ECs and generate new
vessels in vivo [64].

1.2. Frailty Models and Epidemiology

Several instruments have been developed to detect frailty, and, currently, the two main
frailty models are: (a) the Fried Frailty Phenotype and (b) the Frailty Index (FI) based on
the cumulative deficit model. The frailty phenotype model was established by the presence
of the following criteria: (a) unintentional weight loss, (b) self-reported exhaustion, (c) low
energy expenditure, (d) slow gait speed and (e) weak grip strength. The presence of one
to two of these criteria identifies a pre-frail condition, while people with three or more
criteria are considered frail. Despite multiple comorbidities and the presence of cognitive
decline not being included in the development of this model, the application of the Frailty
Phenotype has been validated, and the identification of frailty with this model has an
independent role in the prediction of long-term mortality [7,65].

The cumulative deficit model is computed by the number of health deficits identified
in different symptoms, signs, laboratory findings, comorbidities and disabilities [66]. The
frailty index is derived from the number of health deficits divided by the total number of
variables screened. Importantly, a value of 0.67 seems to identify an amount of frailty that
is highly associated with mortality [66]. Several studies have reported that the Frailty Index
was strongly related to institutionalization and poor survival [67,68].

Based on these models, many other screening tools have been developed and validated
in different populations and clinical settings [69]. For instance, evaluations of the level of
deficits based on CGA have been widely applied in different clinical settings [70–72]. The
Study of Osteoporotic Fractures (SOF) frailty scale is a parsimonious frailty index including:
weight loss, the inability to rise from a chair and poor energy, and it is able to predict
disability, fractures and falls [73]. The Tilburg Frailty Indicator and the Groningen frailty
indicator are questionnaires which evaluate physical, cognitive, social and psychological
domains [74]. It should be mentioned that, in terms of the ability to predict negative
outcomes, frailty models and screening tools demonstrate a degree of overlap, but different
patient cohorts are identified as frail.

The prevalence of frailty varies by classification, sex and geographic region; however,
an overall pooled prevalence of 12% has been estimated considering the Frailty Phenotype
model or other tools focused on physical frailty [75]. The cumulative deficit model of
frailty produces higher estimates of population-level prevalence, accounting for about
24% [75]. For pre-frailty, the overall estimates are 46% for physical frailty and 49% for
cumulative deficit models, respectively. The prevalence increases with age, and higher
proportions of frailty and pre-frailty are registered among the female population [76].
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Regarding prevalence by geographic areas, in Europe, it is 8%, and the highest prevalence
is in Africa (about 22%), considering the physical frailty model. Frailty evaluation by the
cumulative deficit model produces the highest prevalence in Oceania (31%), followed by
Asia (25%). In Europe, this model estimates an overall prevalence of frailty of 22%.

2. Impairment of Endothelial Function in Frailty

Endothelium function includes the exchange of molecules and fluids between blood
and surrounding tissues, the maintenance of blood in a fluid state, the facilitation of the
immune response, the control of vascular resistance, the regulation of the vascular tone
and the creation of a new vascular network [14,17]. The endothelium acts through the
paracrine and endocrine pathways and constantly maintains an equilibrium between
vasodilatation and vasoconstriction, pro-inflammatory and anti-inflammatory mediators
and pro-thrombotic and antithrombotic factors. The impairment of endothelial function
is characterized by pro-inflammatory, prothrombotic and vasoconstrictor properties. A
blunted response to agonist-induced vasodilation, the impairment of synthesis and the
release of NO are the main characteristics of the dysfunctional endothelium.

