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Abstract: Heart failure (HF) presents a significant clinical challenge, with current treatments mainly
easing symptoms without stopping disease progression. The targeting of calcium (Ca2+) regulation is
emerging as a key area for innovative HF treatments that could significantly alter disease outcomes
and enhance cardiac function. In this review, we aim to explore the implications of altered Ca2+

sensitivity, a key determinant of cardiac muscle force, in HF, including its roles during systole
and diastole and its association with different HF types—HF with preserved and reduced ejection
fraction (HFpEF and HFrEF, respectively). We further highlight the role of the two rate constants kon

(Ca2+ binding to Troponin C) and koff (its dissociation) to fully comprehend how changes in Ca2+

sensitivity impact heart function. Additionally, we examine how increased Ca2+ sensitivity, while
boosting systolic function, also presents diastolic risks, potentially leading to arrhythmias and sudden
cardiac death. This suggests that strategies aimed at moderating myofilament Ca2+ sensitivity could
revolutionize anti-arrhythmic approaches, reshaping the HF treatment landscape. In conclusion,
we emphasize the need for precision in therapeutic approaches targeting Ca2+ sensitivity and call
for comprehensive research into the complex interactions between Ca2+ regulation, myofilament
sensitivity, and their clinical manifestations in HF.

Keywords: heart failure; calcium sensitivity; rate constant; troponin C; arrhythmias

1. Introduction

Heart failure (HF) is a serious and often progressive clinical syndrome, classified as
one of the major types of cardiovascular disease. HF occurs when the heart is unable
to adequately fill with or pump out enough blood to fulfill the body’s requirements. It
results from compromised cardiac pump performance that has, as a basis, a reduction
in the contractile function and performance of the cardiac myocyte. Around 6.2 million
adults aged 20 or older in the United States are estimated to have HF, which accounts for
approximately 2.4% of the country’s adult population [1]. The prevalence of HF escalates
with age, with the most significant occurrence observed in individuals aged 65 and above.
It is noteworthy that the prevalence of HF may be underestimated, as many people with the
condition may not be diagnosed or may have asymptomatic or mild forms of the disease [2].

HF can be principally divided into two categories, each with distinct pathophysio-
logical origins. This classification relies on crucial factors, including ejection fraction (EF),
natriuretic peptide levels, and the existence of structural heart disease and diastolic dys-
function. The significance of these categorizations rests on their correlations with varying
patient demographics, co-existing conditions, and responses to treatment. HF with reduced
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ejection fraction (HFrEF), also known as systolic HF, is recognized when the EF is 40% or
less [3,4]. This condition is characterized by the ventricles’ inability to contract forcefully,
which often leads to eccentric hypertrophy of the ventricles, resulting in decreased diastolic
volume due to persistent increased resistance or infiltrative disease [5]. Common causes
include idiopathic factors, viral infections, alcohol use, chemotherapy, and valvular disease.
The majority of current HF treatments are designed for and are most effective in HFrEF.
These treatments typically aim to reduce preload, increase contractility, control heart rate,
and prevent cardiac remodeling. On the other hand, HF with preserved ejection fraction
(HFpEF), also referred to as diastolic HF, arises from the ventricles’ inability to relax, with
an EF equal to or greater than 50% [6]. HFpEF is often the result of concentric hypertrophy
caused by chronic damage to the myocardium of the ventricles, leading to ineffective
contractility [7]. Common causes include hypertension, amyloidosis, idiopathic factors,
sarcoidosis, hemochromatosis, and aortic stenosis [8]. Recent research has highlighted the
systemic nature of the HFpEF syndrome and the existence of subphenotypes within the
heterogeneous HFpEF syndrome, emphasizing the necessity for therapies that are better
targeted towards specific HFpEF subtypes [9].

Another category is HF with mid-range ejection fraction (HFmrEF), sometimes referred
to as HFpEF-borderline or HFpEF-improved when the EF in HFrEF rises above 40%. This
is recognized when the EF is between 41–49% according to European guidelines [10] or
between 40–49% per US guidelines [11]. This category was introduced by the 2016 European
Society of Cardiology (ESC) guidelines for HF diagnosis and management and was initially
regarded as a grey area between HFpEF and HFrEF.

The complete cure for HF remains a challenging quest for the medical community.
Existing treatments largely focus on symptom alleviation, cardiac remodeling reduction,
and cardiac function optimization. These strategies, while integral for patient comfort, may
fall short in halting HF progression. In response to this unmet need, researchers worldwide
are intensifying their efforts to devise innovative therapeutic solutions for HF, a path that
requires a thorough understanding of the disease’s fundamental pathophysiology.

