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Abstract: Classically, superoxide anion O2
•− and reactive oxygen species ROS play a dual role. At

the physiological balance level, they are a by-product of O2 reduction, necessary for cell signalling,
and at the pathological level they are considered harmful, as they can induce disease and apoptosis,
necrosis, ferroptosis, pyroptosis and autophagic cell death. This revision focuses on understanding
the main characteristics of the superoxide O2

•−, its generation pathways, the biomolecules it oxidizes
and how it may contribute to their modification and toxicity. The role of superoxide dismutase,
the enzyme responsible for the removal of most of the superoxide produced in living organisms, is
studied. At the same time, the toxicity induced by superoxide and derived radicals is beneficial in the
oxidative death of microbial pathogens, which are subsequently engulfed by specialized immune
cells, such as neutrophils or macrophages, during the activation of innate immunity. Ultimately, this
review describes in some depth the chemistry related to O2

•− and how it is harnessed by the innate
immune system to produce lysis of microbial agents.
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1. Introduction

In medicine, a great interest in the study of cellular stress and free radicals has emerged
in recent years, focused on deepening our knowledge of the mechanisms of cellular self-
control that allow us to improve the quality of human life and understand the origin of a
large number of diseases [1].

Oxidative stress is a component of many diseases, including atherosclerosis, chronic
obstructive pulmonary disease, Alzheimer’s disease and cancer, among others [2]. Simul-
taneously, ROS are essential for a variety of biological functions, such as cell survival,
growth, proliferation and differentiation, and immune response. However, one of the major
obstacles to understanding the role of these species is the lack of adequate methods to detect
ROS/RNS in vivo, mainly due to their very short lifetimes and the presence of several
antioxidants in cells [3]. In fact, radicals are continuously generated by most organisms
as a result of the use of O2 as a terminal electron acceptor in the mitochondrial electron
transport chains and in cytochrome P450 [4].

The term reactive species refers to two types of molecules: free radicals and non-
radicals [5]. This set of molecules is formed as a result of cellular metabolism and is
represented in biological systems by reactive oxygen species ROS and reactive nitrogen
species RNS, which arise in both normal physiological and pathological processes. Not
excluding that, there are also reactive species from other elements, such as chlorine RClS
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and bromine RBrS, although ROS and RNS are the two major groups involved in redox
biology [6].

The superoxide anion is a primary oxygen radical that is formed when an oxygen
molecule acquires an electron. The initial formation of O2

•− triggers a cascade of ROS,
some of which, such as H2O2, behave as key molecules in cell signalling, and others, such as
HO, are damaging. Ultimately, the biological impact of these molecules will be determined
by the amount of ROS, cellular defences and the capacity for cellular adaptation [7].

O2
•− is one of the most important reactive oxygen species ROS responsible for ox-

idative stress in bio-organisms and is generated as a by-product of the mitochondrial
respiratory chain [8]. Because of its charge, superoxide has a low membrane permeability,
it passes through anion channels, but this is inefficient, and superoxide reacts to a large
extent in the physiological compartment where it is generated.

Reactive oxygen species (ROS) are a group of highly reactive oxygen-containing
chemicals produced exogenously or endogenously from the reduction of oxygen and
include both radicals and non-radicals, one of which is superoxide. ROS present in the
body are mostly of endogenous origin, although they can also be generated in response to
external stimuli, such as ultraviolet light, ionising radiation, pollution, alcohol and tobacco
consumption, drugs and toxic agents [9], Figure 1.
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chlorine species.

To control ROS, the body uses several antioxidant mechanisms, including enzymatic
and non-enzymatic antioxidants [10]. Non-enzymatic low-molecular-weight antioxidant
compounds include cellular glutathione, vitamins C and E, β-carotene, polyphenols and
uric acid. Antioxidant enzymes include superoxide dismutase, catalase, glutathione re-
ductase and glutathione peroxidase, among others. SOD catalyses the dismutation of
superoxide to H2O2. Mammalian cells contain three forms of SOD: Mn-SOD, cytosolic
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Cu, Zn-SOD and extracellular Cu, Zn-SOD. MnSOD is most abundant in the mitochon-
dria, whereas Cn, Zn-SOD predominates in the cytoplasm [11]. Catalase is an important
antioxidant enzyme that catalyses the reduction of H2O2 to H2O. Glutathione peroxidase is
another important enzyme for the decomposition of H2O2. Polyphenols, ingested regularly
through the fruit and vegetable diet, are a large family of natural organic compounds
characterized by multiple hydroxyl phenolic units, with a polyphenolic structure, (several
hydroxyl groups on aromatic rings), including four main classes: phenolic acids, flavonoids,
stilbenes and lignans [12]. Evidence and research to date supports the role of polyphenols in
the prevention of cancer, cardiovascular and neurodegenerative diseases [13]. A significant
part of their beneficial effects are based on the modulation of cell signalling pathways [14].

2. Superoxide Radical Anion O2
•−

O2
•− is a reduced form of molecular oxygen O2, consisting of two oxygen atoms

with 17 electrons and a negative electrical charge, Figure 2. Superoxide is the first species
produced in the respiratory chain by the reduction of oxygen by the transfer of an electron
and is one of the first species generated by various cellular systems. O2

•− is formed in all
living aerobic organisms, and can act as a signalling agent, a toxic specie or a harmless
intermediate that spontaneously decomposes. Its levels are limited in vivo by two different
types of enzymes, superoxide reductase SOR and superoxide dismutase SOD.
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Figure 3. The molecular orbital of O2
•− shows one unpaired electron and is delocalized between the

π* orbitals of the two oxygen atoms.

Superoxide is considered both a radical and a −1 charged anion. It is a relatively
unstable molecule, with a half-life of milliseconds, a reasonably strong oxidant, in which
case it is reduced to hydrogen peroxide, and can also act as a reductant and convert to
oxygen. There are two standard redox potentials for O2

•− showing that it can act as a
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reducing agent E′(O2/O2
•−) = 0.33 V or as an oxidizing agent E′(O2

•−/H2O2) = 0.93 V [15]),
Figure 4.
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Figure 4. Oxidation and reduction of O2
•− to form oxygen or hydrogen peroxide, respectively.

O2
•− is a relatively small anion, highly soluble in water, where it is solvated by four

water molecules strongly bound by hydrogen bonds [16] and reacts with a proton or proton
donor to form HO2

•, Figure 5. Various organic and inorganic compounds can act as a
source of a proton in a large number of reactions [17].
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Figure 5. Protonation of O2
•− leads to the formation of HO2

•.

The superoxide radical is the conjugate base of a weak acid, the hydroperoxide radical
HOO•, whose pKa is 4.88 [18]. The pH controls the distribution between HO2

• and O2
•.

Near the membrane, where this radical is produced, the pH is much lower than in the
cytoplasm, so the acid form or hydroperoxide radical will predominate. Due to its non-ionic
nature, it can enter the cell membrane and trigger lipid peroxidation processes [19]. The
hydroperoxide radical is much more reactive, more oxidising than the superoxide radical,
but in aqueous solution at physiological pH the non-protonated form, i.e., the superoxide
radical, predominates. Perhydroxyl constitutes less than 1% of superoxide at neutral pH
so its impact is more limited. Superoxide absorbs light in the ultraviolet range with a
maximum at 245 nm and an extinction coefficient of 2350 M−1 cm−1, whereas hydroperoxyl
absorbs at 225 nm with an extinction coefficient of 1400 M−1 cm−1 [20].

O2
•− is toxic, mainly because it damages proteins containing Fe-S centres, such as

aconitase, succinate dehydrogenase and NADH-ubiquinone oxidoreductase, among others.
However, it can also be the generator of other reactive species even more toxic than itself,
the iron released from iron and sulphur proteins can give rise to secondary products, such as
hydroxyl radicals, and these, plus peroxynitrite, are thought to be the main contributors to
superoxide toxicity. Superoxide dismutase SOD is the enzyme responsible for transforming
this reactive species into one of a lower toxicity, such as hydrogen peroxide H2O2, Figure 6.
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•− reacts slowly with most molecular targets, although it has been shown to disrupt

iron and sulphur group enzymes [21]. However, O2
•− can rapidly react with other radicals

to give other reactive species [22].
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3. Sources of Superoxide Anion
3.1. Biological Sources

Oxygen is an element that has a dual physiological effect; it is essential for the devel-
opment of aerobic life and has toxic effects inherent to its structure. Oxygen utilisation
by aerobic organisms, under normal conditions, generates reactive oxygen metabolites
that can lead to a state of oxidative stress if the pro-oxidant/antioxidant cell balance is
disturbed. Superoxide is a primary radical formed when an oxygen molecule acquires an
electron through enzymatic or non-enzymatic reactions [11], Figure 7.
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Figure 7. Oxygen reduction to O2
•−.

Under basal conditions, human cells produce about 2 trillion O2
•− and H2O2 per cell

per day, the major source of which is the mitochondria [23]. These organelles consume
80-90% of cellular oxygen, in which they reduce water to obtain energy in the form of
ATP. Although mitochondrial respiration is highly efficient, approximately 2% of the O2
consumed is partially reduced to O2

•− and H2O2.
Metabolic reactions that consume oxygen molecules are the main source of superoxide.

Biologically, O2
•− can be generated from the mitochondrial electron transport chain (ETC),

which is the main source of O2
•−, and many enzymes, such as NADPH oxidase NOX, xan-

thine oxidase XO, lipoxygenase, cyclooxygenase, and cytochrome P450 CYP/cytochrome
P450 reductase POR, and electron transport chains found in the endoplasmic reticulum,
peroxisomes, nuclear membrane and cytoplasmic membrane, convert O2 to superoxide [24],
Figure 8. Superoxide can also be produced non-enzymatically.
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3.2. Mitochondrial Respiratory Chain

The mitochondrion is the main producer of reactive oxygen species during the normal
oxidative processes of metabolism, mainly through oxidation–reduction reactions occurring
in electron transfer complexes with oxygen as the ultimate electron acceptor [26], Figure 9.

