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Abstract: Even though sunlight energy far outweighs the energy required by human activities, its
utilization is a key goal in the field of renewable energies. Microalgae have emerged as a promising
new and sustainable feedstock for meeting rising food and feed demand. Because traditional methods
of microalgal improvement are likely to have reached their limits, genetic engineering is expected
to allow for further increases in the photosynthesis and productivity of microalgae. Understanding
the mechanisms that control photosynthesis will enable researchers to identify targets for genetic
engineering and, in the end, increase biomass yield, offsetting the costs of cultivation systems
and downstream biomass processing. This review describes the molecular events that happen
during photosynthesis and microalgal productivity through genetic engineering and discusses future
strategies and the limitations of genetic engineering in microalgal productivity. We highlight the
major achievements in manipulating the fundamental mechanisms of microalgal photosynthesis
and biomass production, as well as promising approaches for making significant contributions to
upcoming microalgal-based biotechnology.
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1. Introduction

With a growing global population, dwindling agricultural land and climate change,
there is a strong demand for more productive and stress-resistant crops for food and energy
purposes. Among photosynthetic organisms, microalgae and cyanobacteria are the most
promising feedstocks for meeting the rising demand for food, feed, fuel, and high-value
metabolites owing to their higher growth rates than those of terrestrial crop plants; addition-
ally, they can be used for wastewater treatment and CO2-emissions mitigation processes [1].
However, microalgae-based products are currently hampered by high production costs and
inefficient light use. Photosynthesis is the primary driving force behind microalgal growth
and biomass production, as it provides the energy and carbon requisite for the biosynthesis
of organic compounds [2]. To increase growth rates and microalgal productivity and thus
make the process profitable, light-to-biomass conversion efficiency must be optimized [1].

Because energy losses happen at numerous stages, even during the light-driven con-
version of CO2 to organic carbon, the overall efficiency of sunlight-to-biomass conversion
reported in mass cultures is much lower (35–80%) than the predicted theoretical maxi-
mum [3]. Further increases in microalgal productivity are expected to be achieved through
genetic engineering. The light-harvesting system and CO2 assimilation are two major
sources of energy losses and, thus, foremost goals for genetic engineering. Several strate-
gies for improving photosynthesis capacity, focusing on the light and dark phases of
photosynthesis, have been presented. Another strategy is to manipulate non-coding RNAs
(ncRNAs) and transcription factors (TFs) to regulate photosynthesis. These strategies have
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a good effect on improving microalgal photosynthesis and increasing multiple metabo-
lites. The purpose of this review is to elaborate on the key factors for photosynthesis and
some important products throughout the conversion of sunlight into biomass and to sum
up previous efforts taken aimed at increasing photosynthetic efficiency and microalgal
productivity through genetic engineering.

2. Strategies for Increasing Photosynthetic Efficiency

Photoautotrophs convert sunlight into organic molecules and biomass through oxy-
genic photosynthesis, albeit the efficiency of this process varies depending on the species
and environmental factors [4]. Oxygenic photosynthesis begins with light absorption,
followed by excitation energy transfer to the reaction centers, primary photochemistry,
electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-
Benson cycle) [5]. So far, multiple techniques have been applied to increase the efficiency
of light-to-biomass conversions, such as optimization of culture conditions, mutagenesis,
mutant selection, and genetic engineering [6–8]. The application of modern molecular
tools and genetic engineering facilitates the construction of directed phenotypic mutant
strains. Changing the expression of key genes in the photosynthetic metabolic pathway
can effectively improve photosynthetic efficiency and biomass accumulation. In addition,
non-coding RNAs (ncRNAs) and transcription factors (TFs) associated with photosynthesis
are also valuable regulators (Figure 1). In the future, more paradigms are needed for the
improvement of microalgae that afford higher efficiency.
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Figure 1. Strategies for increasing photosynthesis in microalgae. Red arrows represent overexpressed
genes or exogenous genes, and green arrows represent down-regulated genes or knockout genes.
Red crosses indicate an accelerative effect, and green minus signs indicate an inhibitory effect.
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2.1. The Light Phase of Photosynthesis

Both land plants and microalgae have relatively inefficient photosynthesis. In the early
stages of light collection, approximately 75% of the energy generated by solar irradiation
is lost because not all of the light spectrum is used; some are reflected or transmitted,
and some is wasted as heat. Even if some energy loss is unavoidable or required for
photoprotection, there are nevertheless aspects in which light reaction efficiency could
be enhanced, potentially leading to a significant increase in crop yields [9]. Some of
the ideas focus on increasing light absorption or accelerating the photosynthetic electron
transport pathway.

