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Abstract: Prostate cancer (PCa) is the most common cancer in men. The androgen receptor (AR) has
a pivotal role in the pathogenesis and progression of PCa. Many therapies targeting AR signaling
have been developed over the years. AR signaling inhibitors (ARSIs), including androgen synthesis
inhibitors and AR antagonists, have proven to be effective in castration-sensitive PCa (CSPC) and
improve survival, but men with castration-resistant PCa (CRPC) continue to have a poor prognosis.
Despite a good initial response, drug resistance develops in almost all patients with metastatic CRPC,
and ARSIs are no longer effective. Several mechanisms confer resistance to ARSI and include AR
mutations but also hyperactivation of other pathways, such as PI3K/AKT/mTOR. This pathway
controls key cellular processes, including proliferation and tumor progression, and it is the most
frequently deregulated pathway in human cancers. A significant interaction between AR and the
PI3K/AKT/mTOR signaling pathway has been shown in PCa. This review centers on the current
scene of different AR and PI3K signaling pathway inhibitors, either as monotherapy or in combination
treatments in PCa, and the treatment outcomes involved in both preclinical and clinical trials. A
PubMed-based literature search was conducted up to November 2022. The most relevant and
recent articles were selected to provide essential information and current evidence on the crosstalk
between AR and the PI3K signaling pathways. The ClinicalTrials.gov registry was used to report
information about clinical studies and their results using the Advanced research tool, filtering for
disease and target.

Keywords: prostate cancer; androgen receptor signaling; PI3K/AKT/mTOR; PTEN; combina-
tion therapy

1. Introduction

Prostate cancer (PCa) is the most common cancer in men and the second-leading cause
of cancer [1].

A more widespread prevention through screening with the prostate-specific antigen
(PSA) has shown an increase in PCa incidence rate [2]. Most cases are diagnosed in the
early stages (78% in localized stages and 12% with regional involvement), but 5% of cases
are identified as already metastatic [3].

The time of diagnosis influences the prognosis. PCa can be a serious disease, but the
majority of diagnosed patients do not die from it unless it becomes more aggressive and
castration-resistant. Patients with localized PCa have a survival rate of 90% versus only
67% in metastatic PCa [4,5].

Treatment for localized PCa includes surgery (radical prostatectomy (RP)), radiother-
apy (RT), or active surveillance, depending on the stage of the disease and other factors [3].
Despite the high rates of progression-free survival (PFS), about 20 to 30% of patients with
PCa can experience cancer recurrence [6,7], characterized by rising serum PSA [4]. Clinical
relapse occurs, on average, after 5 years (1–8 years) [8,9]. These patients with relapsed
disease are either treated with salvage radiation therapy (SRT) or androgen deprivation
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therapy (ADT) [10]. ADT involves biochemical inhibition of male sex hormones, blocking
the production of androgens in the testes via the hypothalamus–pituitary–gonadal (HPG)
axis with luteinizing hormone-releasing hormone (LHRH) agonists (e.g., leuprolide) or
antagonists (e.g., degarelix) [11–13].

Despite a good initial response, androgen-independent and castration-resistant prostate
cancer (CRPC) can occur and the outcome is poor [14–16]. Both patients with CRPC and
with metastatic disease at diagnosis can have improvements in overall survival (OS) with
many treatments that include chemotherapy, such as docetaxel and, recently, cabazitaxel;
radium-223, used for the treatment of bone; and denosumab, an antagonist of receptor
activator of nuclear factor kappa-B ligand (RANKL). There is also increased interest in new
androgen synthesis inhibitors, such as abiraterone acetate, or second-generation competi-
tive AR antagonists, enzalutamide, as well as apalutamide and darolutamide [17–23].

Furthermore, clinical studies on agents that target the immune checkpoint, such as
cytotoxic T-lymphocyte-associated protein 4 (CTLA4), programmed cell death protein
1 (PD1), or programmed death-ligand 1 (PD-L1), have been evaluated in the clinic [24]. To
date, the Food and Drug Administration (FDA) has approved Sipuleucel-T immunotherapy,
which is the only dendritic cell vaccine for asymptomatic or minimally symptomatic CRPC
without visceral metastases [25]. In recent years, genetic DNA repair alterations were
also found in some PCa patients and, in these cases, poly ADP ribose polymerase (PARP)
inhibitors, including olaparib and rucaparib, both approved by the FDA, or talazoparib
and niraparib have shown efficacy [26].

Hence, in this complex scenario focused on identifying both disease biomarkers and
novel and effective treatments that will benefit patients with PCa, this review centers
on the current scene of different Phosphatidylinositol-3-kinase (PI3K) signaling pathway
inhibitors, either as monotherapy or in combination treatments in PCa, and the treatment
outcomes involved in both preclinical and clinical trials.

2. Androgen Receptor Signaling Pathway
2.1. Androgens and Androgen Receptor

AR signaling has a pivotal role in prostate development and homeostasis as well as in
prostate tumorigenesis [27,28], due to the fact that inhibition of AR signaling remains the
mainstay therapeutic target in PCa [28].

Briefly, androgens, such as testosterone, are synthesized primarily by the Leydig cells
in the testes and are tightly regulated by the hypothalamic–pituitary–gonadal (HPG) axis.