Complex I is the first multi-enzyme complex of the respiratory chain, with a central
role in cellular energy production, being, in turn, one of the sites of generation of O2

•−.
The electron flow through the enzyme complexes in the inner membrane generates an
electrochemical proton gradient and, therefore, produces energy. An undesired effect of the
redox reactions occurring in mitochondria is the generation of reactive oxygen species [27].
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NOX are mainly located in the plasma membrane [31,32]. NOX2 proteins are constitu-
tively present and, upon inflammatory stimuli, activated NOX2 converts molecular oxygen
to superoxide using electrons from NADPH and releases superoxide. NOX2 is predomi-
nantly expressed in phagocytes and produces a relatively large amount of superoxide in
order to kill bacteria within phagosomes in an inflamed area [33,34], Figure 13.
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Figure 13. The NOX family of O2
•− generating NADPH oxidases.

Superoxide radicals, hydrogen peroxide, singlet oxygen and hypochlorous acid HOCl
are generated in the cell membrane through the action of the enzymes NADPH oxidase,
myeloperoxidase and xanthine oxidase [35,36]. Other enzymes, such as lipooxygenase and
cyclooxygenase also generate ROS during the synthesis of leukotrienes, thromboxanes and
prostaglandins [35].

3.4. Cytochrome P450 CYP/Cytochrome P450 Reductase POR System

In the endoplasmic reticulum, superoxide radicals and hydrogen peroxide are pro-
duced by the auto-oxidation of the flavoprotein NADPH, cytochrome P450 reductase and
cytochrome P450. In addition, mixed function monooxygenases provide another impor-
tant source of superoxide. The CYP reaction together with POR releases superoxide as a
by-product of the oxidase reaction [36], Figure 14.
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3.5. Xanthine Oxidoreductase

Xanthine oxidase XO uses oxygen molecules, instead of NAD+, as an electron acceptor
and produces superoxide or hydrogen peroxide. It is a cytosolic metalloflavoprotein that
can be in two interconvertible and distinct forms called xanthine dehydrogenase XDH and
xanthine oxidase XO. XO belongs to a family of molybdo-flavoenzymes and is released
by a calcium-activated protease during hypoxia. XO is unique in generating superoxide
(28%) and H2O2 (72%) by oxidation of hypoxanthine to xanthine, and xanthine to uric acid,
Figure 15. XO activity is increased in inflammatory airway disorders, ischaemic reperfusion
injury, atherosclerosis, diabetes and in autoimmune disorders [37].
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3.6. Non-Enzymatic Production of Superoxide

Superoxide can also be produced by a number of non-enzymatic reactions [25]. Above
all, non-enzymatic glycosylation, referred to as glycation, occurs under conditions of
hyperglycaemia and produces a variety of compounds [38,39], Figure 16.
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3.7. Non-Biochemical Sources

Several techniques to produce superoxide have been used to study its reactions.
Chemically, the main ways to produce superoxide are reactions involving ionising radiation
or UV, and O2 reduction by transition metals or reducing radicals, Figure 17.
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3.8. Photolysis

For the generation of O2
•− during the ionising irradiation of air-saturated sodium

formate, an in-line stopped-flow radiolysis apparatus with a Van de Graaff electron gen-
erator has been used to generate O2

•− during the ionising irradiation of sodium formate
saturated with air at 2 MeV [40], Figure 18.
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Superoxide can also be formed in an O2-saturated aqueous formate solution after
brief UV irradiation with a Xe or Ar lamp. The main process involves the photochemical
decomposition of water through its dissociation into HO• y H•, Figure 19.
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3.9. Photochemical and Photocatalytic Sources

O2
•− generation can be initiated photochemically by electron transfer [41]. Aqueous

and ethanolic alkaline superoxide solutions can be prepared by vacuum UV photolysis or
high-energy ionising radiation and are long-term stable and can be stored at low temper-
atures. There are three main pathways for the photochemical generation of O2

•− and all
three pathways require O2 for O2

•− production.
Pathway 1. Photoionisation of a sensitising molecule that generates a hydrated electron

(eaq-) which in turn directly reduces O2 to O2
•−, Figure 23.
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Figure 24. Reduction of O2 by Sen•− to form O2
•−.

This pathway 2 involves a charge transfer mechanism that is very common between
flavin and its analogues and generally occurs in the presence of an electron donor, such
as EDTA. Methylene blue in the triplet state in the presence of alkylamines results in the
transfer of electrons to generate O2

•−.
Pathway 3. Electron transfer with O2 or 1O2 by a sensitised ground-state or excited-

state donor, respectively. Mechanism 3 shows the formation of O2
•− from 1O2 (1O2 is

generated from O2 sensitisation by rose bengal) using furfuryl alcohol [42], fullerenes [43]
or quinones [44] as specific inhibitors of 1O2, Figure 25.

In photocatalysis, electrons react with molecular oxygen through the reductive path-
way to generate O2

•− [45–48]. Goto et al., 2004, in the study of photocatalysed reactions
with titanium dioxide TiO2 using aqueous solutions containing 2-propanol, found that
O2
•− was the main product when rutile particles were used [49]. O2

•− can also be photo-
generated by Bi 2+ x WO 6 (x = 0, 0.05, 0.1, 0.15 and 0.2) under visible light irradiation with
autodoping [50].
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3.10. Chemical Pathway

The chemical generation of O2
•− consists of two main steps:

• Synthesis of superoxide salts of alkali metals, such as potassium and sodium, and
alkali earth metals, such as strontium and barium.

• Solvation of these salts in appropriate media to release O2
•−.

Superoxide ions can be generated by dissolving superoxide salts in aprotic solvents.
Several studies have been carried out and it has been found that the solubilities of KO2
and NaO2 in DMSO are extremely low and they are almost insoluble in all other organic
solvents [51–53]. However, their solubilities are increased by the addition of tetraalkylam-
monium salts, such as tetramethylammonium superoxide [54,55]. Na2O has been found to
be less reactive than K2O due to its reduced solubility [56]. The generation of O2

•− from
its salts could be the best method for some industrial processes, such as the destruction of
chlorinated hydrocarbons (CHCs).

3.11. Electrochemical

The electrochemical method provides a source of O2
•−. The electrochemical gener-

ation of O2
•− by reduction of O2 is a good method because it generates no by-products.

The procedure is relatively simple, is time efficient and has been used to study the kinetics
of O2

•− reactions with other substances. Apotic solvents are used. Using the standard
O2/O2

•− potential, E0 = −0.284 V, O2
•− can be generated electrochemically from the one-

electron reduction of O2 in an alkaline aqueous solution in DMSO [57] using ionic liquids
and some supporting electrolytes with aprotic solvents, such as tetra-n-butylammonium
perchlorate, tetramethylammonium perchlorate, tetraethylammonium perchlorate, tetra-
n-butylammonium iodide [58–61] and tetraethylammonium tetrafluoroborate [62]. Elec-
trochemical generation of O2

•− is more favourable for some processes, in particular those
involving fine chemicals and biological systems requiring ultra-high purity.

4. Reactions of Superoxide Anion

The superoxide is the lead radical that provides or removes an electron from other com-
pounds, resulting in the production of other radical species through a chain reaction until
the electron radical is finally removed. Superoxide oxidises few biological compounds [20],
and this is due to the following reasons:

- Its anionic charge which limits its reactivity to compounds with electron-rich cen-
tres [63].

- Its facility for spontaneous dismutation [64].

Superoxide is a selective oxidant, relatively unreactive with most cell components,
but highly reactive with some essential sites and therefore highly toxic. Superoxide ions
are capable of undergoing several reactions, including disproportionation, one-electron
transfer, deprotonation and nucleophilic substitution [65–67].

4.1. Dismutation of Superoxide to Hydrogen Peroxide
4.1.1. Non-Enzymatic Spontaneous Dismutation

A high percentage of the superoxide will undergo rapid disproportionation to give
hydrogen peroxide and oxygen [64]. O2

•− and HO2
• are reductants in a wide variety of

reactions, but for most reactions only HO2
•, and not O2

•−, is an oxidant because of the need
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for a proton or a coordinated metal ion to stabilise the peroxide dianion, O2
=, as it forms.

This explains the pH dependence of the spontaneous disproportionation of superoxide. At
very low pH, the predominant species is HO2

•, an uncharged species, which acts as both a
reductant and an oxidant, Figure 26.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 45 
 

 

At very low pH, the predominant species is HO2•, an uncharged species, which acts as 
both a reductant and an oxidant, Figure 26. 

 
Figure 26. Disproportionation reaction of HO2• and rate constant. 

At very high pH, the predominant species is O2•– itself, and it is quite stable under 
these conditions. The two superoxide anions repel each other and O2= is unstable, so the 
disproportionation reaction does not take place, Figure 27. 

 
Figure 27. At very high pH, the superoxide anion does not disproportionate. 

The disproportionation reaction is fastest at pH = pKa = 4.8, where the concentrations 
of HO2• and O2•– are equal, the former acting as an oxidant and the latter as a reductant, 
Figure 28. 

 
Figure 28. Disproportionation reaction of O2•– and HO2• and rate constant. 

O2•– is not able to oxidise most organic substrates, including peptides, nucleic acids, 
lipids and carbohydrates, due to the requirement for a proton to stabilise O2•– as it is 
formed at rates that compete with the disproportionation of superoxide in aqueous 
solution. Exceptions are substrates, such as ascorbate or hydroquinone, that have 
hydrogen atoms available. 

4.1.2. Enzymatically Catalysed Dismutation 
The rate of spontaneous non-enzymatic dismutation is relatively low (at 

physiological pH, about 2 × 105 M−1 s−1). Catalysis of the dismutation reaction by the 
enzyme superoxide dismutase increases this rate in the order of 10 000-fold. Under normal 
circumstances, the biological system releases an enzyme, superoxide dismutase SOD, 
which specifically maintains the O2 concentration at an optimal level of 10–10 M [68]. 
Superoxide dismutases are a family of enzymes present in all aerobic cells that function 
by efficiently catalysing the dismutation of superoxide anions. Most of the superoxide 
produced physiologically undergoes SOD-catalysed dismutation. SORs and SODs are 
redox-active metalloenzymes that reduce superoxide concentrations. SORs catalyse the 
one-electron reduction of O2•– to give H2O2, in this reaction two protons per mole of 
superoxide are required, and the presence of an external reductant is necessary to provide 
the electron, Figure 29. 