Over 50% of the energy losses associated with the conversion of solar energy into
chemical energy during photosynthesis are attributed to kinetic restrictions between the
fast rate of photon capture by the light-harvesting apparatus and the slower downstream
rate of photosynthetic electron transfer [10]. Optimizing light collection and use by mini-
mizing chlorophyll antenna size is one strategy for increasing energy conversion efficiency
and photosynthetic productivity [11]. Theoretically, in mass cultures of algae or plants,
truncated photosystem chlorophyll antenna size can increase photosynthetic solar energy
conversion efficiency and productivity by up to thrice [12]. In all types of photosynthetic
organisms, a shortened light-harvesting chlorophyll antenna size (TLA) would help to
reduce excessive sunlight absorption and the following wasteful non-photochemical dis-
sipation of excitation energy [13,14]. DNA insertional mutagenesis experiments were the
first to demonstrate that a truncated chlorophyll antenna would result in relatively higher
photosynthetic productivity in the model organism Chlamydomonas reinhardtii (henceforth
C. reinhardtii) [14,15]. Strains tla3 and tla4 in C. reinhardtii were mutated in these genes en-
coding the chloroplast-localized signal recognition particle (CpSRP) and showed increased
efficiency of solar energy conversion and photosynthetic productivity in mass culture under
strong irradiation conditions [16,17]. Components of the CpSRP complex are interesting
molecular targets for shrinking the Chl antenna without compromising photosynthetic
electron transport, which is involved in the appropriate folding of Light-harvesting com-
plex proteins (LHCs) and being targeted to the thylakoids [13]. The BF4 and p71 antenna
mutants from C. reinhardtii have defects in the insertase Alb3.1 and cpSRP43, resulting
in a truncated antenna size in the two photosystems [18] and impaired accumulation of
LHCs [19]. Furthermore, CRISPR-Cas9 technology has recently been demonstrated to be
a reliable approach for producing tla mutants [20,21]. CAO, which encodes for Chloro-
phyllide, an oxygenase responsible for Chl a to Chl b conversion, was another molecular
target that was expected to influence antenna size [22]. At high light intensities, a CAO
mutant modulated by RNAi with decreased chlorophyll b increased its photosynthetic
rate by more than twofold [10]. By expressing a CAO gene with a 5′ mRNA extension
encoding a Nab1 translational repressor binding site in a CAO knockout line, the mutant
having light-regulated antenna sizes had substantially higher photosynthetic rates and
two-fold greater biomass productivity than the parental wild-type strains [23]. In addition,
a phycocyanin-deletion (∆cpc) mutant of the cyanobacterium Synechocystis sp. PCC 6803
(henceforth Synechocystis 6803) demonstrated that biomass accumulation was 1.57 times
larger than that of the WT under strong light and high cell density conditions, with a lower
Chl per cell content and a lower PSI/PSII reaction center ratio than the WT [24]. Truncated
antenna mutants of Chlorella sorokiniana (henceforth C. sorokiniana), with a 30–68% higher
biomass yield in dense cell suspensions typical of industrial photobioreactors, showed
increased photon use efficiency and higher productivity compared to WT [25,26]. In the
marine diatom Phaeodactylum tricornutum (P. tricornutum), knockout of ALB3b, which is
involved in the regulation of fucoxanthin-chlorophyll a/c synthesis, exhibits a truncated
light-harvesting antenna phenotype with lower levels of photosynthetic pigments [27]. The
alb3b mutants displayed 30–40% higher rETRmax (the maximum relative electron transport
rate) and Ek (light saturation index) compared with the wild-type from low light (35 µmol
photons m−2 s−1) to medium light (200 µmol photons m−2 s−1), showing the cells had been
able to downsize the photosynthetic apparatus in response to the increased light intensities.
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The prospect of creating engineered microalgae with light-harvesting systems that
do not exist in nature or wild-type cells is a more radical method for enhancing light-
energy consumption. Usually, only the visible portion of the solar spectrum (from 400 to
700 nm) is used for photosynthesis due to the spectral properties of photosynthetic pig-
ments. Small modifications or variations of chlorophyll enable photosynthetic organisms
to absorb sunlight at various wavelengths [28]. Chlorophyll d [29,30] and chlorophyll f [31]
have been shown to use far-red light (FRL; from 700 to 750 nm) in some cyanobacteria to
perform photosynthesis. The overexpression of endogenous CBPII (chlorophyll d-binding
light-harvesting protein) from Acaryochloris marina suppressed the phycobiliproteins of
Synechocystis 6803, resulting in a low ratio of phycobilins to chlorophyll a [29]. Transplas-
tomic algae expressing the Katushka fluorescent protein increased oxygen evolution and
photosynthetic growth in yellow light and enhanced the photosynthetic action spectrum
of C. reinhardtii [32]. Introducing alternative light-harvesting complexes that absorb more
efficiently in areas where chlorophyll is less efficient, like chlorophyll f [31], chlorophyll
d-binding light-harvesting proteins [29,30], engineered fluorescence proteins [32], or diatom
fucoxanthin components [33] is a possibility. Although this idea is plausible, whether it is
feasible is a long-term question.