Data from the Cardiovascular Health Study have reported that frail people are charac-
terized by increased intima-medial thickness of the carotid arterial wall and a reduction
in blood flow in the lower extremities despite the absence of clinical cardiovascular dis-
eases [77]. For the first time, the Toledo Study for Healthy Aging revealed an association
between endothelial dysfunction and frailty [78]. In this study, pre-frail and frail subjects
were characterized by a higher asymmetric dimethylarginine (ADMA) level, which is
an endogenous inhibitor of NO synthase. In contrast, the ADMA level was not signifi-
cantly different in frail and/or pre-frail people compared to that in non-frail people, where
atherosclerosis was present. In people without cardiovascular diseases, a higher ADMA
level significantly increases the risk of frailty independently by well-established cardiovas-
cular risk factors such as: hypertension, diabetes and dyslipidemia. Chronic inflammation
and oxidative stress were suggested as complementary sources of endothelial dysfunction
in frailty [79]. Another study also found that serum ADMA levels were correlated with
physical domains of frailty. Higher ADMA levels are significantly associated with a lower
muscle mass and muscle strength and a slower gait speed [80].

A cross-sectional study investigating the impact of different inflammatory mediators
on the frailty status in elderly outpatients found that plasma nitrite levels, which are
mainly derived from constitutive NO synthetase activity, were significantly reduced in
frail people. This finding was linked to the presence of chronic low-grade inflammation,
resulting in progressively increased CRP in frail people. However, after the adjustment
for confounders, CRP was not significantly associated with frailty, whereas nitrite levels
showed an independent role [81].

Brachial artery flow-mediated dilatation (FMD) and brachial angle pulse wave velocity
(baPWV) are indirect measures of endothelial function, and their modifications indicate
endothelial impairment, which is associated with atherosclerosis risk. FMD was signifi-
cantly associated with a lower limb muscle power [82] and muscle mass index in the elderly
population [83]. Furthermore, baPWV was negatively associated with handgrip strength
dominantly among the non-hypertensive population [84]. Another study including thirty
hospitalized elderly patients, where the frailty status was evaluated by the SOF frailty scale,
revealed a lower FDD in frail compared to non-frail patients [85]. Frailty was also associ-
ated with an abnormal FDD in elderly patients with chronic kidney disease [86]. A lower
ankle-brachial index was associated with frailty in two studies, but the analysis adjusted
for confounders failed to show a significant correlation [87,88]. A recent cross-sectional
analysis of 1096 men revealed that the femoral angle PWV was significantly associated with
frailty among men without cardiovascular diseases but not in men with cardiovascular
diseases [89].

Interestingly, a recent experimental study observed that the ex vivo measurement of
endothelial-dependent dilatation (EDD) and the superoxide-mediated suppression of EDD
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were impaired in frail mice, independently of age [90]. Mouse frailty was determined by a
31-item frailty index based on clinical signs of deterioration in C57BL/6J mice [91]. The
evaluation of the vestibulocochlear, ocular, nasal, respiratory, musculoskeletal, digestive
and urogenital signs was included. Notably, endothelial dysfunction was significantly
associated with frailty among old female and male mice, but the localization was cerebral
arteries for female mice and the mesenteric artery for male mice.

3. EPCs Response to Endothelial Dysfunction in Frailty

The plasma concentration of ADMA has been negatively correlated with the number
of MACs and ECFCs. The in vitro differentiation of EPCs was repressed in a concentration-
dependent manner by ADMA, which also significantly reduced the incorporation of EPCs
into endothelial tube-like structures [92]. Furthermore, the formation of colony-forming
units from cultured peripheral blood mononuclear cells was inhibited. In this study,
the detrimental effects of ADMA on EPCs were abolished by the co-incubation with the
hydroxymethyl glutaryl coenzyme A reductase inhibitor [92]. Other studies have confirmed
the suppression of EPCs by ADMA [93–95]. The dimethylarginine dimethylaminohydrolase
(DDAH2)/ADMA pathway, through the activation of silent inhibitor 1, accelerated the
senescence of EPCs [96]. ADMA’s negative role in EPCs function was also explained by the
endoplasmatic reticulum (ER) stress pathway through the activation of phosphorylated
protein kinase RNA-activated-like ER kinase (PERK), a stress sensor protein. In addition,
the inhibition of the ER stress pathway by salubrinal attenuated the ADMA-induced
apoptosis of EPCs [97]. Another in vitro study found that ADMA promoted EPCs apoptosis
through the phosphorylation of JNK, targeted the inhibition of the JNK by SP600125,
alleviated ADMA-induced apoptosis and promoted angiogenesis viability [98].