 
Figure 29. ROS catalyse the one-electron reduction of O2•– to H2O2. 

SOD catalyses the disproportionation of superoxide to give O2 and H2O2, a reaction 
that requires one proton per mole of superoxide, but no external reductant. The difference 
between the three proteins lies in their cellular location and regulation, which leads to 

Figure 26. Disproportionation reaction of HO2
• and rate constant.

At very high pH, the predominant species is O2
•− itself, and it is quite stable under

these conditions. The two superoxide anions repel each other and O2
= is unstable, so the

disproportionation reaction does not take place, Figure 27.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 45 
 

 

At very low pH, the predominant species is HO2•, an uncharged species, which acts as 
both a reductant and an oxidant, Figure 26. 

 
Figure 26. Disproportionation reaction of HO2• and rate constant. 

At very high pH, the predominant species is O2•– itself, and it is quite stable under 
these conditions. The two superoxide anions repel each other and O2= is unstable, so the 
disproportionation reaction does not take place, Figure 27. 

 
Figure 27. At very high pH, the superoxide anion does not disproportionate. 

The disproportionation reaction is fastest at pH = pKa = 4.8, where the concentrations 
of HO2• and O2•– are equal, the former acting as an oxidant and the latter as a reductant, 
Figure 28. 

 
Figure 28. Disproportionation reaction of O2•– and HO2• and rate constant. 

O2•– is not able to oxidise most organic substrates, including peptides, nucleic acids, 
lipids and carbohydrates, due to the requirement for a proton to stabilise O2•– as it is 
formed at rates that compete with the disproportionation of superoxide in aqueous 
solution. Exceptions are substrates, such as ascorbate or hydroquinone, that have 
hydrogen atoms available. 

4.1.2. Enzymatically Catalysed Dismutation 
The rate of spontaneous non-enzymatic dismutation is relatively low (at 

physiological pH, about 2 × 105 M−1 s−1). Catalysis of the dismutation reaction by the 
enzyme superoxide dismutase increases this rate in the order of 10 000-fold. Under normal 
circumstances, the biological system releases an enzyme, superoxide dismutase SOD, 
which specifically maintains the O2 concentration at an optimal level of 10–10 M [68]. 
Superoxide dismutases are a family of enzymes present in all aerobic cells that function 
by efficiently catalysing the dismutation of superoxide anions. Most of the superoxide 
produced physiologically undergoes SOD-catalysed dismutation. SORs and SODs are 
redox-active metalloenzymes that reduce superoxide concentrations. SORs catalyse the 
one-electron reduction of O2•– to give H2O2, in this reaction two protons per mole of 
superoxide are required, and the presence of an external reductant is necessary to provide 
the electron, Figure 29. 

 
Figure 29. ROS catalyse the one-electron reduction of O2•– to H2O2. 

SOD catalyses the disproportionation of superoxide to give O2 and H2O2, a reaction 
that requires one proton per mole of superoxide, but no external reductant. The difference 
between the three proteins lies in their cellular location and regulation, which leads to 

Figure 27. At very high pH, the superoxide anion does not disproportionate.

The disproportionation reaction is fastest at pH = pKa = 4.8, where the concentrations
of HO2

• and O2
•− are equal, the former acting as an oxidant and the latter as a reductant,

Figure 28.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 45 
 

 

At very low pH, the predominant species is HO2•, an uncharged species, which acts as 
both a reductant and an oxidant, Figure 26. 

 
Figure 26. Disproportionation reaction of HO2• and rate constant. 

At very high pH, the predominant species is O2•– itself, and it is quite stable under 
these conditions. The two superoxide anions repel each other and O2= is unstable, so the 
disproportionation reaction does not take place, Figure 27. 

 
Figure 27. At very high pH, the superoxide anion does not disproportionate. 

The disproportionation reaction is fastest at pH = pKa = 4.8, where the concentrations 
of HO2• and O2•– are equal, the former acting as an oxidant and the latter as a reductant, 
Figure 28. 

 
Figure 28. Disproportionation reaction of O2•– and HO2• and rate constant. 

O2•– is not able to oxidise most organic substrates, including peptides, nucleic acids, 
lipids and carbohydrates, due to the requirement for a proton to stabilise O2•– as it is 
formed at rates that compete with the disproportionation of superoxide in aqueous 
solution. Exceptions are substrates, such as ascorbate or hydroquinone, that have 
hydrogen atoms available. 

4.1.2. Enzymatically Catalysed Dismutation 
The rate of spontaneous non-enzymatic dismutation is relatively low (at 

physiological pH, about 2 × 105 M−1 s−1). Catalysis of the dismutation reaction by the 
enzyme superoxide dismutase increases this rate in the order of 10 000-fold. Under normal 
circumstances, the biological system releases an enzyme, superoxide dismutase SOD, 
which specifically maintains the O2 concentration at an optimal level of 10–10 M [68]. 
Superoxide dismutases are a family of enzymes present in all aerobic cells that function 
by efficiently catalysing the dismutation of superoxide anions. Most of the superoxide 
produced physiologically undergoes SOD-catalysed dismutation. SORs and SODs are 
redox-active metalloenzymes that reduce superoxide concentrations. SORs catalyse the 
one-electron reduction of O2•– to give H2O2, in this reaction two protons per mole of 
superoxide are required, and the presence of an external reductant is necessary to provide 
the electron, Figure 29. 

 
Figure 29. ROS catalyse the one-electron reduction of O2•– to H2O2. 

SOD catalyses the disproportionation of superoxide to give O2 and H2O2, a reaction 
that requires one proton per mole of superoxide, but no external reductant. The difference 
between the three proteins lies in their cellular location and regulation, which leads to 

Figure 28. Disproportionation reaction of O2
•− and HO2

• and rate constant.

O2
•− is not able to oxidise most organic substrates, including peptides, nucleic acids,

lipids and carbohydrates, due to the requirement for a proton to stabilise O2
•− as it

is formed at rates that compete with the disproportionation of superoxide in aqueous
solution. Exceptions are substrates, such as ascorbate or hydroquinone, that have hydrogen
atoms available.

4.1.2. Enzymatically Catalysed Dismutation

The rate of spontaneous non-enzymatic dismutation is relatively low (at physiological
pH, about 2× 105 M−1 s−1). Catalysis of the dismutation reaction by the enzyme superoxide
dismutase increases this rate in the order of 10 000-fold. Under normal circumstances,
the biological system releases an enzyme, superoxide dismutase SOD, which specifically
maintains the O2 concentration at an optimal level of 10–10 M [68]. Superoxide dismutases
are a family of enzymes present in all aerobic cells that function by efficiently catalysing
the dismutation of superoxide anions. Most of the superoxide produced physiologically
undergoes SOD-catalysed dismutation. SORs and SODs are redox-active metalloenzymes
that reduce superoxide concentrations. SORs catalyse the one-electron reduction of O2

•−

to give H2O2, in this reaction two protons per mole of superoxide are required, and the
presence of an external reductant is necessary to provide the electron, Figure 29.
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between the three proteins lies in their cellular location and regulation, which leads to
differences in the source of the superoxide they will detoxify, as well as the time at which
their action is required, Figure 30.
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An important difference between SORs and SODs is that SORs contain only iron. OR
and SOD enzymes have the ability to react selectively with superoxide in both the oxidised
and reduced SOD and SOR states [69]. In particular, the reduced enzymes are rapidly
oxidised by superoxide but not by O2, and the oxidised forms of SOD are rapidly reduced
by superoxide. SOD enzymes catalyse the disproportionation of O2

•− by a very similar
ping-pong mechanism, in which O2

•− acts alternately to reduce the oxidised metal ion and
then to oxidise the reduced metal ion, the ping-pong mechanism requiring the enzyme’s
reduction potential E◦ to lie between the oxidation and reduction potentials of superoxide.
SOR enzymes perform only the latter of these two steps; that is, O2

•− performs the Fe2+

oxidation step but not the Fe3+ reduction step.
Superoxide dismutase SOD is the enzyme responsible for transforming this reactive

species into a less toxic one, such as H2O2, which is subsequently transformed into water by
other enzymes. All aerobic species have developed multiple strategies to detoxify ROS. The
first line of defence is the dismutation (transformation) of superoxide to hydrogen peroxide
by the enzyme SOD which catalyses a dismutation reaction where one molecule of O2

•−

is oxidised to molecular O2, while the other is reduced to H2O2. The enzyme superoxide
dismutase is the cell’s first enzymatic defence against superoxide radical production. To
generate hydrogen peroxide and oxygen, this enzyme catalyses the dismutation of the
superoxide radical. In mammals, this family consists of three members, which are located
in clearly specific places, two inside the cell and one extracellular. In the cytoplasm, there
is SOD1 or Cu, Zn-SOD [70], which contains copper and zinc in its catalytic centre. The
second enzyme is located near the mitochondrial inner membrane. This is a SOD that binds
manganese in its catalytic centre (SOD2 or Mn-SOD) [71,72]. Finally, there is one more,
called SOD3 or EC-SOD [73], located outside the cell (in the extracellular matrix), and has
copper and zinc and is the only extracellular protein that can remove O2

•. The first and
most obvious similarity between these enzymes is that they all contain redox-active metal
ions in their active sites: Fe2+/3+ in Fe-SOD and SOR, Mn2+/3+ in Mn-SOD and Cu1+/2+ in
Cu,Zn-SOD. Although all three perform the same catalytic activity, they differ greatly in
their structure and organisation.