Non-photochemical quenching (NPQ) is an important photoprotective molecular
mechanism inducing the thermal dissipation of absorbed light energy in oxygenic photo-
synthetic organisms [34]. There is little doubt that most vegetation on the planet will use
NPQ on a daily basis, and it represents a pathway for our biosphere to process substantial
quantities of solar energy. Although this protective dissipation is indispensable, it keeps
operating even when high to normal/low light transition, which minimizes photosynthetic
efficiency [35]. Hence, tuning of NPQ has been reported as a promising biotechnological
strategy for increasing biomass productivity in microalgae. Two light-harvesting complex
stress-related proteins, LHCSR1 and LHCSR3, were reported as the main actors during
NPQ induction in C. reinhardtii [36,37]. A mutant of C. reinhardtii lacking LHCSR, npq4lhcsr1,
displays high rates of photosynthesis when grown in high light compared to the wild-
type [38]. The strain lacking LHCSR1 and knocked down in LHCSR3, causing enhanced
singlet oxygen release and PSII photodamage, had an improved photosynthetic efficiency
under high light [39]. It is noteworthy that faster NPQ relaxation and improved crop pho-
tosynthetic efficiency can be achieved under fluctuating light conditions by overexpressing
NPQ-related genes [40,41]. The concept may be worth further verification and exploration
to develop stress-resilient microalgae with higher photosynthetic output.

2.2. The Carbon Reactions of Photosynthesis

Central to many strategies to improve photosynthetic efficiency is addressing the limi-
tation of RuBisCO, a rate-limiting enzyme in photosynthesis [42]. Plants produce a large
amount of RuBisCO to compensate for its low activity, accounting for up to 50% of pho-
tosynthetic organisms’ soluble proteins. However, this necessitates a significant nitrogen
investment in RuBisCO. As a result, engineering microalgal strains with enhanced RuBisCO
catalytic activity would be critical for improving solar energy conversion efficiency. There
are currently three approaches to genetically engineering carbon fixation in microalgae:
(1) endogenous overexpression, (2) site-directed mutagenesis, and (3) RuBisCO isoforms.

Endogenous overexpression and site-directed mutagenesis were used to create some
RuBisCO-improved variants by targeting either the rbcL and rbcS genes (RuBisCO sub-
units) or the subunit that interacts with RuBisCO activase [43,44]. The overexpression
of endogenous RuBisCO activase enhanced lipid and biomass efficiency by up to 40% in
Nannochloropsis oceanica [43]. Consistently, overexpression of RuBisCO in Synechocystis 6803
improved photosynthetic activity and fatty acid productivity [45–48]. The site-directed mu-
tagenesis of rbcL produced a low-activity RuBisCO variant that induced higher hydrogen
production rates and total lipid levels in C. reinhardtii than in the wild type [44,49]. The
engineering of microalgal strains with hybrid RuBisCO complexes would also be crucial
to improving RuBisCO catalytic activity and the efficiency of solar energy conversion.
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Combining positive mutations from different isoforms has been proposed as a method
of obtaining RuBisCO with improved carboxylation catalysis Vmax [50,51]. To increase
the CO2/O2 selectivity and carboxylation catalytic efficiency, the small subunit of the
RuBisCO enzyme of C. reinhardtii was swapped out for those from Arabidopsis, spinach,
and sunflower in one such endeavor [51]. The pyrenoid is a subcellular microcompart-
ment in which algae sequester Rubisco, thus realizing the CO2-concentrating mechanism
(CCM) [52]. Since the algal CCM is functionally analogous to the terrestrial C4 pathway in
higher plants [53], these findings could pave the way for transforming algae and achieving
higher productivity.