Investigations into these mechanisms have spotlighted the critical role of calcium
(Ca2+) regulation, given its fundamental role in mediating cardiac muscle contractions [12].
Disruptions in Ca2+ homeostasis within heart muscle cells, or cardiomyocytes, have been
linked to the two primary causes of mortality in HF patients: deteriorating cardiac pump
function and arrhythmia onset [13]. These disruptions originate from pathological alter-
ations in the expression and activity of a wide range of Ca2+ homeostatic and structural
proteins, ion channels, and enzymes.

Central to these irregularities is the alteration in myofilament Ca2+ sensitivity. This
term, often referred to as Ca2+ sensitivity, refers to the variation in force generation at
a specified calcium concentration [Ca2+], which plays an essential role in determining
the contractility of striated muscles. It is essential to emphasize that myofilament Ca2+

sensitivity is a key indicator of cardiac muscle performance, particularly when consid-
ering pathological conditions such as hypertrophic cardiomyopathy (HCM) and dilated
cardiomyopathy (DCM). This myofilament Ca2+ sensitivity provides valuable information
about the muscle’s ability to generate mechanical force at steady-state. It is typically gauged
through the construction of a force-pCa curve, where shifts in this curve to the left or right
indicate increased or decreased Ca2+ sensitivity, respectively (Figure 1).

While myofilament Ca2+ sensitivity can be indicative of altered dynamic behavior,
as a stand-alone assessment, it does not provide a complete picture. A crucial factor in
understanding the dynamic behavior of a change in myofilament Ca2+ sensitivity is the
fact that the equilibrium dissociation constant (Kd) of Troponin C (TnC) is impacted by
two parameters. These two parameters are the Ca2+ association and dissociation rate
constants to and from TnC, respectively (known as kon and koff). Both these parameters
affect the binding of Ca2+ to TnC, which in turn affects muscle contraction and relaxation
(Figure 1). As previously discussed by Chung et al. [14], the relationship between kon and
koff is vital: while increasing kon can enhance TnC’s Ca2+ sensitivity, the actual dynamics
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of muscle contraction are more complex and are influenced by multiple variables. Factors
such as muscle length, frequency of contraction, β-adrenergic stimulation, and membrane
permeabilization all impact myofilament Ca2+ sensitivity and, consequently, the dynamic
contraction of the myocardium. To further dissect these influences, a mathematical model
was employed to examine the impact of various parameters, specifically focusing on kon
and koff for Ca2+ binding to TnC. The model revealed that alterations in these rates can have
different outcomes on dynamic twitch kinetics. For instance, increased Ca2+ sensitivity
via an increased kon would lead to enhanced tension development without necessarily
affecting contraction speed, while an identical increase in Ca2+ sensitivity via a decreased
koff would cause relaxation to slow down but contraction to only be minimally impacted.
In addition, if both kon and koff are adjusted simultaneously in the same direction, it could
result in no apparent shift in steady-state Ca2+ sensitivity but have profound effects on
contraction dynamic twitch kinetics of the cardiac muscle [14].
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Figure 1. Assessment of myofilament Ca2+ response variability. Top: Force-pCa2+ relationship
curves showing variations in myofilament Ca2+ sensitivity. The solid line represents the baseline force-
Ca2+ relationship. Curve (A) demonstrates increased Ca2+ sensitivity, indicated by a leftward shift,
where a given steady-state force is achieved at lower Ca2+ concentrations. Curve (B) demonstrates
decreased Ca2+ sensitivity, indicated by a rightward shift, requiring higher Ca2+ concentrations
to generate the same steady-state force. Bottom: This panel shows a biochemical representation
of the Ca2+ binding dynamics to Troponin C (TnC). It includes the calcium association rate (kon)
and dissociation rate (koff) from TnC, alongside a formula illustrating the relationship between the
equilibrium dissociation constant (Kd), kon, and koff.