The enzymatic reaction is carried out by SOD in two steps, both of which are first-order
enzymatic reactions with respect to O2

•−, Figure 31.
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Figure 31. SOD-mediated reaction mechanism: (a) elimination of the first superoxide anion and 
reduction of copper; (b) second part of the reaction of transformation of the second peroxide anion 
into hydrogen peroxide and regeneration of the catalytic centre; (c) net reaction. Where M(ox) is the 
oxidized state of the metal in the catalytic centre (Cu2+Zn2+ or Mn+3), and M(red) denotes the reduced 
state of the same metal (Cu+, Zn2+ or Mn2+). 

4.1.3. Copper, Zinc-Superoxide Dismutase (Cu,Zn-SOD) 

Figure 31. SOD-mediated reaction mechanism: (a) elimination of the first superoxide anion and
reduction of copper; (b) second part of the reaction of transformation of the second peroxide anion
into hydrogen peroxide and regeneration of the catalytic centre; (c) net reaction. Where M(ox) is
the oxidized state of the metal in the catalytic centre (Cu2+, Zn2+ or Mn3+), and M(red) denotes the
reduced state of the same metal (Cu+, Zn2+ or Mn2+).
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4.1.3. Copper, Zinc-Superoxide Dismutase (Cu,Zn-SOD)

Several studies have been carried out using pulsed radiolysis to generate HO2
•/O2

•−

and to understand the Cu,Zn-SOD-catalysed reaction of superoxide dismutation [74–77],
Figure 32.
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Figure 32. Superoxide dismutation reaction catalysed by Cu,Zn-SOD.

A detailed examination of the first reaction using a pulse radiolysis technique showed
that the enzymatic reduction and oxidation of superoxide were independent of pH. How-
ever, the second reaction was pH-dependent [78].

Cu,Zn-SOD is a dimeric enzyme with each monomeric unit containing a copper and
zinc active site linked by a histidine imidazole. Copper is bound by three additional
histidines with a distorted square planar structure and an additional water molecule. Zinc
is bound by two histidines and an aspartate in addition to the imidazole bridge. Copper is
the redox active metal and zinc appears to play a role in the overall stability of the enzyme
and in facilitating a high-pH-independence of enzyme activity [79], Figure 33.
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Figure 33. SOD1 catalytic centre.

The reaction mechanism of SOD1 unfolds as follows: O2
•− arrives at the reaction

centre and binds, by an electrostatic interaction, to arginine 143. O2
•— needs to donate its

unpaired electron in order to be converted to molecular oxygen, as it is this electron that
gives it its reactive and toxic nature. The electron is transferred to Cu2+, which transforms
the metal to its lower oxidation state, or Cu+. This electron transfer causes the bond between
Cu and histidine 63 to be broken, which causes the nitrogen in histidine 63 to be protonated.
The O2 formed dissociates from arginine 143 and is released, Figure 34.

The second part of the reaction starts in a similar way to the first part, the O2
•− arrives

at the catalytic centre, and once there, it binds by an electrostatic interaction with arginine
143. Together with this, the protonation of a water molecule H3O+ is generated in the
vicinity of the catalytic centre. The electron that Cu received in the first part of the reaction
is now transferred to the second O2

•− allowing the oxidation of the metal to Cu2+. The two
electrons now possessed by the superoxide can immediately form two covalent bonds with
two protons, which are donated, one by the protonated water molecule, and the other by
the nitrogen of histidine 63, thus re-establishing the bond it originally formed with Cu2+.
This allows the release of H2O2 and the regeneration of the enzyme, Figure 35.
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4.1.4. Manganese Superoxide Dismutase Mn-SOD

In the Mn-SOD structure, manganese binds to four protein ligands (three histidines
and an aspartic acid residue) and a fifth solvent ligand in a trigonal bipyramidal geometry.
The active sites and structures of three MnSODs (human, Escherichia coli, and Deinococcus
radiodurans) have been studied in detail [80–82]. The mechanism of Mn-SOD dismuta-
tion is complex [83]. Using pulse radiolysis studies, the following mechanism has been
proposed [84,85], Figure 36.
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4.1.5. Iron Superoxide Dismutase Fe-SOD

It is a prokaryotic enzyme, discovered in some bacterial cells and in the cytosol of
plants [86]. Most of the structural and mechanistic studies have been performed on Fe-
SOD obtained from E. coli. The structures of Fe-SOD are dimers. The active site contains
a single iron atom bound to three histidines, an aspartate and a water molecule [87].
The coordinated water molecule involves a hydrogen bond with an aspartate ligand and
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another with the conserved active site ligand, glutamine 69. A ping-pong mechanism in
the dismutation of O2

•− by Fe-SOD is proposed [88], Figure 37.
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4.1.6. Iron Superoxide Reductase Fe-SOR

SORs are small enzymes, with about 110–180 amino acids in their sequences. Based on
the number of metal centres, there are two types of Fe-SORs: neelaredoxins (1Fe-SORs) and
desulfoferrodoxins (2Fe-SOR) [89]. In Fe-SOR, the iron is close to the molecular surfaces
and is exposed to the solvent. The metal centres in Fe-SODs are located inside the protein.
Desulfoferrodoxins are a homodimeric non-heme iron protein found in some sulphate-
reducing bacteria and archaea [90,91]. Neelaredoxins, from Archaeoglobus fulgidus, have
biofunctional properties as SOD and ROS. Desulfoferrodoxins and neelaredoxins have been
isolated mainly in the Fe2+ and Fe3+ forms, respectively. UV-visible spectroscopy has been
applied to study the catalytic activity of SOR [92–99].

4.1.7. Analytical Determination of Superoxide Dismutase Activity

O2 can act as either an oxidant or a monovalent reductant. This dual reactivity has
been exploited in the design of assays to analyse SOD activity. Thus, in some assays, Oz
reduces tetranitro methane [11], cytochrome c or nitro tetrazolium blue [100], and in others
it oxidises epinephrine, tiron pyrogallol or 6-hydroxydopamine [101,102], Figure 38.
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Figure 38. O2 as a monovalent oxidant or reductant.

The measurement of SOD activity presents a major problem due to the instability of
the superoxide radical in aqueous media. Direct determination of SOD activity is carried
out by observing the disappearance of the free superoxide radical catalysed by this enzyme,
generated by a pulse of electrons on a millisecond scale. This assay is not affordable for most
laboratories as it requires the presence of a linear electron accelerator, so that determinations
of SOD activity have had to rely on variations in constant concentrations of superoxide
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radicals catalysed by the enzyme. The most used methods require two components: (a) a
superoxide radical generator and (b) a detector of the superoxide radical [103].

The generator produces the superoxide radical at a constant controlled rate. In the
absence of SOD, the superoxide radical accumulates to such a concentration that the
rate of reaction with the detector is equal to the rate of production, and this equilibrium
state is reached within one second. If SOD is present, it competes with the detector for
the superoxide radical, resulting in a decrease in the superoxide radical taken up by the
detector, with an inhibition of the detection level. In the method described by Minami and
Yoshikawa, 1979, the generation of the superoxide radical is produced by the chemical
autoxidation of pyrogallol at pH = 8.2 [104], Figure 39.
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Figure 39. Generation of the superoxide radical by the chemical autoxidation of pyrogallol.

The detector for this radical is a dye, NBT, a yellow compound which, in the presence
of superoxide radical, is reduced, giving an intensely blue compound, formazan blue,
Figure 40.
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Figure 40. The reduction of NBT gives a compound with an intense blue colour, formazan blue.

In this method, therefore, the inhibition of NBT reduction is measured, which is
measurable spectrophotometrically. This inhibition is measured against a control in which
there is no SOD. A unit of SOD activity is considered to be the activity of this enzyme that
would produce 50% of the maximum inhibition caused by this enzyme on the reduction of
NBT, according to the definition of McCord and Frldovich [105].

The NBT method has several disadvantages, such as the poor water solubility of the for-
mazan dye and the interaction with the reduced form of xanthine oxidase. The replacement
of NBT by Dojindo’s highly water-soluble tetrazolium salt WST-1 (2-(4-iodophenyl)-3-(4-
nitrophenyl)-5-(2,4-disulphophenyl)-2H-tetrazolium, monosodium salt) overcomes these
problems and makes it a very convenient SOD assay, yielding a stable water-soluble for-
mazan dye with a high absorbance at 450 nm after reduction with a superoxide anion.
The rate of reduction with O2

2- is linearly related to the activity of xanthine oxidase (XO)
and is inhibited by SOD. Therefore, the IC50 (50% inhibition activity of SOD or SOD-like
materials) can be determined by a colorimetric method.

Superoxide ions are generated from the conversion of xanthine and O2 to uric acid
and H2O2 by xanthine oxidase (XO). The superoxide anion then converts the tetrazolium
salt WST-1 to the coloured product WST-1 formazan [106], Figure 41.
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Figure 41. SOD inhibition assay mechanism.

The absorbance is then measured at 450 nm using a standard microplate reader. The
addition of SOD to this reaction reduces the levels of superoxide ions, which reduces the
rate of WST-1 formazan formation, Figure 42. The SOD activity in the experimental sample
is measured as the percentage inhibition of the rate of WST-1 formazan formation.
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Krebs cycle [111], Figure 44. The reaction mechanism can be divided into three phases, a 
dehydration phase, followed by a rotation and finally a rehydration phase. In 
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Figure 42. Structure of WST-1 (4-(3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-tetrazol-3-ium-5-yl) benzene-
1,3-disulfonate).