It has been reported that NOS inhibition attenuated the migration properties of EPCs,
while NO donors enhanced VEGF-dependent chemotaxis. Importantly, eNOS levels were
also significantly reduced in older patients as compared to healthy volunteers [99]. It has
also been demonstrated that eNOS is present in EPCs and is dynamically expressed during
the differentiation of EPCs to ECs [100].

The reduction in VEGF expression with aging has been described [101], and VEGF
promoted EPCs incorporation into the damaged vessels, enhanced the differentiation
of EPCs, as indicated by the increased expression of the EC markers CD31 and vWF,
and promoted re-endothelization. The possible mechanism related to the VEGF-induced
modification of EPCs has been mediated by connexin 43(Cx43), which is a gap junction
protein and an important contributor in the intracellular communication. Indeed, VEGF
increases the expression of Cx43 in EPCs and the inhibition of Cx43 expression using short
interfering RNA (siRNA) attenuated EPCs gap junction intercellular communication and
consequent EPCs differentiation [102].

Interestingly, a recent study revealed that VEGF signaling was greatly reduced in
multiple key organs in an experimental model of mouse aging [103]. This was associated
with the increased production of soluble VEGFR1, produced through an age-related shift
in the alternative splicing of VEGFR1 mRNA, and its activity as a VEGF trap. VEGF
supplementation resulted in increased longevity in mice. Considering the strict correlation
between VEGF, NOS and EPCs, a reduction in VEGF and NOS expression or an impairment
in their signaling is paralleled by a reduction in the impairment of the circulating EPCs
number and by the impairment of their differentiation. The role of VEGF and NO in vascular
aging has been studied widely; however, more research is necessary to clarify their role in
frailty models and, consequently, the modification of EPCs. It has been suggested that the
exchange of cAMP/PKA in gap junction proteins could interfere with EPCs functioning,
and the blockade of PKA attenuates VEGF-induced EPCs differentiation [102,104]. It
has been reported that VEGF activates phospholipase C and phosphatidylinositol-4,5-
bisphosphate, which results in a cellular calcium increase and the regulation of endothelial
differentiation-related genes.
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The main mechanisms responsible for EPCs modification in frailty are represented in
Figure 1.
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Figure 1. Schematic diagram highlighting the response of EPCs to endothelium dysfunction in frailty
and their modification. VEGF: vascular endothelial growth factor; NO: nitric oxide; eNOS: endothelial
nitric oxide synthetase; ADMA: asymmetric dimethylarginine; CX43: connexin 43; cAMP/PKA: cyclic
adenosine monophosphate/ protein kinase A; PLC: phospholipase C; PIP2: phosphatidylinositol-4,5-
bisphosphate.

4. EPCs Dysfunction and Frailty Domains

It has been demonstrated that lower circulating EPCs are associated with a lower gait
speed, a lower six-minute walk distance, a longer time for the chair stand test and a reduced
SF-36 physical function score. In this study, EPCs were analyzed by flow cytometry and the
analysis of cell surface expression markers: CD34+, CD133+, CD14+ and CD146+. It should
be mentioned that the association of EPCs and physical function remained significant across
several similar immature EPCs and multiple measures of physical function adjusted for
age, BMI, comorbidities and markers of inflammation [105].

The same authors revealed that circulating EPCs levels are not only associated with
baseline physical performance but are also able to predict the physical function decline.
Lower baseline levels of EPCs were highly predictive of a lower gait speed and a shorter
distance walked in 6 min at 3 and 12 months of follow-up. These associations were
significant after the adjustment for age, body mass index and inflammation and were
independent of interventions provided to improve physical function [106].

In addition, a cross-sectional study including community-dwelling elderly people
reported a positive association between circulating EPCs and handgrip strength in hyper-
tensive men. This association remained robust after the adjustment for cardiovascular risk
factors [18].