Once produced, testosterone mostly circulates bound to serum sex hormone-binding
globulin (SHBG) and albumin [29]. Only the free form enters prostate cells. Intracellularly,
testosterone is converted into a more potent 5α-reduced metabolite of testosterone, 5α-
dihydrotestosterone (DHT), essential for the growth and survival of these cells. Circulating
testosterone and DHT represent the main native agonists for AR.

AR is a member of the steroid and nuclear hormone receptor superfamily and is
encoded by the AR gene mapped on the long arm of the X-chromosome (locus: Xq11-
q12) [30,31]. The AR consists of four domains: an amino-terminal transcriptional domain
(NTD), DNA-binding domain (DBD), a hinge region, and a carboxy-terminal ligand-binding
domain (LBD) [32].

In the cytoplasm, AR is bound with heat-shock proteins (HSPs)-90, HSP-70, HSP-56,
and other chaperone proteins to protect the receptor against degradation [32,33].

The binding of the ligand promotes the dissociation of AR from these complexes and AR
can shuttle to the nucleus, where it dimerizes and binds to the androgen response elements
(AREs) [33,34]. AREs also include genes that are involved in PSA expression, androgen
biosynthesis, DNA synthesis and repair, cell cycle regulation, and proliferation [35,36].

Furthermore, AR transactivation is modulated by coregulators. At least 300 proteins
have been identified that can coactivate or co-repress AR-dependent transcription [37].

In addition to the DNA-binding-dependent actions of the AR, commonly referred to
as genomic or canonical, the complex androgen-AR can also trigger a signal through a
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non-DNA-binding-dependent mechanism, referred to as nongenomic. The non-canonical
androgen signaling pathways can be classified as non-genomic pathways (triggered by
androgens) and outlaw pathways (androgen-independent, but AR-dependent) [38].

Non-genomic androgen signaling pathways include androgen-induced activation
of G-protein-coupled receptors (GPCRs), the protein kinase A (PKA) pathway, and via
AR variants [39].

2.2. Therapies Targeted to AR Signaling

Considering that androgens and AR signals are essential regulators in the growth
of the normal prostate and play a key role in PCa pathogenesis, they represent a target
for many agents, used both as monotherapy or in combination, with the intent to treat
and improve the outcome of distinct clinical phenotypes of prostate disease: localized,
CSPC, mCSPC, CRPC, and mCRPC. Therapies that aim to inhibit AR signaling, collectively
called AR signaling inhibitors (ARSIs), have undergone a significant advance since the
1940s. At that time, Huggins and Hodges demonstrated the therapeutic effect of gonadal
testosterone deprivation via orchiectomy [40]. Nowadays, the available drugs target the
gonadotropin-releasing hormone (GnRH) to prevent luteinizing hormone (LH) releasing,
cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) to restrain androgen synthesis,
or directly AR, to inhibit AR transcriptional activity [16–20].

2.2.1. Androgen Deprivation Therapy (ADT)

ADT via surgical or chemical castration has become crucial in the treatment of PCa
and metastatic disease with the aim to suppress serum testosterone to castration levels
and to block the activation of the AR [14,15]. Gonadotropin-releasing hormone (GnRH)
agonists, such as histrelin, goserelin, leuprolide, and triptorelin, approved in the 1980s
by the FDA, continue to be the mainstay of ADT. Their action is based on the activation
of GnRH receptors, leading to an increase in follicle-stimulating hormone (FSH), LH,
and, consequentially, testosterone production. Despite this, the continuous stimulation,
which is the opposite of the physiological pulsatile action of GnRH receptors, leads to
their downregulation and subsequent desensitization of the pituitary gland to the effects
of GnRH [41]. Hence, testosterone production decreases to castration levels over 3 to
4 weeks [42]. These agents may be associated with an increased likelihood of adverse events
compared to orchiectomy, including cardiovascular events, fractures, and peripheral arterial
disease [43,44]. GnRH antagonists induce testosterone suppression by directly inhibiting
GnRH receptors. Injectable degarelix [45] and relugolix [46], oral GnRH antagonists, were
approved by the FDA in 2009 and 2020, respectively, for advanced PCa. It seems that the risk
of cardiovascular events in men taking GnRH antagonists is lower compared to those taking
GnRH agonists [47]. The androgen synthesis inhibitor targets CYP17, a member of the
cytochrome P450 family. CYP17 catalyzes and converts precursor steroids to testosterone,
DHT, and dehydroepiandrosterone (DHEA). Abiraterone acetate is a selective inhibitor
of 17α-hydroxylase/C17,20-lyase (CYP17) and blocks the production of androgen in the
adrenal glands, testes, placenta, as well as in PCa cells [48]. Because of interaction with
numerous targets, steroid supplementation is necessary to overcome cortisol insufficiency
and limit some adverse effects (AEs) [20]. Some studies have demonstrated that a dose
of 800 mg once daily is effective in suppressing testosterone to below detectable levels
in humans and provided preliminary insight into its safety profile [49]. This drug was
FDA-approved in 2011 for patients with mCRPC who had received prior chemotherapy
associated with prednisone, and in 2012, for patients with mCRPC and, together with
ADT, for metastatic high-risk CSPC [49–51]. Furthermore, in the early 1980s, it was shown
that castration levels of serum testosterone can be induced also by high doses of the
imidazole antifungal agent ketoconazole (Nizoral), by blocking cytochrome P450 enzymes
(including CYP17A1) [52].
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2.2.2. Androgen Receptor Antagonists