4.1.8. Reaction with Iron–Sulphur [Fe–S] Cluster

The best-established detrimental effect of superoxide is the inactivation of iron/sulphur
protein groups, such as aconitase, and bacterial dehydratases required for branched-chain
amino acid synthesis. Mammalian aconitases (mitochondrial and cytosolic isoenzymes) are
unique iron/sulphur-group-containing proteins in which the metal centre participates in
the catalysis of a non-redox reaction. The [4Fe-4S] group exists in a cubic structure, with
iron and sulphur atoms found in alternating corner positions. These groups are found in
bacterial ferredoxins and within mitochondrial respiratory complexes. The detrimental
effect of superoxide is the inactivation of iron/sulphur-containing protein groups. These
reactions have rate constants in excess of 106 M−1 s−1 and are highly selective for the
superoxide [107]. Aconitase is an essential enzyme, particularly sensitive to oxidative
damage and is preferentially modified and inactivated by mitochondrial oxidants during
ageing and in pathologies involving mitochondrial dysfunction. It is one of the main targets
of superoxide. Aconitase activity is also sensitive to nitric oxide, peroxynitrite and the
carbonate radical [108].

Aconitase deficiency is associated with myopathies and low exercise endurance [109].
Certain variants of aconitase have been found to cause infantile cerebellar-retinal degen-
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eration syndrome, which is characterised by various neurological and muscular symp-
toms [110].

Within the Cuban group of iron–sulphur aconitases, only three of the four iron ions
have cysteine thiolate ligands; the fourth iron ion (Feα) is exposed to the solvent within the
active site pocket and binds to the oxygen atoms of the water or substrates to be dehydrated.
An example of binding of the ferro-sulphurised centre of aconitase with citrate is shown in
Figure 43.
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Mitochondrial aconitase is a ferrosulphoprotein located in the mitochondrial matrix 
that catalyses the reversible isomerisation of citrate to isocitrate via cis-aconitate in the 
Krebs cycle [111], Figure 44. The reaction mechanism can be divided into three phases, a 
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dehydration, the OH group attached to the Fe-S centre is protonated and eliminated, 
forming cis-aconitate. In order to rehydrate, the molecule needs to rotate 180º, which takes 

Figure 43. Iron–sulphur centre of aconitase and union with citrate and a water molecule.

Mitochondrial aconitase is a ferrosulphoprotein located in the mitochondrial matrix
that catalyses the reversible isomerisation of citrate to isocitrate via cis-aconitate in the
Krebs cycle [111], Figure 44. The reaction mechanism can be divided into three phases,
a dehydration phase, followed by a rotation and finally a rehydration phase. In dehy-
dration, the OH group attached to the Fe-S centre is protonated and eliminated, forming
cis-aconitate. In order to rehydrate, the molecule needs to rotate 180º, which takes place in
more than one step, a cis-aconitate molecule displaces the one it is attached to, and once it
is properly attached, it is rehydrated, forming the final product.
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Figure 44. Mechanism of isomerisation of citrate to isocitrate by the enzyme aconitase. The aconitase
differentiates between the two carboxylic groups of the citrate uniting it by three points.

This aconitase-catalysed reaction is stereospecific. Isocitrate has two asymmetric
carbons, so that from citrate the formation of four possible stereoisomers would be possible,
but the reaction produces only one of these, D-isocitrate. The enzyme has an asymmetric
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binding site for citrate, allowing the substrate to bind only in a specific orientation, so the
transfer of the OH occurs only if the appropriate orientation conditions are met [112].

The high reactivity of aconitase with superoxide ion is due to the presence of the
[4Fe-4S] centre with labile Fe in its active site [113]. The mechanism involves (i) electrostatic
attraction of the superoxide to the solvent-exposed group, (ii) protonation to become a
strong univalent oxidant, and (iii) single electron abstraction. The reactivity is attributed to
the electrophilic character of Fe, the large nucleophilicity of O2

•−, the increased oxidative
potential of O2

•− in its iron-bound state and the sensitivity of Fe-S bonds to oxidation [113].
The oxidised group is unstable, the iron atom coordinating the substrate dissociates,

and the enzyme becomes inactive. Iron and hydrogen peroxide are released and may
undergo other damaging reactions [114]. Consequently, inactivation of m-aconitase by
superoxide can increase the formation of hydroxyl •OH radicals via the Fenton reaction in
mitochondria, Figure 45.
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Figure 45. Reaction of the [4Fe-4S] cluster with O2
•−. Loss of iron labile from the Fe-S centre with

the consequent formation of an inactive [3Fe-4S] centre and the release of Fe+2.

Two aconitase isoenzymes are present in mammalian cells: the mitochondrial enzyme
(m-aconitase) and the bifunctional cytosolic enzyme (c-aconitase/IRP1). The assembly and
disassembly of Fe-S groups is a key process, not only in regulating the enzymatic activity of
mitochondrial aconitase in the citric acid cycle, but also in controlling the iron-sensing and
RNA-binding activities of cytosolic aconitase (also known as iron regulatory protein IRP1).
Iron deficiency can decrease aconitase protein levels and limit the assembly of Fe-S groups
required for its enzymatic activities. As a result, iron deficiency can potentially affect the
citric acid cycle, lipid biosynthesis, carbohydrate metabolism and many other biological
pathways involving citrate.

4.1.9. Conversion of Nitric Oxide to Peroxynitrite

The conversion of nitric oxide to peroxynitrite is a type of reaction between two
radicals. O2

•− and •NO react and produce, within the mitochondrial matrix, ONOO–, a
potent oxidant that is normally reduced by the action of mitochondrial reductants, such
as NADH2, ubiquinol UQH2 and glutathione GSH. When produced in excess, because its
control is lost (e.g., in ischaemia/reperfusion or inflammation), it leads to tyrosine nitration
and mitochondrial dysfunction. Its cumulative effect would contribute to tissue ageing.
Another radical formed extensively by both enzymatic and non-enzymatic processes is
nitric oxide •NO, which serves as an intra- and intercellular signalling molecule [115,116].
•NO and superoxide react in a diffusion-limited manner. This reaction terminates the chain
reaction initiated by superoxide, although peroxynitrite is commonly considered a harmful
molecule [117], Figure 46.
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Figure 46. Conversion of nitric oxide to peroxynitrite and rate of reaction.

This reaction has a very high rate constant and is fast enough to compete with SOD-
catalysed dismutation [22,118]. Peroxynitrite is a highly reactive oxidant and is capable of
undergoing a wide range of oxidative processes [119]. These include direct oxidations and
secondary reactions due to nitrogen dioxide, hydroxyl and carbonate radicals [120,121].

Peroxynitrite is a short-lived and highly reactive oxidant and is therefore another reac-
tion that confers indirect toxicity to O2

•−, in particular to DNA, proteins and lipids [122]. In
addition, peroxynitrite is capable of nitrating tyrosine or tryptophan residues, or oxidising
methionine residues [123–128].

4.1.10. Nucleophilic Substitution Reaction

O2
•− is a nucleophile in the reaction with alkyl halides and alkyl tosylates in DMSO

and leads to the formation of alkylperoxy radicals and subsequently to peroxy anions via
one-electron reduction [56,129], Figure 47.
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The high stereoselectivity observed in this reaction is inconsistent with the interme-
diation of free alkyl radicals. Furthermore, it has been observed that the structure of the
alkyl group attached to the halogen, the nature of the leaving group, and the polarity of the
solvent exert influence on the course of the reaction in the carbon–oxygen bond formation
step that is consistent with a mechanism involving an SN2 displacement on the carbon;
therefore, it follows that the initial reaction of the superoxide with an alkyl halide produces
an alkylperoxy radical [130], Figure 48.
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4.1.11. Reactions of Superoxide with Amino Acids

Second order rate constant values for HO2
• reactions for aliphatic amino acids are re-

ported in the literature in the range of 1 × 10 M−1s−1 and a value of about
6 × 102 M−1s−1 for Cys, these values are even lower for O2

•− reactions of these amino
acids, with values ranging from 1.0 × 10−1 M−1s−1 to about 2 × 10 M−1s−1 [131]. The
difference in reactivity of the two superoxide species may be due to the fact that HO2

•

acts as a weak oxidising agent, while O2
•− behaves as a weak oxidising and reducing

agent, and these values may also depend on whether the amino acids are protonated or
not. Cystine and Met do not react with superoxide, but N-acetylcysteine and glutathione
GSH do [132–134], Figure 49.
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Despite the large body of experimental work dealing with the oxidation of thiols by
superoxide, the mechanism of this reaction remains controversial, Figure 50. According to
some authors [135–137], the superoxide radical reacts with RSH thiols by abstraction of the
hydrogen atom giving the thiyl radical and hydrogen peroxide; other authors consider that
the first step of the reaction is the formation of a three-electron-bond radical, which breaks
into a sulfinyl radical and a hydroxide anion [132–134].
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superoxide, the mechanism of this reaction remains controversial, Figure 50. According 
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Figure 50. Two pathways for the reaction of O2
•− with thiols.

In both reactions it is assumed that the intermediate RS or RSO will further interact
with the thiolate to give the final disulphide RSSR.

4.1.12. Radical–Radical Reactions of Superoxide

Phenoxyl radicals are produced by one-electron oxidation of phenols. The most
common phenol in biological systems is tyrosine, either in its free form or in peptides and
proteins. The phenoxyl radicals in Tyr initially react with superoxide by addition, and
the intermediate formed either releases oxygen to regenerate the parent compound or is
converted to a hydroperoxide. The hydroperoxide, due to the resonant forms of Tyr, can
be formed in the ortho or para position with respect to the phenoxyl radical [138–140],
Figures 51 and 52.
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As a consequence of electron delocalisation by the benzene ring, the Tyr• undergo
rapid dimerization reactions to give Tyr-Tyr cross-linked species producing isomers with
different cross-linked bonds, C-C cross-linked and C-O cross-linked species, Figure 53.
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(o,o′-di-Tyr, blue; iso-di-Tyr, black).

Reactions of superoxide with tyrosyl radicals on the original amino acid or on small
peptides are fast enough to compete with both superoxide dismutation and tyrosyl radical
combination to form dityrosine derivatives. The production of di-Tyr crosslinks is limited by
these alternative reactions, such as the short-lived peroxide formation reaction. For tyrosyl
radicals, the reaction with superoxide to form the addition product (tyrosine hydroperoxide)
is three times faster than dimerization [139,141].