Exploring the genetic terrain, mutations in myofilament proteins play a pivotal role
in influencing Ca2+ sensitivity, directly affecting the dynamics of muscle contraction and
relaxation. While numerous genetic mutations in these proteins have been documented,
in-depth studies of their implications on muscle behavior remain limited to only a subset.
To fully comprehend the impact of a mutation, it is not sufficient to merely understand
its effect on Ca2+ sensitivity. Direct observations on the rates of kon and koff, as well as
twitch force kinetics in intact muscles, are equally essential [14]. Take, for instance, the
Troponin I (TnI) R145G HCM mutation. While it is known to elevate Ca2+ sensitivity, this
effect might primarily be attributed to a decreased koff rate for Ca2+ from TnC. Moreover,
this mutation has also been shown to alter force and relaxation kinetics [15]. Similarly,
mutations in Troponin T (TnT), which is integral to the troponin complex, result in notable
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shifts in Ca2+ sensitivity and muscle dynamics. Some studies suggest these changes could
be tied to increased koff rates [16,17]. The β-myosin heavy chain gene, MYH7, which
is associated with a multitude of mutations in familial HCM patients, presents another
layer of complexity. While some mutations in MYH7 are characterized by alterations in
Ca2+ sensitivity [18,19], others distinctly influence the muscle’s relaxation kinetics [20,21].
Adding to the intricacy is the E22K mutation in myosin light chain-2 (MLC-2). Found
in HCM patients, this mutation yields inconsistent findings. Some studies pinpoint an
increased Ca2+ sensitivity [22], whereas others discern no noticeable change [23]. To
fully recognize cardiac muscle behavior and potential malfunctions in disease states, a
multifaceted approach, which considers both steady-state measurements and dynamic
factors, particularly the kon and koff rates, is essential.

This review aims to further explore the modifications in Ca2+ sensitivity observed
in HF and how these changes correlate with the rate of cardiac relaxation and the inci-
dence of diastolic dysfunction. In addition, we aim to compare the possible differences in
these alterations between HFpEF and HFrEF. Furthermore, this review will encapsulate
an examination of past studies that have concentrated on proteins responsible for Ca2+

handling and how the modulation of these proteins could influence Ca2+ sensitivity in
failing hearts. Importantly, we will shed light on the promising therapeutic targets that
have been identified through these studies.

2. Overview of Ca2+ Cycling and Homeostasis

Myocardial contractility is fundamentally governed by the cyclical movement of Ca2+

in and out of the cytoplasm of cardiac myocytes. This movement is intricately linked with
the Ca2+ sensitivity of various proteins present in these cardiac myocytes. As such, Ca2+

serves as a key regulator of excitation–contraction (EC) coupling, a process integral to the
modulation of systolic and diastolic function in the heart, as illustrated in (Figure 2). The
unfolding of EC coupling and its corresponding Ca2+ signal transduction is a sequence
of four main steps [24]. The first step is initiated by membrane depolarization, which
prompts the generation of a Ca2+ current, referred to as ICa. This current is the product of
L-type Ca2+ channels situated in the transverse tubules (T-tubules) of the cardiac myocytes.
In the subsequent second step, the Ca2+ ions navigate through a narrow junctional area,
thereby activating ryanodine receptors (RyR) and giving rise to Ca2+ sparks. These sparks
represent localized, spontaneous calcium release events within cardiac myocytes. While
these sparks significantly augment the original trigger Ca2+ signal through a mechanism
known as Ca2+-induced Ca2+ release (CICR), they are distinct from the massive global
increase in intracellular calcium that characterizes EC coupling. They are, instead, integral
components that contribute to the broader calcium dynamics within the myocyte. In the
third step, Ca2+ released from the sarcoplasmic reticulum (SR) spreads throughout the
cytoplasm. This dispersal of Ca2+ binds to TnC, allowing actin–myosin cross-bridging
and the thick and thin filaments of the sarcomere to slide past each other, shortening the
sarcomere and causing cardiac muscle contraction (Figure 3). Lastly, in the fourth step, for
the muscle to relax, Ca2+ must come off TnC to cease activation and allow dissociation of
thin and thick filaments to occur and relax the muscle. Ca2+ ions are recycled back into the
SR via Sarco/Endoplasmic Ca2+-ATPases (SERCA) or extruded out of the cell mainly via
Na+/Ca2+ exchanger (NCX), with a minor role of the continually active Ca2+ channels.
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PM, Plasma membrane; RyR, Ryanodine receptor; SERCA2a, Sarco/endoplasmic reticulum ATPase
type-2a; SR, Sarcoplasmic reticulum; TT, Transverse tubule.
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Figure 3. A schematic representation of cardiac troponin’s interaction with the thin filament under
two conditions: absence and presence of Ca2+ ions (represented as white dots), emphasizing its role
in modulating cardiac muscle contraction. In the thin filament OFF state (up), myosin binding sites
on actin are obstructed by tropomyosin (green), preventing contraction. Upon Ca2+ binding to the
C-terminal lobe of troponin C (C-TnC; pink), a key conformational change occurs. The switch peptide
of troponin I (TnI), which includes helix H3 (H3; blue), interacts with the regulatory N-terminal lobe
of TnC (N-TnC; pink). This interaction triggers the removal of the C-terminal lobe of TnI, allowing
tropomyosin to shift azimuthally around the thin filament. Consequently, this shift exposes the
myosin binding sites on actin, facilitating muscle contraction. The C-lobe of TnC (C-TnC; pink),
which is constantly bound to divalent cations alongside the anchoring region of TnI (blue), plays a
vital role in the stability and function of the thin filament complex. TnC, Troponin C; TnI, Troponin I;
TnT, Troponin T.
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3. Alterations in Ca2+ Sensitivity in HF