Androgen receptor antagonists (ARAs) bind to the LBD of the AR and prevent the
binding of testosterone and DHT, so that AR translocation into the nucleus is inhibited
and, consequently, the interactions with AREs. The non-steroidal antiandrogens flutamide
(Eulexin), nilutamide (Anandron) and bicalutamide (Casodex) represent that the first gener-
ation of ARAs do not completely block AR activity [53] and show a short-lived benefit [16].
Enzalutamide (MDV3100), a second-generation ARA, has higher affinity for the AR and
minimal no-agonist activity [54]. After the encouraging results from several clinical tri-
als [21,55], the FDA approved enzalutamide in the pre- and post-chemotherapy mCRPC
(2012), CRPC (2018) as well as in mCSPC (2019). Apalutamide (ARN 509) has a similar
mechanism of action as enzalutamide [56] but a greater efficacy [23]; the FDA approved
apalutamide for the treatment of patients with non-metastatic (nm) CRPC (2018) and for
patients with mCSPC (2019). Apalutamide significantly improves OS and radiographic
progression-free survival (rPFS) in patients with mCSPC receiving ongoing ADT, as ana-
lyzed in TITAN [57]. Darolutamide (ODM-201) has a particular molecular structure that is
distinct from other AR antagonists [58,59]. Darolutamide and its metabolite have a tighter
binding to the AR than enzalutamide and apalutamide with lower toxicity and higher OS.
Moreover, Darolutamide can also antagonize some mutations within AR, which confer
resistance for enzalutamide and apalutamide. It is the last AR inhibitor approved by the
FDA for treatment of nmCRPC (2019) and for mCSPC (2022) [55,56].

2.3. Alterations in AR Signaling

Despite these therapies suppressing most PCas, some high-risk prostate cancers grad-
ually progress to CRPC and mCRPC. The AR signaling pathway plays a central role also in
the progression of PCa during hormonal therapy [60–62]. Several mechanisms can restore
AR signaling, including intracrine androgen synthesis, AR overexpression and amplifica-
tion, point mutations, acquisition of constitutively active AR splice variants, deregulated
AR coactivators/corepressors that sensitize AR in response to ligand binding, and, finally,
ligand-independent signaling [3]. These alterations are not exclusive and can even coexist
in the same patient [62].

2.3.1. Amplification of the AR Gene and Overexpression of the AR Protein

AR gene amplification leads to an overexpression of the AR protein and is the most
common genetic mutation among patients with CRPC [63]. Results from studies using
fluorescence in situ hybridization (FISH) have shown that AR amplification is the most
frequent genetic alteration detected in CRPC, observed in more than 50% of cases, while
it is only rarely detected in untreated primary tumors, suggesting that AR amplification
could be an adaptive response to ADT. AR gene amplification was also analyzed at the
mRNA level. By using reverse-transcription polymerase chain reaction (RT-PCR), it has
been observed that the expression of AR mRNA in CRPC with AR amplification was
two-fold higher than CRPC without AR amplification. Elevated AR protein levels were
also linked to CRPC [64].

Furthermore, it has been shown that AR gene amplification is frequently detected in the
circulating tumor cells (CTCs) of patients with CRPC [65]. As well, AR amplification is more
common in patients resistant to both enzalutamide and abiraterone (more enzalutamide
than abiraterone) [66], suggesting that AR amplification could be a mechanism responsible
for ADT resistance [34]. Finally, ADT may induce upregulation of AR transcription by
disrupting the AR negative-feedback loop, then resulting in elevated AR-FL and AR-
Vs protein levels [67,68]. Moreover, in CRPC, decreased androgen levels may relieve
AR suppression of genes mediating DNA synthesis, thereby contributing to tumor cell
proliferation [67].
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2.3.2. Point Mutations in Androgen Receptor

Point mutations in the AR gene are rarely detectable in early-stage PCa but are detected
in 15–20% of CRPC patients and up to 40% of CRPC patients treated with AR antagonists,
most frequently in the LBD, followed by the NTD [66,69]. The acquisition of AR mutations
results in broadening ligand specificity by weak adrenal androgens and other steroid
hormones, including DHEA, progesterone, estrogen, and glucocorticoids, as well as in
reversing antagonists into agonists [70]. T878A was the first identified point mutation
resulting in the loss of specificity for the agonist. Progesterone, estrogens, flutamide,
bicalutamide, and enzalutamide can activate AR carrying the T878A point mutation [71].
Moreover, T878A also causes resistance to second-generation AR agonists [66]. Resistance
to enzalutamide is also induced by the point mutation F876L, in the LBD domain [64–66].
Finally, H875Y, T878A, and T878S mutations detected in CRPC patients induce agonist
effects by enzalutamide and apalutamide [70]. Mutations, such as T878A or L702H, have
been identified in the plasma of 13% of CRPC patients progressing during abiraterone
treatment. Other AR point mutations, T877A, L702H, and H875Y, have been detected in
cell-free DNA from patients with CRPC and have also been associated with resistance to
abiraterone and enzalutamide [72].