In addition to RuBisCO, the other relatively low-abundant enzymes in the Calvin-Benson
cycle, such as sedoheptulose-1,7-bisphosphatase (SBPase), fructose-1,6-bisphosphatase (FB-
Pase), and fructose-1,6-bisphosphate aldolase (FBA), are the prime targets to control the
photosynthetic efficiency. The engineering of the Calvin-Benson cycle through the overex-
pression of cyanobacterial FBA was shown to improve the cell growth and photosynthetic
activity of Chlorella vulgaris (C. vulgaris) [54]. Similarly, it was discovered that overexpression
of cyanobacterial FBP/SBPase increased photosynthetic activity in Euglena gracilis [55]. The
overexpression of C. reinhardtii SBPase was promoted to improve photosynthetic capacity,
total organic carbon content and osmoticum glycerol production in Dunaliella bardawil [56].
Endogenous overexpression of RuBisCO, FBA, and SBPase increased oxygen evolution
in vivo and biomass accumulation in Synechocystis 6803 [57], significantly increasing the
generation of ethanol [58]. Therefore, engineering key enzymes of the Calvin-Benson cycle
continues to be a promising target for increasing photosynthetic efficiency.

2.3. Non-Coding RNAs and Transcription Factors Affecting Photosynthesis

ncRNAs are transcriptional and posttranscriptional regulators of gene expression that
play important roles in almost every aspect of an organism’s life cycle [59]. Complex sets of
endogenous ncRNAs, including candidate microRNAs (miRNAs) and small RNAs (sRNAs),
have now been identified by high-throughput sequencing and experimental validation in
eukaryotic algae and cyanobacteria. Several ncRNAs play critical roles in the acclimation
to environmental changes relevant to oxygenic photosynthesis in cyanobacteria, especially
Synechocystis 6803 (Table 1). sRNA ApcZ links the expression of the apcABC operon that
encodes the Apc core proteins of the PBS, providing a functional and mechanistic link
between light harvesting and photoprotection [60]. IsaR1 is widely conserved in the
cyanobacterial phylum, including freshwater, marine, filamentous, symbiotic, mesophilic,
or thermophilic cyanobacteria [61]. IsaR1 controls a complex network important for iron
acclimation and acts on the photosynthetic apparatus in three distinct ways, involving the
major ferredoxin Fed1 (petF), cytochrome c6 (petJ), the cytochrome b6f complex proteins
PetABDC1, glutamyl-tRNA reductase (hemA), and the biosynthesis of iron-sulfur clusters
(sufBCDS). PsrR1 has been found to be widely conserved in cyanobacteria and limits the
expression of photosynthesis-related genes (psaL, psaJ, chlN, cpcA, and several others) upon
shift to a high light [62]. PsrR1 transcription is upregulated at higher light levels to achieve
this regulation. The above upregulation is mediated by the response regulator RpaB, which
loses its ability to bind DNA when it switches to HL, resulting in a rapid de-repression of
psrR1 transcription within minutes [63].

Cis-encoded antisense sRNAs (asRNAs) that are located on the opposite strand of
DNA from their mRNA targets have a high complementarity to their targets. In Synechocys-
tis 6803, three asRNAs, RblR, PsbA2R, and PsbA3R, regulate photosynthesis by positively
modulating their respective targets, the rbcL, psbA2, and psbA3 mRNAs [64,65]. RblR acts
as a positively acting factor to regulate the rbcL gene expression under multiple stress
conditions [64]. In addition, RbcR, as a RuBisCO regulator, binds the rbcL promoter and
affects the expression of several genes involved in C acquisition, including rbcLXS, sbtA,
and ccmKL, which encode RuBisCO and parts of the CCM, respectively [66]. Overexpres-
sion of PsbA2R increased the amount of psbA-encoded D1 protein and the potential for
photosynthetic activity under high light conditions by protecting an RNase E-sensitive
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region [65]. AsRNA As1-Flv4 prevents premature expression of the flv4-2 operon, pro-
viding many β-cyanobacteria with a previously unknown photoprotection mechanism
that evolved in parallel with oxygen-evolving PSII after the shift to inorganic carbon via
co-degradation [67,68]. IsrR is the first known to regulate a photosynthesis component and
is a repressor of the iron stress-induced protein IsiA, which forms a giant ring structure
around PSI [69].