Regarding cognitive function, which is another crucial domain of frailty, it has been
reported that a lower level of EPCs was associated with the presence of mild cognitive
impairment in the elderly. In addition, a lower circulating level of EPCs was present in
patients with worse verbal and visual memory [107]. In contrast, a later study found no
association between the EPCs level and cognitive decline in elderly subjects, suggesting that
the multimorbidity observed in our patients may lead to opposite and confounding effects
on endothelial biomarkers levels [108]. However, another study performed on 509 patients
showed that lower counts of EPCs were associated with a worse memory performance
and cognitive impairment in patients with coronary artery disease, and the association
of EPCs with visual and verbal memory remained significant even after adjusting for
confounders [109].

It has been postulated that coronary artery disease, hypertension, diabetes and aortic
stenosis are characterized by the impairment of EPCs, and the association between car-
diovascular comorbidities and frailty is well established. In addition, the EPCs number
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and migration were significantly decreased in patients with COPD, another important
comorbidity related to frailty [110,111]. Notably, in community-dwelling elderly people
affected by osteoporosis, a significant association between the circulating osteogenic cells
population, disability and frailty based on the Fried criteria and the deficit model was
identified [112]. Recent studies have underlined the potential relationship between reduced
levels of circulating CD34+ hemopoietic progenitor stem cells (HSPCs) and frailty [113,114].
Low HSPCs are associated with pre-frailty and frailty and identify individuals with poor
cardiovascular outcomes [114].

It should be mentioned that few studies have investigated the association of EPCs with
frailty domains, and, moreover, frailty models/EPCs relationships should be explored.

5. Interventions That May Restore EPCs Functioning in Frailty

The effects of physical activity on frailty trajectories, mobility and disability are well
documented in different studies [115–119]. The severity of frailty was reduced through
one year of supervised home-based physical training [120]. A recent interventional study
including patients with chronic heart failure reported that an exercise rehabilitation pro-
gram enhanced the proliferation, migration and activity of EPCs. At the same time, the
apoptosis rate was lower compared to that of the control group. Furthermore, the mRNA
expression of PI3K, AKT, eNOS and VEGF was significantly higher in the intervention
group compared to that in the control group [121].

Angiotensin II may promote the impairment of endothelial function and has adverse
effects on skeletal muscle function and structure in experimental models [122], and elderly
women who had taken ACE inhibitors continuously presented a lower decline in muscle
strength compared with those who had taken other antihypertensive drugs or those who
had never used antihypertensives during a long-term follow-up [123]. It has been reported
that ACE inhibitors increased the EPCs level and restored the function of EPCs in hyper-
tensive patients [124]. However, the existing evidence does not support the use of ACE
inhibitors or angiotensin receptor blockers as a single intervention for improving physical
performance in the elderly [125], and a recent study did not find an improvement in muscle
mass related to perindopril and leucin supplementation [126].

A recent study demonstrated that, in patients with heart failure (HF) and diabetes,
dapagliflozin, a sodium-glucose cotransporter (SGLT2) inhibitor, provided beneficial effects
related to the worsening of HF, hospitalizations and cardiovascular death, regardless of
frailty class. Furthermore, in patients with a greater degree of frailty, improvements in
symptoms, physical function and quality of life were larger [127]. Even if previous research
suggested that SGLT2 inhibitors did not influence the number of EPCs [128], a recent
study revealed that canagliflozin increased the CXCR4 receptor expression and migratory
profile of EPCs in patients with diabetes [129]. Furthermore, recent evidence suggests that
empagliflozin ameliorates the frailty status in elderly people with diabetes by improving
endothelial function via the reduction of mitochondrial oxidative stress [130].

6. Conclusions

The current evidence suggests that a reduction in the EPCs number characterizes
frailty. The impairment of EPCs function may be a possible independent mechanism
involved in the development of frailty. Increased ADMA expression, a reduction in VEGF
and an impairment of NOS signaling appear to be the main pathways related to EPCs
dysfunction in frailty. EPCs may represent a potential biomarker in the early detection of
pre-frailty and frailty, the progression of frailty and the monitoring of interventions guided
by frailty deficits. However, the role of EPCs as biomarkers capable of identifying frailty,
the impact of EPCs in the clinical outcome of frail people and the modification of EPCs
secondary to strategies which aim to ameliorate frailty should be further investigated.
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