2.3.3. AR Splice Variants

Androgen receptor splice variants (AR-Vs) are the main causes of abnormalities in
AR regulation [73,74]. AR-Vs are derived by a splicing mechanism from full length and
are truncated receptors with a modified LBD domain, but normal NTD and DBD domains,
required for endogenous AR functions. The effect of the previously reported modification
is that AR may still mediate signaling in the absence of the ligand, but PC cells become
resistant to many ARSIs, including abiraterone and enzalutamide. Generally, these AR-
Vs have been associated with poor prognosis in advanced PCa [75]. AR-V7 is the most
prevalent variant among more than 20 AR-Vs identified in CRPC, followed by the exon-
skipping AR-v567 [74,76]. AR-V7 has been detected in 75% of mCRPC but only rarely in
early-stage disease (<1%) [77]. This variant has also been associated with an increased
risk of recurrent disease after prostatectomy in CSCR and with low survival in CRPC.
Furthermore, the identification of AR-V7 mRNA levels in whole blood of mCRPC patients
receiving abiraterone has been correlated with poor outcome [78]. This and other studies
support that AR-V7 detection in patients with CRPC could be correlated with resistance to
enzalutamide and abiraterone [79]. Some studies are aimed at better understanding if AR-
V7 protein expression is simply associated with enhanced AR-FL expression as a marker of
resistance to ARSI or whether a critical level of AR-V7 is required for such ARSI refractory
lethal cancer growth [80–82]. Some studies have focused on understanding the functional
differences, as compared to canonical AR-FL. AR-V7 exhibits fast nuclear import kinetics via
a pathway distinct from the nuclear localization signal-dependent importin-α/β pathway
used by AR-FL. The dimerization box domain, known to mediate AR dimerization and
transactivation, is required for AR-V7 nuclear import but not for AR-FL. In the nucleus,
AR-V7 is transcriptionally active and exhibits unusually high intranuclear mobility and
transient chromatin interactions, unlike the stable chromatin association of liganded AR-FL.
The high intranuclear mobility of AR-V7 together with its high transcriptional output
suggest a hit-and-run mode of transcription [83,84]. These mechanisms regulating AR-V7
activity could offer the opportunity to develop selective therapeutic interventions [85].

AR-V567es is one of the two most frequently observed AR variants. It has exons
5–7 spliced out and only contains a small portion of the LBD. Results from studies using
transgenic mice have shown that ARV567es induces carcinogenesis and accelerates tumor
progression [86]. Studies are ongoing to explore if AR-V567es confers relatively greater
taxane sensitivity than AR-V7 [87,88].
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3. PI3K/AKT/mTOR Signaling Pathway

The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway is considered to
be a pivotal intracellular signaling pathway and its hyperactivity is correlated with tumor
progression in a wide assortment of cancers, counting breast, gastric, ovarian, colorectal,
prostate, glioblastoma, and endometrial cancers [89]. PI3K kinase activation constitutes
a central mechanism between upstream growth signals and downstream signal trans-
duction mechanisms involved in numerous cellular processes, such as protein synthesis,
metabolism, inflammation, cell survival, motility, and tumor progression. PI3K is a large
family of lipid enzymes capable of phosphorylating the 3′-OH group of phosphatidylinosi-
tol present on the plasma membrane. It was discovered more than 25 years ago and initially
associated with the transforming ability of viral oncoproteins. Three classes of PI3Ks (class
I, class II, and class III) have been identified in mammals. Kinases belonging to class IA
consist of a catalytic subunit and a regulatory subunit. The catalytic subunits p110α, p110β,
or p110δ are encoded by the PIK3CA, PIK3CB, and PIK3CD genes, respectively. In contrast,
the regulatory subunits consist of p85α (in the isoforms p85α, p55α, p50α), p85β, and p55γ,
which are encoded by the PIK3R1, PIK3R2, and PIK3R3 genes. Class IB consists of only one
catalytic subunit, P110γ, and two regulatory subunits, p84 and p101 [90]. Class II includes
three different monomeric isoforms and remains the most enigmatic of all PI3Ks, although
recent studies have provided new clues about its role in signal transduction [91]. Finally,
the only member of class III is known as Vps34 (Vacuolar protein signal 34), expressed
in all eukaryotic organisms. Vps34 was first discovered in yeast and is implicated in the
integration of cellular responses and changes in nutritional status [92]. A variety of sig-
nals stimulate PI3K activity, mainly through receptor tyrosine kinases (RTKs), but also
through GPCRs and oncogenes, such as Ras, that directly bind p110. After stimulation,
the catalytic subunit of PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2)
to phosphatidylinositol-3,4,5-triphosphate (PIP3), which acts as a second messenger to
recruit a series of proteins containing homology domain with the pleckstrin (PH) of the cell
membrane. Uncontrolled signaling of PI3K is very common in cancer, also due to the differ-
ent roles played by its catalytic subunits p110α and p110β. Mutations in the PI3KA gene
encoding p110α have been shown in cancer cells from the colon, lung, prostate, liver, and
brain [93]. This gene, in addition to being involved in the processes of cell cycle regulation
and growth, acquires a very important role in endothelial cells, promoting angiogenesis
and, thus, the formation of a vascular network essential for the delivery of nutrients and
oxygen, which can ultimately ensure a pathway of metastasis from the primary lesion. In
oncogenesis, the p110α isoform is required for tumors driven by activated receptor tyrosine
kinases and oncogenes. The p110β is mainly required for GPCR downstream signaling but
it was also found to be essential for the development of high-grade prostatic intraepithelial
neoplasia (HG-PIN) [94]. In an animal model of Phosphatase and Tensin homolog (PTEN)-
deficient PCa, ablation of p110β, but not that of p110α, impeded tumorigenesis, with a
concomitant diminution in AKT phosphorylation [95]. Consistently, data from the latest
studies suggested that while blockade of p110α had negligible effects in the development
of PTEN-null CRPC, genetic or pharmacological disruption of p110β dramatically slowed
the initiation and progression of CRPC [94–96].