More and more ncRNAs and transcription factors related to photosynthesis are being
discovered and studied in depth. In the future, using ncRNAs and transcription factors to
improve the photosynthesis and biomass of microalgae is a promising paradigm.

Table 1. ncRNAs relating to photosynthesis in cyanobacteria.

Name Type Length Species Function Reference

ApcZ sRNA 137 Synechocystis 6803 Inhibiting ocp translation under
stress-free conditions [60]

IsaR1 sRNA 68 Conserved in
cyanobacteria

Limiting photosynthesis-related
gene expression (petJ, petABDC1,

hemA, sufBCDS, and several
others) under low iron conditions

[61]

PsrR1 sRNA 131 Conserved in
cyanobacteria

Limiting photosynthesis-related
gene expression (psaL, psaJ, chlN,
cpcA, and several others) upon

shift to HL

[62]

RblR asRNA 113 Synechocystis 6803 Activating rbcL expression [64]

PsbA2R
PsbA3R asRNA 130, 220

160, 180 Synechocystis 6803
Protecting psbA2 and psbA3

mRNA from
premature degradation

[65]

As1-Flv4 asRNA 280, 500 Synechocystis 6803
Preventing premature expression

of the flv4-2 operon after shift
to LC

[67]

IsrR asRNA 177 Synechocystis 6803 Inhibiting isiA expression under
iron stress [69]

3. Transgenic Microalgae for Improved Biomass Production

Solar energy and carbon dioxide can be converted into commercially valuable organic
compounds such as polyunsaturated fatty acids (PUFAs), pigments, proteins, and polysac-
charides by microalgae. Furthermore, the cultivation of microalgae does not fight with
agricultural food production and can be grown in marine environments such as freshwater,
seawater, or even wastewater, making them promising biocatalysts for applications in
sustainable food, fuel, and chemical production. Novel genome editing tools such as RNAi,
CRISPR/Cas9, ZNFs, and TALENs have been used in recent years to improve the quality
and quantity of desired products. In addition, genetic engineering is frequently used
because they produce faster and more precise results than random mutagenesis [70].

The advancement of genetic engineering, transcriptional engineering, and metabolic
engineering strategies has resulted in breakthroughs in research on functional characteri-
zation of key genes or regulators, identification of metabolic pathways, and elucidation
of microalgae cell physiology [71]. In this part, we will describe the synthetic pathways
for high-value bioproducts derived from microalgae, as well as strategies for increasing
bioproduct accumulation (mainly lipids, pigments, and polysaccharides).

3.1. Lipids

Though the research on microalgal lipids is still in its infancy, the pathway of tria-
cylglycerol (TAG) synthesis in microalgae is very similar to that of higher plants. Thus,
it provides a relatively mature framework for the initial study of metabolic pathways in
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microalgae [72]. The synthesis of TAG in microalgae can be divided into the fatty acid
synthesis pathway and the Kennedy pathway. Regulation of enzymes in the fatty acid
synthesis pathway and Kennedy pathway is a breakthrough to improve lipid accumulation
in microalgae.

The key enzymes in the fatty acid synthesis pathway are pyruvate dehydrogenase
(PDH), acetyl-CoA carboxylase (ACCase), and acetyl-CoA [73]. The neutral lipid content
of the PtPDK antisense knockdown mutant strain increased by up to 82%, while fatty
acid composition remained unchanged in P. tricornutum [74]. The results showed that
acetyl-CoA can be generated from pyruvate via PDH and is negatively regulated by PDH
kinase (PDK). NsPDK knockdown via RNAi altered the fatty acid profile in Nannochloropsis
salina, leading to faster TAG accumulation without compromising cell growth under high
light stress conditions [75]. ACCase, which is the first pivotal enzyme in microalgal lipid
synthesis and catalyzes the rate-limiting step for fatty acid biosynthesis, has attracted
the attention of many scholars. The ACCase inhibitors resulted in a marked decrease in
TAG accumulation levels, but ACCase overexpression caused no significant changes in
microalgal lipid accumulation [76].