The sensitivity of myofilaments to Ca2+ is dynamically influenced by several processes
that connect Ca2+ cycling to the production of myofilament force. These include Ca2+

binding to TnC, the thin filament’s removal of actin–myosin interaction inhibition, and
the properties of actin–myosin cross-bridges [25]. Notably, changes in Ca2+ sensitivity can
occur within each cardiac cycle along with the sarcomere length [26,27]. This change partly
drives the immediate adaptation in cardiac output during beat-to-beat alterations in the
ventricular filling, the Frank–Starling response [28].

Long-lasting regulation of myofilament Ca2+ sensitivity is often achieved through the
process of phosphorylation [29]. A significant instance of this regulation is the phosphory-
lation of TnI [30]. The phosphorylation of two N-terminal serines by the cyclic Adenosine
Monophosphate (cAMP)-dependent protein kinase A (PKA) reduces myofilament Ca2+

sensitivity and contributes to the beta agonists’ positive lusitropic effect [31,32]. These
same serines are also phosphorylated by protein kinase D (PKD) [33], enabling multiple
signaling pathways to regulate force production’s Ca2+ dependence through this mecha-
nism. Altered Ca2+ sensitivity then acts as the primary stimulus for impaired contractility
in cardiomyocytes [34].

At the end-stage of HF, various cardiac contractile proteins often undergo changes
in their isoform composition and phosphorylation status [35]. Modifications have been
noted in the isoform composition of proteins, such as TnT [36–39] and myosin [40,41], as
well as the degradation of proteins, including MLC-2, TnT, and TnI [42]. Cardiac overload
can trigger changes in the hormone-mediated activation of PKA and Protein Kinase C
(PKC) via agents like noradrenalin, endothelin, or angiotensin [43–46]. These changes could
potentially alter the phosphorylation status of contractile proteins. Furthermore, an increase
in PKC [47] and protein phosphatase [48] activities has been detected in failing human
hearts, which could result in the phosphorylation and dephosphorylation of contractile
proteins, respectively.

Ca2+ sensitivity has been reported to either increase or decrease in failing myocardium
depending on the etiology of the disease [49]. There is now a broad agreement that
HCM mutations typically increase the Ca2+ sensitivity of ATPase activation [50,51]. By
contrast, during episodes of acute myocardial ischemia, myofilament Ca2+ sensitivity
decreases significantly, predominantly due to the combined effects of acidic pH and elevated
phosphate levels (consequent to the decline in high-energy phosphates) [52–54]. Even after
the restoration of the intracellular environment, myofilament Ca2+ sensitivity remains
reduced in post-ischemic or “stunned” myocardium. This persistent decrease likely results
from modifications to contractile proteins or proteolytic damage [55,56].

A considerable number of studies have illuminated the fact that the sensitivity of the
contractile apparatus to Ca2+ is heightened during the end-stages of human HF, highlight-
ing it as a notable risk factor for ventricular tachyarrhythmias development, a common
occurrence in this condition [39,40,57–59]. Alternative explanations have been given for the
origin of the increased Ca2+ responsiveness in human HF. According to Morano et al. [40],
the increased Ca2+ sensitivity of the contractile apparatus is due to the expression of atrial
light chain 1 (ALC-1) in the left ventricle. Margossian et al.’s [60] investigation provides
evidence that proteolytic breakdown of MLC-2 may be an important mechanism that con-
tributes to contractile failure in idiopathic dilated cardiomyopathy (IDC). Myofilaments
that have lost MLC-2 should be more sensitive to Ca2+ and, while producing the same
maximum force, have elevated submaximal force. They should have a reduced actomyosin
ATPase rate and a reduced maximum unloaded shortening velocity.

Most studies on the contractile apparatus have focused on troponin, the Ca2+-dependent
regulator of myofibrillar activity. In particular, it has been noted that phosphorylation
of TnI as a result of β-adrenergic/PKA activity effectively desensitizes myofilaments
to Ca2+, thereby playing a pivotal role in improving both systolic and diastolic perfor-
mance [61,62]. Changes in cardiac TnI phosphorylation status have been reported in failing
human hearts [63–65] and may reflect changes in the balance between kinase and phos-
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phatase activities. The examination of muscle samples from failing human hearts has
revealed notably low levels of cardiac TnI phosphorylation alongside high Ca2+ sensitiv-
ity [66–69]. Wolff et al. [67] reported an increase in myofibrillar Ca2+ sensitivity of isometric
tension in a canine model of DCM produced by chronic rapid pacing, likely due at least in
part to chronic reductions in β-adrenergic-mediated (PKA-dependent) phosphorylation
of myofilament regulatory proteins. This hypothesis is further supported by the fact that
both β-adrenergic receptor density and adenylate cyclase activity are commonly down-
regulated in HF [70–73]. Such downregulation could result in decreased PKA-dependent
phosphorylation of myofilament regulatory proteins, which may be the mechanism behind
the observed increase in Ca2+ sensitivity of isometric tension.