A key molecule in the regulation of PI3K/AKT is PTEN. The function of PTEN as an
oncosuppressor is carried out through its phosphatase activity; it dephosphorylates PIP3 to
PIP2, negatively regulating the activation of the PI3K/AKT pathway. This phosphatase
can act on both lipids and proteins, and acts by inhibiting cell proliferation and inducing
apoptosis. Mutations to PTEN inhibit its oncosuppressive activity. Two major mutations
affect the phosphatase domain: one results in the loss of phosphatase activity on both
lipids and proteins while the other impairs phosphatase activity on protein substrates. In
addition to regulating the PI3K/AKT signaling pathway, PTEN has many other critical
roles in tumors, including genomic instability, tumor cell renewal, cell senescence, cell
migration, and metastasis. Finally, PTEN plays a significant role in regulating the tumor
microenvironment [97]. Mutations in the PTEN gene have been observed in breast, prostate,
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endometrial, ovarian, colon, melanoma, glioblastoma, and lymphoma cancer [98]. Studies
in animal models have also shown that the loss of a single copy of the PTEN gene is sufficient
to disrupt cell signaling and initiate uncontrolled cell growth [99]. PI3K activation leads to
phosphorylation and then activation of AKT, or protein kinase B (PKB), a serine/threonine
kinase of the AGC family of kinases. It exists in three structurally similar isoforms: AKT1,
AKT2, and AKT. The three isoforms are composed of characteristic domains. The Pleckstrin
Homology (PH) domain has a remarkably conserved tertiary structure, although the amino
acid sequence may differ; this domain is responsible for binding to PIP3. The LIN domain,
of 39 amino acids is the hinge region connecting the PH domain with the catalytic domain,
which is poorly conserved among AKT isoforms (17–46% identical) and has no significant
homology with any other human protein. The kinase domain extends from amino acids
148–411 and terminates in a hydrophobic regulatory motif (CTD), ATP-binding portion of
the enzyme; the ATP-binding site of 25 residues has 96–100% homology across the three
isoforms. The C-terminal hydrophobic domain appears to be conserved in the AGC family
of kinases. These hydrophobic residues play a critical role in the complete activation of
AKT for substrate phosphorylation. Within it is another key residue for enzyme activation,
Ser473. While AKT1 is ubiquitously expressed at high levels, except for the kidney, liver,
and spleen, AKT2 expression is high in insulin-sensitive tissues, such as brown fat, skeletal
muscle, and liver. AKT3 expression is ubiquitous, although low levels of expression have
been found in liver and skeletal muscle. These different isoforms appear to be implicated in
specific functions. For example, amplification and overexpression of AKT2 correlate with
increased cell motility and invasion, whereas increased AKT3 activity appears to contribute
to the aggressiveness of steroid-hormone-insensitive tumors [100]. All three isoforms are
activated through phosphorylation: the first occurs on a threonine residue while the second
occurs on a serine residue in the hydrophobic motif. Once activated, AKT recognizes and
phosphorylates serine or threonine residues of numerous substrates, such as tuberosis
sclerosis complex 2 (TSC 2), glycogen synthase kinase 3 (GSK 3), forkhead box transcription
factors (FOXO), p21WAF1/CIP1, p27KIP1, caspase-9, Bcl-2 associated death promoter
(BAD), and inducible Nitric Oxide Synthase (iNOS), which regulate numerous processes
that coordinate cell life and death, metabolism, and angiogenesis. Hyperactivation of AKT
has been shown in numerous cancers, such as multiple myeloma, lung cancer, glioblastoma,
breast cancer, prostate cancer, etc. [101]. The best-studied downstream substrate of AKT is
mTOR kinase. AKT can directly phosphorylate and activate mTOR and can cause indirect
activation of mTOR by phosphorylating and inactivating tuberous sclerosis 2, also called
tuberin (TSC2), which normally inhibits mTOR. The consequence of mTOR activation is
increased protein translation [102]. Finally, it has recently been shown that AKT activity
can be negatively regulated by the PH domain of leucine repeat sequence-rich phosphatase
(PHLPP), which specifically dephosphorylates the hydrophobic motif of AKT (Ser473
in Akt1) [103]. mTOR (mammalian target of rapamycin) is a serine/threonine kinase
that regulates cell growth, proliferation, motility and survival, transcription, and protein
synthesis. mTOR plays an important role in regulating the body’s energy balance and
weight; it is activated by amino acids, glucose, insulin, and other hormones involved in
regulating metabolism. Recent studies have shown that mTOR is not only a substrate
of AKT but also a crucial activator of AKT. In fact, mTOR forms a complex (TORC2)
with the protein Rapamycin-insensitive companion of mTOR (RICTOR) and then directly
phosphorylates the Ser473 of AKT [104]. Activation of TORC2 could then explain the
sequestration of newly formed mTOR molecules within cells during long-term rapamycin
treatments. In fact, this drug is particularly effective in inducing apoptosis and suppressing
the proliferation of AKT-overexpressing cells because, over time, it interferes with the
reassembly of the complex by joining it [105].