Tyrosine and aminophenols are anomalous in that they undergo many more additions,
the amino group attaches to the b-position of the unsaturated a,b.ketone to give a hetero-
cyclic product. When tyrosine is N-terminal, the main products are hydroperoxides that
have been cyclised via 1,4-conjugated addition (intramolecular Michael addition) of the
terminal amine, Figure 54. When tyrosine is not N-terminal, electron transfer from O to
the peptide radical prevails. Superoxide and tyrosyl radicals are among the most frequent
radicals generated biologically during oxidative stress. The reaction between the two is
very favourable. O2

•− can react rapidly with low molecular mass Tyr- radicals, with a
rate constant of ~1.5 × 109 M−1 s−1, which is about three times faster than dimerization,
Figure 54.
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Figure 54. When tyrosine is N-terminal, the major products are hydroperoxides that have cyclized
via intramolecular Michael addition of the terminal amine.

An indole radical (tryptophanyl radical Trp-) is readily formed on the indole ring
of tryptophan Trp. These radicals undergo multiple reactions, including ring opening
and dimerization. As a consequence of electron delocalisation on the indole ring, Trp•

radicals undergo rapid dimerization reactions to give Trp-Trp cross-linked species that
produce isomers with different cross-linkages, C-C cross-linked and C-C cross-linked
species. C-N [142,143], Figure 55.
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Trp• can undergo rapid dimerization to form a series of isomeric cross-linked Trp-Trp
species. These reactions have second-order rate constants in the range of k = 2–6× 108 M−1 s−1

at pH 7.4 and k = 7.3 × 108 M−1 s−1 at pH 10. These high values suggest that dimerization
can compete with other Trp- reactions in complex systems. Trp• dimerization takes place
under conditions where O2

•− is absent or present in low concentrations [144].
The reaction of Trp• radical with O2

•− gives a hydroperoxide. Trp• reacts very rapidly
with O2

•− with second order rate constants, k, in the range 0.7–2.2× 109 M−1 s−1, the main
initial products being hydroperoxides, in almost quantitative yields [145–151], Figure 56.
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Figure 56. Trp• reacts with O2
•−, the major products being hydroperoxides.

Subsequent decomposition of these species gives rise to N-formylquinurenine, quin-
urenine, alcohols and diols. These data indicate that the O2

•− with Trp• reaction should be
considered as an important pathway for the degradation of Trp in peptides and proteins
subjected to oxidative damage, Figure 57.
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4.1.13. Proton–Radical Transfer

Because the pKa of the conjugate acid of O2
•− is 4.8, O2

•− is considered a weak base.
However, proton and radical transfer pathways have been proposed to demonstrate the
antioxidant property of phenols and polyphenols against O2

•−. Results obtained by cyclic
voltammetry show that proton transfer and radical transfer pathways are present for both
monophenols and polyphenols, and the relative contributions of the two pathways depend
on the structure of the phenol. Polyphenols containing an o-diphenol ring (as flavonoids)
have the highest reactivities.

Proton transfer is the main mechanism for the reaction between monophenols and
O2
•− in aprotic solvents, such as DMF or DMSO. The mechanism involves a first proton

transfer between O2
•− acting as a weak base and the phenolic compound PhOH acting as

a Bronsted acid according to Figure, in which the formation of phenoxide PhO– and HO2
•,

although thermodynamically unfavourable, can be completed by the electron transfer
reaction between HO2

• and O2
•− to form HO2

• (a very strong base) and O2. In this, the
former can extract more protons from the phenol to form the phenoxide PhO– according to
Figure, in which the former can extract more protons from the phenol to form the phenoxide
PhO– according to Figure 58.
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Polyphenols, however, undergo a radical (or H-atom) transfer reaction with O2
•− to

form the phenoxyl radical PhO– and HO2
•. Similar to monophenols, HO2

• can also extract
protons from PhOH to form phenoxide PhO–, Figure 59.
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employ what has been termed an indicating scavenger, which is a molecule that reacts 
with superoxide to produce a detectable product. Commonly used chemiluminescent 
scavengers are lucigenin, luminol or cytochrome C. 

5.1. Detection of Superoxide by Cytochrome C 
The neutrophil respiratory burst is usually measured spectrophotometrically: (a) 

following the reduction of ferricytochrome C Fe3+ which is reduced by superoxide, 
producing oxygen and bright-red ferrocytochrome C Fe2+ with a detectable 
spectrophotometric absorbance at 550 nm [152,153]; and (b) histologically using the 
tetrazolium salt, nitro blue tetrazolium, which is reduced intracellularly to an insoluble 
formazan. In both assays, the reduction is mediated by a superoxide generated via 
NADPH oxidase. Because ferricytochrome c has a high molecular mass and a high 
background absorbance at 550 nm, the assay lacks sensitivity and is not ideal for 
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and is efficiently reduced by superoxide to a stable, water-soluble formazan with high 
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Figure 59. The reaction of QH2 with HO2
• and O2

•− provides radical semiquinone.

The reactivity of HO2
• with QH2 involves an H-atom transfer reaction to form

a semiquinone radical and H2O2 with a rate constant of 4.7 × 104 M−1 s−1 for 1,2-
dihydroquinone.

PhO– was shown to form non-radical products via dimerization or oligomerisation,
or semiquinone formation. This difference in the pathway between the decomposition of
monophenols and polyphenols with O2

•− may be due to the stabilisation of the radical
in polyphenols through resonance, as shown by the higher reactivity of polyphenols
containing o-diphenol rings with O2

•−, Figure 60.
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5. Detection of Superoxide Anion

There are a large number of published methods for superoxide detection, with their
advantages and disadvantages. The simplest are assays that measure superoxide in free
solution or when it is released from cells. What they all have in common is that they
employ what has been termed an indicating scavenger, which is a molecule that reacts
with superoxide to produce a detectable product. Commonly used chemiluminescent
scavengers are lucigenin, luminol or cytochrome C.

5.1. Detection of Superoxide by Cytochrome C

The neutrophil respiratory burst is usually measured spectrophotometrically: (a) fol-
lowing the reduction of ferricytochrome C Fe3+ which is reduced by superoxide, producing
oxygen and bright-red ferrocytochrome C Fe2+ with a detectable spectrophotometric ab-
sorbance at 550 nm [152,153]; and (b) histologically using the tetrazolium salt, nitro blue
tetrazolium, which is reduced intracellularly to an insoluble formazan. In both assays,
the reduction is mediated by a superoxide generated via NADPH oxidase. Because ferri-
cytochrome c has a high molecular mass and a high background absorbance at 550 nm,
the assay lacks sensitivity and is not ideal for measurement in microplates. To overcome
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this limitation, the cell-impermeable sulphonated tetrazolium salt, WST-1, which exhibits
a very low background absorbance and is efficiently reduced by superoxide to a stable,
water-soluble formazan with high molar absorptivity, is used [154,155], Figure 61.
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Figure 61. (a) Detection of O2
•− by reduction of a cytochrome C system, (b) reduction of WST-1 in a

formazan salt.

Cytochrome C is a traditional and accurate method for detecting large amounts of
superoxide. However, it should be noted that electrons donated by enzymes or other
molecules can also reduce ferricytochrome C, resulting in an absorbance that is not specific
to superoxide.

5.2. Fluorescent Probes

The determination of oxidative stress in cells is performed by assays based on fluo-
rescent tests. These techniques are based on the addition of a non-fluorescent compound
(fluorogenic substrate), which is rapidly oxidised upon reaction with oxidising species,
transforming it into a fluorescent compound and whose emission is detected by the flow
cytometer or fluorometer. Most fluorescent probes developed to date for in vitro and
in vivo imaging are designed to be activated in the presence of the analyte of interest.
Activation usually results in an increase in fluorescence or a change in emission wave-
length. The advantage of these probes is the easy visualisation of intracellular dynamics
and high-resolution localisation of biomolecules of interest. Most of the widely used probes
that are commercially available are prefluorescent aromatic molecules that oxidise in the
presence of ROS to a fluorescent product. Many of the probes developed in recent years are
compounds containing a masked fluorophore that is released by the attack of the oxidant
on the masking group.

The above assays are not suitable for intracellular or tissue analysis of superoxide,
and fluorescent or chemiluminescent probes have been developed to achieve this goal.
Most of these probes react through multistep mechanisms that can be influenced by a
number of variables. The most commonly used probes for superoxide are dihydroethidium
and its analogues. For these assays to show true values, they must be coupled with a
chromatography system using fluorogenic probes to detect 2-hydroxyethidium, which is
the species formed by superoxide.

Other detectors, such as lucigenin, also react with other ROS, such as superoxide,
but also generate superoxide as part of their mechanism, so they are not suitable for
determining the amount of O2

•− generated. Some of the chemiluminescent probes show
improved sensitivity [156] but there are still problems with interference [157].
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Hydroethidine has been widely used to detect the intracellular superoxide radical, in
the reaction between these two species 2-hydroxyethidium is generated. The production of
superoxide radicals in amounts as low as 1.5 pmol in 5 mg of biological samples can be
quantified fluorometrically with this probe [158], Figure 62.
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Superoxide dihydroethidium indicator, also called hydroethidine, fluoresces blue in
the cytosol until it oxidises, where it intercalates into the cell’s DNA and stains its nucleus
a bright fluorescent red.

Other variations of the hydroethidine probe exist, for example one with a triph-
enylphosphonium residue on the nitrogen atom. It is suggested that these two probes
fluoresce through superoxide-induced oxidation of the probes to result in the formation
of the corresponding 2-OH-ethidium products, which can be excited at both 396 and
510 nm. Therefore, by controlling the fluorescence emission at these excitation wavelengths,
superoxide-induced oxidation can be differentiated from other cellular oxidative processes.