In addition, re-expression of a fetal TnT isoform was observed in end-stage failing my-
ocardial tissue exhibiting increased Ca2+ responsiveness of the contractile apparatus [39].
Additionally, a decrease in the phosphorylation level of TnC has been detected in HF
cases [74], providing yet another potential explanation for the observed reduction in con-
tractile function in failing hearts [75]. Some but not all of the changes in myofilament
activity and regulation predicted from these studies have been seen in myofilament prepa-
rations from human cardiomyopathy [76,77].

Since these previous studies concentrated on a single factor, the question remains
whether the increased Ca2+ sensitivity of the contractile apparatus is attributed to one of the
above-mentioned protein changes or is the complex resultant of several combined protein
changes. Table 1 provides a summary of previous studies conducted to identify the factors
influencing changes in Ca2+ sensitivity during cardiac diseases.

Table 1. Various pathways and targets contribute to altered Ca2+ sensitivity during cardiac disorders.

Cardiac Disease Model Pathway/Target Variations in Ca2+

Sensitivity Reference

Ischemic and DCM Human-skinned LV
papillary muscle fibers

Expression of ALC-1 in the LV in addition to
the essential VLC-1 Increased [40]

IDC Human right and left
ventricular tissues Proteolytic break down of MLC-2 Increased [60]

DCM Human left ventricular
myocytes

Reduction of the β-adrenergically mediated
phosphorylation of TnI via PKA Increased [58]

HF
Human mechanically
isolated Triton-skinned
single myocytes from LV

MLC-2 phosphorylation was significantly
lower Increased [57]

End-stage HF Human left ventricular
myocytes

Increased percentage of dephosphorylated
MLC-2 and TnI Increased [65]

Mitral or aortic valvular
disease

Human left ventricular and
atrial skinned myocytes Re-expression of a fetal TnT Increased [39]

FHC Human genetic screening AMPK γ2 mutations Increased [78]

DCM Canine left ventricular
myocytes

Chronic reductions in β-adrenergic-mediated
(PKA-dependent) phosphorylation of
myofilament regulatory proteins such as TnI
and/or C-protein.

Increased [67]

HF Rat cardiomyocytes Low levels of TnI phosphorylation Increased [68]
MI Pig left ventricular myocytes Reduced TnI phosphorylation Increased [66]

HCM Porcine left ventricular
papillary muscle strips Mutations in TnC Increased [79]

Ischemic and IDC Human left ventricular
skinned-fiber Acidic pH, cGMP Decreased [80]

End stage-HF Human trabeculae carneae PKC activation Decreased [81]
Normal Dog LV myofibrils Acidic pH Decreased [52]

Hypoxia or Ischemia Rat-skinned right
ventricular trabeculae Presence of inorganic phosphate Decreased [54]

Abbreviations: ALC-1, Atrial light chain 1; AMPK γ2, AMP-activated protein kinase γ2 subunit; cGMP, Cyclic
Guanosine Monophosphate; DCM, Dilated cardiomyopathy; FHC, Familial hypertrophic cardiomyopathy; HCM,
Hypertrophic cardiomyopathy; HF, Heart failure; IDC, Idiopathic dilated cardiomyopathy; LV, Left ventricle; MI,
Myocardial infarction; MLC-2, Myosin light chain-2; PKA, Protein kinase A; PKC, Protein kinase C; TnC, Troponin
C; TnI, Troponin I; TnT, Troponin T; VLC-1, Ventricular light chain.
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The concept of enhanced Ca2+ sensitivity implies a more reactive state of contractile
proteins to lower Ca2+ concentrations, a condition that holds both potential benefits and
drawbacks. Viewed from one angle, it might be beneficial during systole because it allows
the heart to generate more robust contractions even in the face of lower Ca2+ levels. This
could potentially offset other irregularities present in a failing heart. Conversely, this
heightened Ca2+ sensitivity can be problematic during diastole. For the heart to effectively
relax and refill with blood, it necessitates the rapid removal of Ca2+ from muscle cells.
However, if the myofilaments are overly sensitive to Ca2+, they may not relax adequately
even as Ca2+ levels drop, limiting the heart’s ability to refill with blood. This impaired
refilling process is known as diastolic dysfunction, which is a common feature of HF. Thus,
while an increased sensitivity to Ca2+ could partially offset anomalies in the systolic Ca2+

transient of a failing heart, it might concurrently harm diastolic function. Again, it is critical
to know whether the enhanced Ca2+ sensitivity results from a predominantly increase in
kon or a decrease in koff, but this critical information is often not investigated, leaving much
room for uncertainty in extrapolating findings on steady-state Ca2+ sensitivity to altered
dynamic behavior during in vivo contractions.