Compared to the fatty acid synthesis pathway, the Kennedy pathway is relatively closer
to the target product and, therefore, more likely to influence TAG synthesis. The Kennedy
pathway mainly contains three acyltransferases, i.e., glycerol-3-phosphate acyltransferase
(GPAT), diacylglycerol acyltransferase (DGAT), and lysophosphatidic acid acyltransferase
(LPAT), which catalyze the specific esterification of glycerol-3-phosphate (G3P) [77]. Niu
et al. studied the effect of GPAT overexpression in P. tricornutum on lipid accumulation.
These results showed that the neutral lipid content was enhanced twofold and the fatty acid
composition had a significantly higher proportion of unsaturated fatty acids in the GPAT
overexpression mutant strain compared to the wild type [78]. AGPAT1 overexpression in
P. tricornutum coordinated the expression of other key genes associated with TAG syntheses,
such as DGAT2 and GPAT, and enhanced TAG content by 1.81-fold with a significant
increase in polyunsaturated fatty acids, primarily EPA and DHA, and yet reduced the
content of soluble proteins and total carbohydrates [79]. Overexpression of NeoLPAAT1 in
Neochloris oleoabundans increased total lipid content and TAG content by twofold compared
to the wild type [80]. In addition to overexpressing single or multiple target genes, Zou et al.
attempted to design a strong constitutive promoter Pt211 to increase the expression level of
multiple target genes in P. tricornutum [81]. The qPCR analysis showed that GUS, GPAT
and DGAT2 genes involved in TAG biosynthesis showed higher transcript abundances,
while algal growth and photosynthesis were not impaired.

Carbonic anhydrase (CA) are widespread enzymes that catalyze CO2 hydration to
bicarbonate, which is essential for the carbon-concentrating mechanism in microalgae [82].
The heterologous CA from Sulfurihydrogenibium yellowstonense (SyCA) and Mesorhizobium
loti (MlCA) were explored to increase CO2 capture and utilization using various culture
devices in C. reinhardtii. Moreover, the biomass, lutein, and lipids were increased 2-, 4-,
and 8-fold in genetically modified C. reinhardtii [82]. The genetically engineered algae
harboring exogenous MlCA had improved biomass production, protein content and lipid
accumulation in C. sorokiniana and C. vulgaris. The results showed that the transformants
produced up to 1.1 g/L of lipid, which was 2.2-fold higher than the wild types, even while
boosting carbon capture and fixation [83]. Although this step is not strictly part of the fatty
acid synthesis pathway or the Kennedy pathway, it provides a new idea that increasing the
content of important precursors in the pathway can also increase lipid accumulation.

3.2. Pigments

Microalgae are a powerful, promising, renewable, and high-quality source of biopig-
ments [84]. It is feasible to generate pigments such as chlorophyll, β-carotene, lutein,
zeaxanthin, phycobiliproteins, and lycopene. Pigments have potential health benefits
and are used in the treatment and prevention of a variety of diseases. For example, phy-
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cobiliproteins have been associated with antioxidant, anticancer, and anti-inflammatory
capacities [85]. As shown in Table 2, all of these pigments have potential applications.

Table 2. Potential role of bio pigments from microalgae.

Pigment Microalgae Strains Application Reference

β-carotene
Dunaliella salina,

Chlorella zofingiensis,
Spirulina spp.

The precursor of vitamin A, its antioxidant
property, and its use to prevent macular
degeneration, asthma, pharmaceutical,

and cosmetics

[86,87]

Astaxanthin
Haematococus pluvialis,
Nannochloropsis oculate,

Chlorococcus spp.

UV protection, food colorant, anti-aging,
immune enhancement, pharmaceutical,

anti-hypertensive, and anti-cancer properties;
anti-inflammatory

[88,89]

Lutein Chlorella vulgaris,
Chlorococcum citroforme

Feed additive and food colorant aid in the
regulation of cancers, cardiovascular

diseases, cognitive function, and age-related
macular degeneration in humans

[90,91]

Zeaxanthin Nannochloropsis oculate,
Porphyridium cruentum

Food additives, amelioration of age-related
macular degeneration, antioxidants,

anti-inflammatory agents, and prevention of
neurological disease

[92,93]

Fucoxanthin Phaeodactylum tricornutum Anti-cancer, anti-inflammatory, and
anti-obesity effects [94,95]

Phycocyanin Spirulina spp.,
Arthrospira platensis

Used as fluorescent reagents for
hepatoprotective activity, antioxidant activity,

anti-inflammatory activity,
and neuroprotective activity

[96,97]

Lycopene Chlorella marina Antioxidants are used as treatments for
cardiovascular diseases and prostate cancer [98,99]