Tang’s group described two O2
•−-sensitive probes derived from benzothiazoles, 2-

(2-pyridyl)-benzothiazoline and 2,2′-(2-chloro-1,3-phenylene) bis (2,3-dihydrobenzo [d]
thiazole). Oxidation by O2

•− leads to a strongly fluorescent product [159], Figure 63.
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The same research group also developed the fast-response fluorescent probe 2,2′-
(2-chloro-1,3-phenylene) bis (2,3-dihydrobenzo [d] thiazole) which operates by a similar
detection mechanism in the presence of O2

•− and also shows a high selectivity towards O
O2
•− in contrast to other ROS [160].
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Medvedeva et al., 2004, devised the pyrene-nitroxide-based probe to control the
amount of superoxide generated by using a xanthine/xanthine oxidase system, Figure 64.
This probe is not fluorescent and is not specific to O2

•− because it also responds to the
hydroxyl radical and some antioxidants, indicating its poor selectivity [161].
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The 4-chloro-7-nitrobenzo [c] (1,2,5) oxadiazole probe is commercially available and
is used for the rapid detection and quantification of the superoxide radical generated
by the xanthine/xanthine oxidase system [162]. The drawback of this probe is that so-
lutions containing 66.7% acetonitrile are required for the detection system, which limits
biological applications.

The imine (E)-2-methoxy-4-((quinolin-8-ylimino) methyl) phenol formed by the reac-
tion of vanillin with 8-aminoquinoline was also used as a fluorescent probe for the detection
of O2

•− [163]. In the presence of O2
•− this probe is oxidised to form a quinoid-containing

product, leading to a decrease in fluorescence intensity.
Shown in the figure are the four fluorescein-derived probes used for O2 detection—(a)

and (b) were developed in Maeda’s group and (c) and (d) in Tang’s group, Figure 65.
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Other highly specific fluorescent probes (a) and (b) for the detection of O2
•− were de-

veloped by Maeda’s group based on a non-redox mechanism [164]. As shown in Figure 66,
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after treatment with O2
•−, the benzenesulphonate groups are removed and the product

formed produces a large increase in fluorescence.
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Additionally, based on a strategy of deprotection of the benzenesulfonyl group, Maeda
et al., 2007, demonstrated that probe (b) serves as an optimal sensor for the detection of
O2
•− in aqueous solutions and pH 7.4, the detection limit of this probe for O2

•− is 10 times
higher than that of probe (a). In addition, probe (b) shows a high selectivity towards
O2
•− over glutathione and other ROS, such as hydrogen peroxide, hypochlorite, tert-butyl

peroxide, singlet oxygen, •NO and peroxynitrite [165].
The fluorescent probes (c) and (d) were designed by Tang and co-workers, and their

functions are based on the nucleophilic property of O2
•− which is involved in the depro-

tection of the diphenylphosphinate residues attached to the fluorescein probe [166] (c),
Figure 67, or the naphthofluorescein probe [167] (d). In aqueous solution pH 7.4, both
probes show high sensitivity. In addition, they have excellent selectivity towards O2

•− over
other ROS/RNS.
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5.3. Chemiluminescent Probes

Suzuki and co-workers designed the chemiluminescent probe derived from 4-4-diflouro-
4-bora-3a,4a-diaza-s-indacenes known as BODIPYs. BODIPYs (short for borodipyrromethene)
are fluorescent molecules (or fluorochromes) that have advantageous features, such as
thermal and photochemical stability, high solubility and chemical robustness, among others
for O2

•− detection. The response of this probe to the superoxide radical is triggered
by the formation of a dioxetanone that decomposes to generate a singlet excited amide,
which decays to its ground state with simultaneous emission of yellow-green luminescence
(545 nm). Highly sensitive detection of O2

•− generated from PMA-stimulated HL-60 cells
was demonstrated using the probe shown in Figure 68.
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Murthy’s group found that hydrocyanines could be used to detect the superoxide [168].
The two probes studied by this group are shown in Figure 69.
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Hydrocyanines are generated from cyanine dyes by reduction with NaBH4, Figure 70.
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Figure 70. The oxidation–reduction reaction of hydrocyanines and cyanines.

Hydrocyanines are weakly fluorescent because they contain an interrupted π-conjugated
system. However, oxidation of these molecules with the superoxide radical enhances their
fluorescence through the generation of extended π-conjugation products. The hydrocyanine-
derived probes show a high selectivity towards oxidising radicals.

6. Can Superoxide Anion Repair Oxidative Damage?

Muñoz-Rugeles et al., 2018, have shown that superoxide is able to repair oxidised
DNA by transferring an electron to the guanosyl radical of single-stranded DNA. They
have considered acid–base equilibria and explored the influence of pH on the main reaction
mechanism. Superoxide reactivity is not necessarily detrimental to biomolecules but can
also help combat oxidative damage. Unfortunately, this type of involvement in chemical
processes has not yet been studied in depth [169].

7. Superoxide Anion in the Antimicrobial Innate Immunity

O2
•− is involved in many aspects of the immune response to pathogens, as it can

damage biomolecules by oxidizing iron and sulphur groups in a variety of enzymes, leading
to metabolic defects and iron release. O2

•− is essential for the elimination of pathogens by
phagocytic cells, as seen in patients suffering from chronic granulomatous disease CGD,
an inherited NADPH oxidase disorder characterised by recurrent and severe bacterial
and fungal infections [170]. Alongside the ability of O2

•− to induce lysis of bacteria in the
phagosome through oxidative damage to bacterial biomolecules, defence against pathogens
is also triggered by various non-oxidative means, such as autophagy, receptor signalling,
extracellular trap formation and instruction of lymphocyte responses [171].
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In the phagocytosis area, O2
•− production by the phagocyte NOX has been associated

with pathogen killing for the last decades. In contrast, at much lower concentrations, O2
•−

and ROS are necessary for cell signalling. O2
•− produced by NOX acts as a signalling

molecule by modifying the redox state of proteins or lipids, and one of its possible targets
is even NOX itself. Superoxide and H2O2 added to NOX subunits have been shown to
decrease O2

•− production, but only when added prior to subunit assembly [172]. Addition-
ally, O2

•− derived from different NOx influences distinct downstream signalling pathways,
which may be the reason for the co-expression of more than one isoform of NOX in specific
cell types [173].

Phagocytes can release O2
•− both into the phagosome and the extracellular space

due to expression of NOX2 on both the phagosome and the plasma membrane [174]. The
activation of the mammalian phagocyte NOX2 is tightly regulated and predominantly
depends on the engagement of surface receptors by dedicated ligands. Some cell surface
receptors (Toll-like receptors (TLR), G-protein-coupled receptors (GPCR) and TNF receptors
(TNFR)), can prime the NOX2 activation [175]. Stimulation of other receptors, including Fc
and integrin, result in direct activation of NOX2.

As NOx is assembled, electrons pass from cytosolic NADPH to FAD and membrane-
integrated heme groups and begin the reduction of molecular oxygen O2 to O2

•−. Superox-
ide O2

•− is a highly reactive “non-diffusible” specie that is enzymatically transformed to
hydrogen peroxide. In granulocytes, H2O2 is quickly converted into hypochlorous acid
HOCl [176] by the action of the enzyme myeloperoxidase (MPO) contained within them.
HOCl has superior bactericidal characteristics to superoxide [177].

The role of superoxide in phagocytes differs depending on NOX2 expression and
activity. After activation, neutrophils produce more O2

•− compared to monocytes and
macrophages [178]. Dendritic cells (DC) express little NOX2 and consequently have a
lower O2

•− and ROS production after activation [179]. In neutrophils, H2O2 generation in
phagosomes activates the enzyme myeloperoxidase, catalysing the production of HOCl,
which is oxidant and antimicrobial, and contributes greatly to the lysis of microbes [178].
After infection, excessive neutrophil activity causes tissue damage, so their deactivation
or cell death is physiologically important and tightly regulated. This process is called
pathogen-induced cell death and is also dependent on NOx activity [180]. Mononuclear
phagocytes (primarily monocytes and macrophages) do not express MPO and thus contain
more H2O2 in their phagosomes.

8. Macrophages, Neutrophils and Superoxide Anion
8.1. Macrophages

Macrophages, discovered by Ilya Metchnikoff in the late 19th century, were long
considered an important part of the effector cells of the immune system. Metchnikoff won
the Nobel Prize in 1908 for his description of phagocytosis and went so far as to propose
that the key to immunity was to “stimulate phagocytes” [181]. Irrespective of their role
in the immune system, macrophages clear about 2 × 1011 erythrocytes daily and are also
involved in the removal of cellular debris generated during tissue remodelling, thereby
eliminating cells that have undergone apoptosis. These clearance processes are a vital
metabolic contribution, without which the host would not survive [182].

Macrophages (from Greek: large eaters, makros + phagein), are the first immune cells
to encounter invading pathogens, and their goal is to engulf microbes, dead cells, foreign
substances, cancer cells and cellular debris by phagocytosis [183]. These phagocytes are
found essentially in all tissues, and historically, they have been given various names, as
histiocytes, Kupffer cells, alveolar macrophages, microglia and others, all of which are part
of the mononuclear phagocytic system [184]. They play a key role in nonspecific defence
(also called as innate immunity) and help specific defence mechanisms (adaptive immu-
nity) by recruiting other immune cells (lymphocytes) [185]. If a person has dysfunctional
macrophages, this causes diseases, such as chronic granulomatous disease, which leads
to frequent infections, as this first line of defence against infection is not available [186].
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Human macrophages are about 21 µm in diameter and are produced by the differentiation
of monocytes in tissues [187].

Macrophage activation is a response to a wide range of stimuli, including the nature of
microbial agents, damaged cells, activated lymphocytes and inflammatory cells [188]. Clas-
sically activated macrophages require a priming signal in the form of interferon IFN-γ [189].
Priming of macrophages with IFN-γ reprograms cellular responses to other cytokines,
such as type I IFNs and IL-10. Alternatively activated macrophages do not require any
priming, because interleukins IL-4 and/or IL-13 can act as enough stimuli [190,191]. Alter-
natively activated macrophages change their morphology and chemical secretion pattern
as a result [192].