4. Crosstalk between AR and PI3K Signaling

The PI3K/AKT/mTOR signaling pathway has been shown to be deregulated in a
wide range of cancers. Genetic alterations have been identified in all components of this
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signaling pathway. In PCa, the PI3K/AKT/mTOR pathway is deregulated in 42% of
localized and 100% of advanced disease cases, indicating that alterations in these signals
might be an essential prerequisite for the development of CRPC [106]. The existence of
negative feedback regulation within AR and PI3K/AKT signaling networks has been
demonstrated [107] (Figure 1). Thus, gene mutations and amplifications, and changes in
mRNA expression in components of the PI3K pathway, are strictly correlated with the
prognosis of PCa patients. For example, reduced expression of PTEN is associated with
higher Gleason, biochemical recurrence after prostatectomy, and shorter time to metastatic
progression [108]. In addition, high levels of phospho-4EBP1 and eI4E are associated with
increased mortality in patients with PCa, indicating that effectors further down the pathway
are also predictive of disease progression [109].
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Figure 1. Crosstalk between PI3K/AKT/mTOR and AR signaling pathways. The two signaling
pathways are closely connected and regulated according to a reciprocal feedback mechanism. AR
inhibition reduces FKBP5 levels, inhibiting PHLPP-mediated suppression of AKT, thereby activating
AKT. Activation of AKT then generates upregulation of AR by several mechanisms, including direct
phosphorylation of AR and nuclear exclusion of FOXO1. AKT: protein kinase B; AR: androgen
receptor; ARE: androgen response element; FKBP5: FK506 binding protein 5; FOXO1: forkhead box
transcription factor 1; GPCR: G-protein coupled receptor; mTOR: mammalian target of rapamycin;
PIP3: phosphatidylinositol-3,4,5-triphosphate; PHLPP: PH domain of leucine repeat sequence-rich
phosphatase; PSA: prostate-specific antigen; PTEN: phosphatase and tensin homolog; RTK: receptor
tyrosine kinase.

Results from studies in knockout (KO) and transgenic mouse models have also clearly
shown the role of PI3K/AKT/mTOR in the development of PCa. Specifically, overexpres-
sion of AKT or biallelic loss of the oncosuppressor PTEN in prostate epithelial cells leads to
hyperactivation of the pathway and is sufficient for PCa development in vivo [110]. PTEN
deletion has also been shown to inhibit the progression of PCa in mouse models with
conditional KO of mTOR [111]. Others have also shown in vivo that the progression of PCa
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is reduced when PTEN and RICTOR, a subunit of mTORC2 complex, are lost [112]. This
demonstrates that the progression of PCa can be sufficiently induced by the hyperactivation
of PI3K/AKT/mTOR. Loss of the oncosuppressor PTEN and subsequent uncontrolled
activation of the PI3K signaling pathway has been found in 40% of primary tumors and 70%
of metastatic forms [113]. Moreover, AKT was shown to phosphorylate AR at Ser-210 and
Ser-791, but the effect on AR activity and protein stability is debated, as studies have demon-
strated either repression or activation of AR function [114]. From a functional point of
view, AKT repressed AR transactivation in a reporter assay in AR-insensitive DU145 mPCa
cells when the AR was exogenously expressed [115]. However, in the androgen-sensitive
PCa LNCaP cell line, AKT phosphorylation activated the PSA reporter and promoted cell
survival [115]. These differential effects suggest that AKT-mediated AR phosphorylation on
AR function could be attributed to cell context. The AKT pathway is considerably sensitive
to feedback regulation. Furthermore, inhibition of the PI3K pathway also stimulates the
upstream of HER2/3, thereby activating the androgen receptor axis in murine and human
tumors with PTEN deletion [116].

On the other hand, inactivation of AR would lead to over-regulation of the PI3K/AKT
pathway, which has been correlated with altered control of cell growth and survival,
increased metastatic competence, angiogenesis, and resistance to chemotherapy.

Indeed, it has been demonstrated that AR inhibition activates AKT signaling by
reducing the expression of the AKT phosphatase PHLPP [117]. AR blockade reduces
FKBP5 levels, then impairing PHLPP function and leading to upregulation of pAKT [118].

Thus, these two pathways are regulated by a reciprocal feedback mechanism in that
the inhibition of one inactivates the other, allowing for cancer cell survival and progression.