Because of their numerous health and industrial applications, microalgal carotenoids
are the most commercially produced natural pigments. Because microalgae can synthesize
a wide range of carotenoid species, determining metabolic pathways is an important step
before engineering algal strains for industrial applications. The biosynthesis of carotenoids
may differ between species, but they all have a common metabolic pathway. IPP or DMAPP,
a five-carbon precursor, is synthesized through the methylerythritol 4-phosphate (MEP)
pathway from pyruvate and glyceraldehydes-3-phosphate, and condensation of such C5
units produces different C10, C15, and C20 polyprenyl units, one of which is geranylgeranyl
pyrophosphate (GGPP) [100]. Phytoene synthase (PSY) is an enzyme that catalyzes the
reaction of two GGPP molecules to form a 40-carbon phytoene, which is the first limited
step in carotenoid biosynthesis and a common precursor of other carotenoids in microal-
gae [101,102]. Phytoene is converted to lycopene by carotenoid isomerase (CRITISO),
ζ-carotene desaturase (ZDS), and phytoene desaturase (PDS). The pathway splits into two
branches after lycopene. In one of these branches, lycopene is cyclized into β-carotene
by lycopene β-cyclase. Carotene-hydroxylase then hydroxylated β-carotene to zeaxan-
thin, which zeaxanthin epoxidase (ZEP) then epoxidized to violaxanthin. Astaxanthin is a
unique carotenoid because it contains oxygen in both oxy- and hydroxyl groups. β-carotene
ketolase (BKT) usually converts zeaxanthin or violaxanthin produced from β-carotene into
astaxanthin [103].α-carotene is produced in the other branch via coordinated catalysis by
ε-cyclases and β-cyclase. Lutein is formed when carotene ε-hydroxylase and carotene
β-hydroxylase hydroxylate α-carotene [100].

Both genetic and metabolic engineering are effective approaches for increasing pig-
ment production. It provides the necessary access to increase the activity of numerous
rate-limiting enzymes through overexpression, resulting in increased productivity. Overex-
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pression of astaxanthin synthase (crtS) increased astaxanthin production by 33% through
activity and upregulated carotenoid pathway genes [104]. The optimized CrBKT sig-
nificantly increased the accumulation of astaxanthin and ketocarotenoids [105], thereby
enhancing highlight tolerance and productivity in C. reinhardtii [106]. In addition, the down-
regulation of specific enzymes can be beneficial for carotenoid overproduction by increasing
the desired flux while decreasing the flux towards the other branches. Down-regulation
of ε-cyclases, for example, is needed for β-carotene overproduction such that lycopene is
not transformed into α-carotene [100]. Overexpression of foreign genes can also enhance
carotenoid production. The carotenogenic pathway of Dunaliella salina (D. salina) was
metabolically engineered for the production of astaxanthin by incorporating the bkt gene
encoding BKT from Haematococcus pluvialis (H. pluvialis) and chloroplast targeting [107].
Because of its ease of use, the CRISPR-Cas9 system is now a widely used technology for
genome editing [108]. In C. reinhardtii strain CC-4349, the zeaxanthin content of a knock-
out mutant of the ZEP-encoding gene induced by preassembled DNA-free CRISPR-Cas9
ribonucleoproteins was markedly greater than the wild type [109]. Genome editing using
CRISPR-Cas9 is also possible in C. reinhardtii [110].

Although some progress has been made in the genetic and metabolic engineering of
pigment genes in microalgae, much more research is needed to achieve high productivity.
Furthermore, a more clear understanding of algal pigment regulation and its interaction
with other metabolic processes is essential for effective algae engineering. For example,
many commercially viable bypass compounds, such as terpenoids, have been synthesized
from IPP and DMAPP as generic precursors during the pigment synthesis process [111].
Isoprene, the main component of synthetic and natural rubber, is one of the most basic.
Heterologous overexpression of fni, an isopentenyl isomerase from Streptococcus pneumonia,
enhanced DMAPP substrate availability and isoprene synthase concentration in Synechocys-
tis 6803, resulting in a higher isoprene-to-biomass production ratio [112]. A phycocuanin-
phellandrene synthase fusion mutant increased the rates and yield of β-phellandrene
hydrocarbons production [113]. What is noteworthy is that terpene production will neces-
sarily compete with pigment synthesis as the precursor pathways are the same [111]. To
further increase pigment production in microalgae, the carbon fluxes between pigments
and bypass products should also be balanced.