The bioplasticity of macrophages is one of their main characteristics, resulting in
extreme heterogeneity under physiological but also pathological conditions. Macrophages
can be classified into two distinct subsets: M1, or classically activated, and M2, or alter-
natively activated [193]. This plasticity induces a phenomenon called polarisation, which
regulates the functionality of macrophages and the role they will play in the tissues that
host them [194].

M1 macrophages are pro-inflammatory and polarized by lipopolysaccharides (LPS)
and/or cytokines, such as IFN-γ and the granulocyte-macrophage colony-stimulating
factor GM-CSF, and produce pro-inflammatory cytokines, such as interleukin-1β IL-1β,
IL-6, IL-12, IL-23 and TNF-α [194]. They secrete high levels of TNF-α, IL-12 and IL-23
cytokines. M1 macrophages produce intracellular nitric oxide •NO by inducible nitric
oxide synthase iNOS and superoxide anion O2

•− and subsequent reactive species, which
are cytotoxic to microbial agents and fight infection [195].

M2 macrophages are polarized and activated upon exposure to certain cytokines
such as IL-4, IL-10 or IL-13, subsequently producing polyamines and/or proline, which
are involved in cell proliferation and collagen production [196]. These M2 macrophages
are associated with wound healing and tissue repair. The secretion of the inflammation-
inhibiting cytokine IL-10 is the hallmark of M2 macrophages, arginase-1 and more organic
compounds [197]. This phenotype can be further subdivided into M2a, M2b and M2c,
based on their specific functions. All three subtypes have anti-inflammatory properties, but
M2a and M2b macrophages are considered immunoregulatory and are known to mediate
the Th-2 response. M2c cells are immunosuppressive and are involved in extracellular
matrix ECM remodelling. M2a and M2c secrete growth factors that promote the formation
of new blood vessels (angiogenesis) and tissue regeneration [198].

Finally, it is increasingly clear that macrophages are involved in the progression of
pathological conditions, including cancer, cardiovascular disease, obesity and wound heal-
ing [196]. In cancer, M1 macrophages have anti-tumour functions, while M2 macrophages
support angiogenesis, invasion and metastasis of neoplastic cells. Most tumour-associated
macrophages (TAM) adopt an M2-type phenotype, and their presence correlates with a
poor prognosis [199,200].

Alongside O2
•− production, macrophages employ several direct antimicrobial mech-

anisms in the phagosome, such as reactive nitrogen species RNS, as well as delivery of
cathepsins and other hydrolases [201–204]. Indirect mechanisms involve inflammasome
activation and the secretion of cytokines and chemokines, which aim to organize subse-
quent innate and adaptive immune responses, as well as MHC-dependent presentation of
pathogen-derived antigens [205].

When macrophages initiate the bacterial recognition process, O2
•− production starts

in different cellular compartments [201]. One of the most important goals is the lysis of
phagocytosed bacteria by the oxidative burst generated by the NADPH oxidase NOX2. The
oxidative burst is the rapid release of O2

2- from various cell types, especially macrophages
and neutrophils, and it requires a 10- to 20-fold increase in oxygen consumption by NOX
activity. The oxidative burst in phagocytes is usually associated with killing bacteria,
but in the case of alveolar macrophages, they usually produce lower levels of ROS than
neutrophils and may need to be activated to exert their bactericidal properties. Instead,
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their transient oxidative burst regulates the inflammatory response by triggering the syn-
thesis of cytokines for redox signalling, resulting in an influx of activated neutrophils
and macrophages.

8.2. Neutrophils

Neutrophils are a main cellular component of the innate immunity and play a dual
role because they provide a rapid and non-specific response to the infectious progression
and mediate between the innate and the adaptive immune systems. Neutrophils are
short-lived granulocytes derived from pluripotent hematopoietic stem cells from bone
marrow [206]. Most haematopoiesis is related to granulopoiesis, and almost 60% of bone
marrow leukocytes are granulocyte precursors [207].

Neutrophils are the main leukocytes circulating in the blood, and the first innate
immune cells to be recruited to a focus of infection. Here, neutrophils have several defence
strategies at their disposal, such as the production of superoxide O2

•−, the release of
antimicrobial factors and the formation of neutrophil extracellular traps (NET) [208].

There are two main granule populations in mature neutrophils: (i) azurophils are the
first to develop during granulopoiesis, they contain the enzyme myeloperoxidase (MPO)
and other proteolytic enzymes (cathepsins, proteinase-3, elastase), antimicrobial defensins
and bactericidal proteins [209]; and (ii) a specific type of granules (peroxidase negative)
that mature during differentiation contain membrane proteins, such as lactoferrin and
collagenase, and are receptors for chemotactic peptides, cytokines, opsonins and adhesion
proteins [210]. Mature neutrophils are released into the bloodstream, where they circulate
for 10–24 h before migrating to tissues, where they remain for the next 1–2 days before
undergoing apoptosis and being cleared by macrophages [211]. Neutrophils released into
the systemic circulation constitute most of the circulating leukocyte cell population. Under
normal conditions, the number of mature neutrophils is almost constant, but during an
infectious process their population can increase up to 10-fold [212].

Some circulating neutrophils move through the walls of postcapillary veins through
transient interactions with endothelial cells [213]. Their role is to look for signs of tissue
damage, inflammation or the invading microorganisms themselves, as well as the presence
of chemotactic or chemoattractant signals derived from the host and/or pathogen [214].
In the presence of pathogens, different host cells (such as monocytes and macrophages)
secrete inflammatory and neutrophil chemoattractant mediators (such as the leukotriene
LTB4 involved in inflammation, the interleukin IL-8, and the chemokine CXCL6, a small
cytokine belonging to the CXC chemokine family, also known as granulocyte chemotactic
protein 2 GCP-2) which bind to specific receptors on the neutrophil surface [215]. These
signals direct neutrophils from the intravascular space to the site of infection in tissues.

Another important fact is neutrophil priming described in the early 1980s. Its classical
definition is the ability of a primary agonist, under stimulatory concentrations, to enhance
superoxide production in response to a secondary stimulus [216]. Priming occurs at almost
all levels of neutrophil function: adhesion, phagocytosis, cytokine secretion, leukotriene
synthesis and degranulation. Priming is induced by cytokines, chemokines, growth fac-
tors, lipid-derived signalling molecules and physical cell–cell contact and adhesion [217].
Following recognition of chemotactic signals and/or priming of neutrophils, neutrophils
leave the peripheral circulation by transmigration through the endothelial wall, a process
termed extravasation [209].

At the site of infection, neutrophils bind and ingest the invading micro-organisms by
phagocytosis. Two main mechanisms account for the microbicidal properties of neutrophils:

(i) The production of O2
•−. Neutrophils possess the enzyme NOX which, when activated,

produces superoxide anion, with strong antimicrobial properties. Superoxide can be
released outside the cell, or inside the cell (in the phagosome);

(ii) The coordinated release of proteolytic and antimicrobial granule content. The release
of the contents of the primary and secondary granules has important antimicrobial
significance. The granules contain MPO, lactoferrin, lysosomes and NGAL [218]. The
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enzyme myeloperoxidase MPO forms hypochlorous acid HOCl [176] after reaction of
chloride anion with hydrogen peroxide. HOCl oxidises tyrosine residues to form the
tyrosyl radical [128].

Because of their common origin, neutrophils and macrophages have common func-
tions (phagocytosis) and similar kinetic performance during infections [218]. Neutrophils
can influence macrophage differentiation into pro- or anti-inflammatory subtypes [218].
Interferon-γ released by activated neutrophils induces macrophage activation [219]. Neu-
trophils release MPO, which is taken up by residential macrophages expressing macrophage
mannose receptors (MMR). The interaction between MPO and MMRs leads to the release
of ROS (reactive oxygen species) and proinflammatory cytokines (IL-6, IL-8, TNF-α, IL-1,
GM-CSF) by macrophages. The release of TNF-α, IL-1β, G-CSF and GM-CSF at the site
of macrophage infection increases the survival of recruited neutrophils from 6–12 h to
24–48 h [220]. The cytokine IL-17 is an element of the innate immune system released by
CD4+ Th17, NK cells and neutrophils. IL-17 acts on neutrophils by increasing their number,
survival and recruitment to the site of infection [221]. Neutrophils are the transport vehicle
for intracellular pathogens carrying antigens to DCs and participate in the activation of the
T-cell immune response by DCs [222]. The reaction of neutrophils and macrophages during
infection triggers the production of innate defence regulatory peptide 1 IDR1, with similar
activity to defensins or cathelicidins [223]. IDR1 stimulates the antimicrobial activity of
macrophages [224].

Along with activation of innate or adaptive immune cells, neutrophils, by releasing
arginase or ROS, can inhibit NK-cell or T-cell activation by depriving extracellular levels of
L-arginine, necessary for T-cell activation [225].

9. Conclusions

Superoxide is produced mainly through metabolic reactions in which oxygen molecules
are consumed. The control of O2

•− represents for the cell the neural point in the balance
between oxidants and antioxidants.

In a physiological equilibrium, reactive oxygen species (ROS) are useful substances
involved in cell signalling. However, in a pathological state, ROS can be dangerous if
the synthesis of these molecules is initiated in an uncontrolled manner. Consequently,
they perform two tasks in the metabolism of the cell. The mitochondrial transport chain
ETC generates superoxide under physiological conditions, increasing ROS production and
oxidative stress. Mitochondria are the main source of intracellular O2

•− production, which
can lead to mtDNA damage and increased superoxide production. Other internal sources
that can induce superoxide are NADPH oxidase NOX, xanthine oxidase XO, lipoxygenase,
cyclooxygenase, and cytochrome P450 CYP/cytochrome P450 reductase POR.

Reactive stress occurs when an excess of free radicals overwhelms the body and cannot
be neutralized by the antioxidant mechanism (enzymes or peptides, such as glutathione or
superoxide dismutase (SOD), etc.). At the same time, ROS-induced toxicity is beneficial
for the oxidative destruction of microbial pathogens during the activation of the innate
immune system via specialized immune cells, such as neutrophils or macrophages.
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