Another crucial consideration is the propensity for increased Ca2+ sensitivity to be a
trigger for hazardous arrhythmias, leading to sudden cardiac death. Statistics reveal that
sudden cardiac death accounts for 30–50% of fatalities among HF patients, and most of
these deaths are associated with ventricular tachycardia [82]. This condition can be brought
on by spontaneous electrical activity within the cardiomyocytes. In certain scenarios, a
spontaneous action potential may be initiated by a phase of depolarization that occurs dur-
ing the downstroke of the action potential, a phenomenon termed early afterdepolarization
(EAD). Though the exact mechanisms leading to the generation of EADs continue to be a
topic of debate and may differ across various settings, it is generally agreed upon that many
EADs originate from the improper re-opening of L-type Ca2+ channels (LTCCs) or other
depolarizing currents [83]. Abnormal Ca2+ homeostasis promotes arrhythmogenesis via
delayed afterdepolarizations (DADs). These events can be triggered, at least partially, due
to increased myofilament Ca2+ sensitivity [84]. This array of findings collectively supports a
thought-provoking hypothesis: strategies designed to reduce myofilament Ca2+ sensitivity
could provide a novel anti-arrhythmic approach. If proven effective, these strategies could
potentially transform the existing treatment paradigm for HF.

Alterations in Ca2+ sensitivity and disrupted Ca2+ homeostasis could also likely
induce various cellular processes, leading to morphological changes in the heart [85].
Earlier findings indicate that an elevated Ca2+ sensitivity in end-stage failing myocardium
could cause the muscle to be hypercontractile, thereby increasing ATP consumption [86].
Over time, this increased energy demand can lead to various adaptive and maladaptive
responses in the heart. Some potential impacts on cardiac morphology may manifest as
hypertrophy, fibrosis, cellular changes, chamber remodeling, mitochondrial dysfunction,
and apoptosis. Moreover, unique combination of properties in HCM TnT mutants including
reduced maximal activation, depressed cooperativity, and, at an equimolar ratio with wild
type troponin, diminished Ca2+ sensitivity may lead to a dilated heart condition rather than
the expected hypertrophic condition [87]. Interestingly, HCM TnT mutants exhibit a unique
combination of traits: reduced maximal activation, decreased cooperativity, and diminished
Ca2+ sensitivity when present in an equimolar ratio with the wild-type troponin. Contrary
to expectations, these properties might steer the heart towards a dilated phenotype instead
of the typical hypertrophic condition.

4. Ca2+ Sensitivity Changes in HFpEF and HFrEF

About half of all HF patients are diagnosed with HFpEF, and the other half with
HFrEF [88]. HFrEF often emerges from primary myocardial injuries such as myocardial
infarction, viral cardiomyopathy, genetic anomalies, or cardiotoxicity. In contrast, HFpEF
typically arises from external insults, often related to other health conditions, such as
aortic stenosis and hypertension, which subsequently result in myocardial dysfunction [89].
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Exploring the molecular details reveals that the two HF phenotypes exhibit unique patterns,
with cardiac remodeling being a common feature characterized by changes in the phospho-
rylation of myofilament proteins, particularly regulatory proteins [75,90,91]. While there is
a depth of understanding regarding these changes in HFrEF, insights into HFpEF remain
relatively limited [75,90,91]. For instance, the protein TnI, pivotal for myofilament Ca2+

sensitivity, has been subject to varying results across studies. Some indicate hyperphospho-
rylation in HFrEF, while others suggest hypophosphorylation. Similar inconsistencies are
reported for other regulatory proteins [92–97], and the exact reasons for such divergences
are yet to be identified.