Combination Therapy

Because inhibiting either AR or AKT often activates the other, a combination therapy
might be advantageous. Over 40 compounds targeting key components in the PI3K-
induced signaling pathway have been investigated to date. AZD5363, an inhibitor of
all isoforms of Akt, has been reported to inhibit proliferation and induce apoptosis in
prostate cancer cell lines expressing AR and has antitumor activity in vivo in androgen-
sensitive LNCaP xenograft models resistant to castration [119]. However, resistance occurs
already after about 30 days of treatment. This is proposed to be since AZD5363 induces
an increase in the binding affinity of AR to AREs and an increase in the transcriptional
activity of AR and the expression of AR-dependent genes, such as PSA and NKX3.1.
These effects were overcome by the combination of AZD5363 and the earlier antiandrogen
Bicalutamide, resulting not only in a synergistic inhibition of cell proliferation and induction
of apoptosis in vitro, but also in a prolongation of tumor growth inhibition and PSA
stabilization [120]. Moreover, clinical data from the latest ongoing clinical trials support the
hypothesis that combinatorial therapies may have a good response in treating advanced
PCa (Table 1). The phase II ProCAID clinical trial suggested that addition of capivasertib
(pan-AKT inhibitor) to docetaxel improved OS benefit in mCRPC patients. Median OS was
25.3 months for capivasertib plus docetaxel versus 20.3 months for placebo plus docetaxel
(hazard ratio (HR) 0.70, 95% confidence interval (CI) 0.47–1.05; nominal p = 0.09) [121].
Another pan-AKT inhibitor, Ipatasertib, has been used in the recent randomized, double-
blind, phase III trial combined with abiraterone (IPATential150). This combination led to
prolonged radiographic progression-free survival and antitumor activity over a placebo
with abiraterone among patients with mCRPC with PTEN loss (median 18.5 vs. 16.5 months,
HR = 0.77; p = 0.0335) [122]. The phase I/II study investigating AZD8186, a potent and
selective inhibitor of PI3K, supported combination treatment with abiraterone acetate [123].
Moreover, a phase II trial of everolimus (mTOR inhibitor) plus bicalutamide showed
encouraging efficacy in men with bicalutamide-naïve CRPC [124]. It must be mentioned,
however, that one of the limitations of the use of PI3K/AKT inhibitors is undoubtedly the
occurrence of AEs, usually hyperglycemia, rash, and diarrhea. For this reason, numerous
studies are focusing on understanding the mechanisms and management of toxicity. In
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addition, new phase I studies are aimed at optimizing the dosing schedule to improve
drug-related toxicity. Noteworthily, most of the clinical trials to date are directed towards
patients with advanced or mCRPC, which are very different from the earlier, localized,
high-risk disease. Hence, the effects of the combined targeting of AR and PTEN/AKT
pathways in the setting of localized prostate cancer need to be investigated.

Table 1. Clinical studies on PI3K/AKT/mTOR pathway inhibitors in PCa.

Target Agent Phase Regimen Study Population Status Clinicaltrial.Gov ID

AKT

MK2206
II + Bicalutamide High-Risk of Progression

PCa with rising PSA
Active, not
recruiting NCT01251861

I + hydroxychloroquine Stage IV PCa Active, not
recruiting NCT01480154

AZD5363
(Capivasertib)

I + Enzalutamide
Advanced Solid Tumors
Harboring Mutations in
AKT1, AKT2, or AKT3

Active, not
recruiting NCT03310541

III + Docetaxel mCRPC Recruiting NCT05348577

II + Abiraterone acetate High Risk Localized PCa
With PTEN Loss Not yet recruiting NCT05593497

I/II + Docetaxel/Prednisolone mCRPC Completed NCT02121639

Afuresertib I/II + LAE001/prednisone mCRPC Recruiting NCT04060394

PI3K

AZD8186
I + Docetaxel mPCa with PTEN or

PIK3CB mutations
Active, not
recruiting NCT03218826

I + Abiraterone acetate Advanced CRPC Completed NCT01884285

GDC-0068
(Ipatasertib)

I/II + Atezolizumab PTEN-loss CRPC Recruiting NCT03673787

III + Abiraterone acetate and
prednisone/prednisolone mCRPC Active, not

recruiting NCT03072238

II + Abiraterone acetate and
prednisone/prednisolone

CRPC previously treated
with Docetaxel Completed NCT01485861

I + Rucaparib Advanced PCa Completed NCT03840200

GSK2636771 I + Enzalutamide PTEN(-) mCRPC Completed NCT02215096

BKM120
(Buparlisib) Ib + Abiraterone acetate CRPC Completed NCT01634061

LY3023414 II + Enzalutamide mCRPC Completed NCT02407054

CYH33 I + Olaparib PCa with DDR and/or
PIK3CA mutations Recruiting NCT04586335

mTOR

RAD001
(Everolimus)

III Monotherapy
CRPC patients with

PI3K-AKT-mTOR signaling
pathway deficiency

Not yet recruiting NCT03580239

II Monotherapy mCRPC Completed NCT00636090

I + Apalutamide mCRPC after treatment with
Abiraterone acetate Completed NCT02106507

I + standard radiation therapy PCa with rising PSA
following RP Completed NCT01548807

II + Carboplatin/Prednisone mPCa that progressed
after docetaxel Completed NCT01051570

I/II + Docetaxel/Prednisone mCRPC Completed NCT00459186

II Monotherapy HRPC Completed NCT00629525

I/II + Docetaxel/Bevacizumab Advanced PCa Completed NCT00574769

CCI-779
(Temsirolimus)