3.3. Polysaccharides

Microalgae produce polysaccharidic mucilage to protect their cells from desiccation
and a variety of extreme fluctuations in environmental conditions such as pH, temperature,
salinity, irradiance, and even predators [114]. Polysaccharides (PS) were discovered in
microalgae as cell wall components, with one part found in cells peripheral to the glycocalyx
or one of the exopolysaccharides (EPS) [115]. Fucoidans, exopolysaccharides, alginates,
and carrageenans are an example of microalgal PS. Due to their diverse roles and potential
applications for the pharmacological, therapeutic, regenerative medicine, mechanical, and
food producers, PS has been the focus of recent and intensive research [116]. For instance,
the carbohydrate content of microalgal biomass is used as a feedstock for the generation of
organic acids and bioethanol in the fermentative technique [117].

Except for cyanobacteria, which are cytoplasmic, PS biosynthesis and their sulfation in
microalgae happened in the Golgi complex [118]. Moreover, PS production occurs primarily
during the stationary phase of the microalgae culture [116]. Chlorella sp., Arthrospira platensis,
Porphyridium, D. salina, and Euglena gracilis are the most extensively investigated eukaryotic
microalgae and cyanobacteria used for the production and extraction of PS [119–123]. Some
such species can generate substantial amounts of EPS during algal cultivation owing to
typical physiological processes, whilst others must be stressed in order to synthesize these
compounds [114]. For example, to produce exocellular polysaccharides, the red marine
microalga required specific growth conditions such as specific N/P ratios or nitrogen
starvation [124].
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Several studies have been conducted to improve glycogen production through the
genetic engineering of microalgae in order to maximize EPS productivity. The glycogen
biosynthesis in Synechocystis 6803 is altered by the depletion of glgP, which results in a two-
fold increase in glycogen under mixotrophic conditions, indicating that blocking glycogen
degradation causes an increased glycogen accumulation [125]. The intracellular glyco-
gen content of a GAP1 gene-overexpressing Synechococcus 7002 was found to be 1.2-fold
higher than that of the WT, indicating that glycolysis activation promotes glycogen accu-
mulation [126]. CmGLG1 is a glycogenin that is essential for the start of glycogen/starch
synthesis in the red alga Cyanidioschyzon merolae (C. merolae) [127]. The overexpression
of CmGLG1 resulted in 4.7-fold higher starch content than the WT. CmGLG2 is another
glycogenin involved in the synthesis of floridean starch, as the overexpression of CmGLG2
caused a two-fold increase in floridean starch content in C. merolae [128].

However, microalgal polysaccharides are not adapted to recovery during upstream
and downstream processes. They are commonly regarded as byproducts of pigment and
lipid production. In addition, their high level of structural complexity further reduces
their value as high-value molecules [116]. As a result, increasing the yield of microalgal
polysaccharide through genetic engineering remains a difficult problem.

4. The Limitations and Future Strategies of Genetic Engineering in
Microalgal Productivity

Cell metabolism determines a cell’s potential, and genetic and metabolic engineering
are key modern technologies for developing a cell into a cell factory [7]. Nowadays, genetic
engineering advances allow for the engineering of algal strains to improve both biomass
productivity and the yield of high-value products from microalgae [2]. The biosynthesis of
carbohydrates, lipids, proteins, and pigments in microalgal cells is highly interrelated in
the metabolic network and controlled by limiting steps. The specific cultivation conditions
can be set by genetic engineering to shift metabolic fluxes toward different metabolites. To
increase the concentration of products and decrease the unitary cost of algal biomass, the
major efforts are focused on understanding the metabolic reactions of primary production
and obtaining strains with higher photosynthetic efficiency. However, several challenges
need to be addressed to achieve the goal of comprehensive utilization of microalgae for
enhanced production of multiple compounds.

First, the genetic and biochemical pathways in microalgae remain unclear. Further-
more, molecular modifications and practical cultivation issues, such as H. pluvialis’ sensi-
tivity to environmental vibrations [129], should be thoroughly considered. Second, novel
gene editing tools such as RNAi, CRISPR/Cas9, ZNFs, and TALENs have been used to
boost byproduct accumulation [130]. However, when microalgae are compared to simple
organisms such as bacteria, genome manipulation is still challenging. Third, it is difficult
to find low-cost and green techniques for extracting all of the bioactive components of mi-
croalgal cells [131]. Furthermore, there are some environmental and economic bottlenecks
to large-scale applications. However, as a futuristic alternative, the transgenic microalgae
would reduce the dependency on food and fossil fuels in terms of energy production
and efficacy.
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