Central to HF’s pathology is the alteration in Ca2+ handling, often stemming from
myofilament regulatory protein phosphorylation. For instance, in the case of HFrEF,
cardiac dysfunction is intrinsic to the cardiomyocytes, largely due to abnormalities in Ca2+

handling and disturbances in EC coupling. This includes a reduced systolic Ca2+ transient
amplitude with a slower rate-of-rise, correlating with decreased cardiomyocyte shortening
and delayed relaxation onset. A slower decay of the Ca2+ transient exacerbates this by
impairing relaxation kinetics during diastole. At a molecular level, these phenomena are
attributed to complex changes in the expression, localization, and function of key Ca2+

handling proteins, particularly SERCA, Phospholamban (PLN), NCX, and RyR [98]. The
decrease in SERCA expression or PLN phosphorylation, often observed in HFrEF, hinders
SR Ca2+ reuptake and delays relaxation, thereby reducing SR Ca2+ content [99]. This
is compounded by an increased expression of NCX, which competes with SERCA for
Ca2+, and heightened RyR and inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) channel
activity, leading to diastolic SR Ca2+ leak [100]. These alterations are further exacerbated by
structural changes in the t-tubule and SR network due to elevated wall stress [101], leading
to a decoupling of the calcium voltage-gated channel 1.2 (CaV1.2) from RyR [102] and the
emergence of ‘orphaned’ RyR channels as foci for diastolic Ca2+ release events [103].

In contrast, the alterations in Ca2+ handling associated with HFpEF are less well-
defined, partly due to the limited availability of cardiac tissue from HFpEF patients and the
lack of comprehensive animal models. However, in HFpEF-related models, cardiomyocyte
Ca2+ transients are often found to be normal or even enhanced [104–110], suggesting an
adaptive phase where Ca2+ flux shifts towards cardiomyocyte Ca2+ accumulation [111].
This adaptation may involve excessive Ca2+ entry through CaV1.2 and transient recep-
tor potential (TRP) channels [112–114], along with increased SR Ca2+ release through
RyR [104,105,110] and IP3R2 [109], enhancing Ca2+ cycling and contraction. Yet, with-
out a simultaneous enhancement of SERCA activity, this leads to elevated diastolic Ca2+,
preserved or enhanced Ca2+ transient amplitude, but slower Ca2+ reuptake kinetics and
impaired relaxation. These changes become more pronounced under elevated stimulation
frequencies, contributing to the chronotropic intolerance and reduced exercise capacity
characteristic of HFpEF patients. This observation is critical, given that exercise intolerance
is a prominent feature of HFpEF, often associated with impaired cardiac responses to
β-adrenergic stimulation. Unlike HFrEF, where β-blockers have shown clinical benefits,
their efficacy in HFpEF patients is less clear. This difference might be due to the distinct
features of Ca2+ regulation in response to β-adrenergic stimulation in HFpEF, where com-
ponents of the Ca2+ handling apparatus do not exhibit the same level of dysregulation as in
HFrEF. Notably, both HF phenotypes might experience impairments in Ca2+ removal path-
ways [99]. Therefore, therapeutically targeting cardiomyocyte Ca2+ homeostasis emerges
as a promising avenue to enhance both systolic and diastolic functions in HF patients.

Differences in Ca2+ handling between HFpEF and HFrEF have been observed, but
deeper exploration into the variations in Ca2+ sensitivity remains somewhat underexplored.
The sympathetic nervous system plays a pivotal role in modulating Ca2+ sensitivity in both
HFpEF and HFrEF, although its mechanisms and impacts vary between the two. In HFpEF,
sympathetic overactivity, often linked to comorbid conditions like hypertension, leads to
augmented β-adrenergic signaling [115]. This signaling increases cAMP levels, leading
to enhanced PKA activity. PKA phosphorylates key myofilament proteins, such as TnI
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and cardiac myosin binding protein C (cMyBP-C), thus increasing Ca2+ sensitivity [70–73].
This hyperphosphorylation may contribute to the increased myofilament Ca2+ sensitivity
observed in HFpEF [116], aligning with the heightened ventricular stiffness and impaired
relaxation characteristic of this condition. Conversely, in HFrEF, the sympathetic ner-
vous system’s influence is more complex. Chronic sympathetic activation, often resulting
from reduced cardiac output, leads to sustained β-adrenergic stimulation [117]. However,
prolonged exposure to high catecholamine levels can lead to β-adrenergic receptor desensi-
tization and downregulation, causing a blunted response to sympathetic stimulation [118].
This can result in altered Ca2+ handling and reduced Ca2+ sensitivity due to changes in
the phosphorylation state of myofilament proteins. The interplay of these mechanisms
underlines the sympathetic nervous system’s differential impact on Ca2+ sensitivity and
cardiac function in HFpEF and HFrEF, offering insights into potential therapeutic targets
for modulating Ca2+ handling in these distinct heart failure phenotypes.