I/II + Cixutumumab mPCa Completed NCT01026623

II + conventional surgery newly diagnosed PCa at high
risk of relapse Completed NCT00071968

CC-115 I Monotherapy PCa Completed NCT01353625

MLN0128
(Sepanisertib) II Monotherapy CRPC Completed NCT02091531

AZD2014 I Monotherapy prior to RP High Risk PCa Completed NCT02064608

(+) indicates co-treatments; ADT: androgen deprivation therapy; CRPC: castration-resistant prostate cancer;
HRPC: hormone-resistant prostate cancer; mPCa: metastatic prostate cancer; mCRPC: metastatic castration-
resistant prostate cancer; PSA: prostate-specific antigen; RP: radical prostatectomy.
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5. Conclusions

The high incidence of prostate cancer in the global male population has resulted in
many efforts being channeled into finding the best therapeutic strategies. In particular,
the prognosis of mCRPC remains very poor to date since patients develop resistance to
treatments. Indeed, there is currently no single therapeutic choice for these patients, but
recommended therapies involve the use of agents targeting different signaling pathways,
often in combination or as neoadjuvant therapies. Many studies have confirmed the role
of the PI3K/AKT/mTOR signaling pathway in the development of treatment resistance
and tumor progression. Indeed, activation of PI3K increases proliferation and prevents
apoptosis of prostate cancer cells, while inactivation promotes cell cycle arrest in the G
phase. On the other hand, there is evidence that AR inhibition promotes upregulation of
the PI3K pathway, and vice versa, via a negative feedback mechanism.

Therefore, studies aiming to understand the key mechanisms that induce resistance
within this continuous crosstalk between the two signaling pathways are needed to improve
the outcome of patients with prostate cancer.

Author Contributions: Conceptualization, E.T. and I.S.; writing—original draft preparation, I.S.
and E.T.; writing—review and editing, E.T., I.S., S.G. and A.S.; supervision, I.S. and E.T.; funding
acquisition, I.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: BioRender software (Biorender.com) was used to create Figure 1.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ADT androgen deprivation therapy
AGC protein kinase A, G and C families
AKT protein kinase B
AR-FL androgen receptor full length
AR-V androgen receptor splice variants
AR androgen receptor
ARA androgen receptor antagonist
ARE androgen response element
ARSI androgen receptor signaling inhibitor
ATP adenosine triphosphate
BAD Bcl-2-associated death promoter
BAT bipolar androgen therapy
CRPC castration-resistant prostate cancer
CSPC castration-sensitive prostate cancer
CTC circulating tumor cells
CTD hydrophobic regulatory motif domain
CTLA4 cytotoxic T-lymphocyte-associated protein 4
CYP17A1 cytochrome P450 17α-hydroxylase/17,20-lyase
DBD DNA-binding domain
DHEA dehydroepiandrosterone
DHT 5α-dihydrotestosterone
DNA deoxyribonucleic acid
FDA Food and Drug Administration
FISH fluorescence in situ hybridization
FKBP5 FK506 binding protein 5
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FOXO forkhead box transcription factors
FSH follicle-stimulating hormone
GnRH gonadotropin-releasing hormone
GPCR G-protein-coupled receptor
GSK 3 glycogen synthase kinase 3
HER human epidermal growth factor receptor
HPG hypothalamus–pituitary–gonadal axis
HSP heat-shock protein
iNOS inducible nitric oxide synthase
KO knockout
LBD ligand-binding domain
LH luteinizing hormone
LHRH luteinizing hormone-releasing hormone
LNCaP androgen-sensitive human prostate adenocarcinoma cells
mCRPC metastatic castration-resistant prostate cancer
mCSPC metastatic castration-sensitive prostate cancer
mRNA messenger ribonucleic acid
mTOR mammalian target of rapamycin
mTORC1/2 mTOR complex 1

2
nmCRPC non metastatic castration-resistant prostate cancer
NOS nitric oxide synthase
NTD amino-terminal transcriptional domain
OS overall survival
p70S6K p70S6 kinase
PARP poly ADP-ribose polymerase
PCa prostate cancer
PCR polymerase chain reaction
PD-L1 programmed death-ligand 1
PD1 programmed cell death protein 1
PDK1 phosphoinositide-dependent kinase 1
PFS progression-free survival
PH pleckstrin homology domain
PHLPP PH domain of leucine repeat sequence-rich phosphatase
PI(3,4)P2 phosphatidylinositol-3,4-biphosphate
PI(4,5)P2 phosphatidylinositol-4,5-biphosphate
PI3K phosphatidylinositol-3-kinase
PIP3 phosphatidylinositol-3,4,5-triphosphate
PKA protein kinase A
PSA prostate-specific antigen
PTEN phosphatase and tensin homolog
RANKL receptor activator of nuclear factor kappa-B ligand
RICTOR rapamycin-insensitive companion of mTOR
RNA ribonucleic acid
RP radical prostatectomy
rPFS radiographic progression-free survival
RT-PCR real time polymerase chain reaction
RT radiotherapy
RTK receptor tyrosine kinase
SHBG sex hormone-binding globulin
TSC 2 tuberosis sclerosis complex 2
Vps34 vacuolar protein signal 34
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