In research by Hegemann et al. [116], strong links emerged between right ventricle (RV)
remodeling in HFpEF and notable shifts in RV cardiomyocyte Ca2+ balance, particularly a
rise in myofilament Ca2+ sensitivity. This shift may be attributed to the hyperphosphoryla-
tion of cMyBP-C. Upon activation via PKA phosphorylation, cMyBP-C has an increased
propensity to bind to actin over myosin S2. Such a modification is pivotal in enhancing
the Ca2+ sensitivity of the thin filament [119,120]. Further adding to this, a study on an
experimentally created HFpEF model that closely reflected patient conditions showed
marked changes in the titin protein, leading to its rigidity. This rigidity was attributed
to both a shift in titin’s isoform composition and its phosphorylation patterns. These
alterations are believed to account for the heightened stiffness detected in the left ventricle
(LV) in this model. Complementing these findings was evidence pointing to myofilament
proteins being less phosphorylated, coupled with an increased Ca2+ sensitivity. This hints
at malfunctions at the sarcomere level as potential early indicators in HFpEF onset [121].

Parallel to these discoveries, research led by Røe et al. [122] dissected the complexities
of diastolic dysfunction seen in concentric hypertrophy, a defining characteristic of HFpEF.
This study highlighted that such dysfunction is not shaped by a single factor. While pas-
sive myocardial stiffening has a part to play, the spotlight was also cast on positive shifts
in Ca2+ cycling. This emphasized the improvement in diastolic Ca2+ management and
the unchanged Ca2+ sensitivity. In a separate investigation [123] that probed the cardiac
gene expression patterns in patients with HFrEF and HFpEF using biopsy samples, distin-
guishing molecular profiles came to the forefront. Both sets of patients exhibited unique
molecular imprints, particularly in genes tied to the somatotropic axis, Ca2+ management,
and adrenergic signaling. Notably, HFrEF patients displayed a significant reduction in car-
diac SERCA2 levels relative to their HFpEF counterparts. This suggests that Ca2+ transients
could potentially be quicker in HFpEF, leading to enhanced Ca2+ reuptake and unchanged
intracellular Ca2+ sensitivity [123].

At the level of the sarcomere, there are compelling data suggesting that the actin–
myosin filaments play a role in HFpEF. The relaxation of these filaments is governed by
diastolic [Ca2+]i levels and their responsiveness to Ca2+. Elevated sensitivity to Ca2+ in the
myofilament, often a result of cardiac TnI’s hypophosphorylation, has been observed in
cases of HFpEF [121]. Additionally, this heightened Ca2+ sensitivity in the myofilament has
been linked to the diastolic dysfunction seen in hypertrophic cardiomyopathy, a condition
often triggered by mutations in sarcomeric genes [124,125]. It is also noteworthy that
the increased resting tension detected in HFpEF myocytes is associated with diminished
levels of protein kinase G (PKG). This reduction may hinder relaxation by decreasing the
phosphorylation of molecules like titin, cardiac TnI, and PLN [126,127]. The idea that
defective calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of
titin might be involved has also been put forward [128]. Thus, overall, while there are
several factors that can influence diastolic function, it is vital to acknowledge the potential
impact of irregularities in Ca2+ signaling and sensitivity.
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5. Manipulating Ca2+ Sensitivity for Therapeutic Gain

The current market’s predominant drug class for enhancing cardiac muscle contrac-
tility (positive inotropes) predominantly functions via β-adrenergic pathways, including
catecholamines and phosphodiesterase inhibitors, such as dobutamine, milrinone, and
inamrinone [129]. On a molecular level, these substances mainly augment inotropy by
elevating systolic Ca2+ levels. However, the leading theories behind the ineffectiveness
of existing inotropic treatments highlight numerous drawbacks: they amplify activator
Ca2+, exacerbate arrhythmias, trigger maladaptive Ca2+-dependent signaling cascades, and
heighten myocardial oxygen consumption, resulting in reduced cardiac efficiency [130].

On the other hand, augmenting the Ca2+ sensitivity of the contractile machinery
without altering systolic Ca2+ levels is a promising alternative, as initially proposed by
Solaro et al. [131] and subsequently demonstrated through viral gene delivery in myocardial
infarcted mice [132]. This approach employs “Ca2+ sensitizers”, a class of molecules gaining
clinical attention for over two decades [131–135]. The mechanisms these substances use
vary widely and range from direct motor protein activators like myosin, enhancers of
cross-bridge-generated force, to agents amplifying Ca2+– TnC binding and its subsequent
effects. Many of these drugs also exhibit additional effects, such as inhibiting cAMP
phosphodiesterase 3A (PDE3A), contributing to their vasodilation/venodilation properties,
and Ca2+-dependent increases in heart rate and contractility. Despite the theoretical promise
and successful animal model applications of Ca2+ sensitization, there is a notable lack of
FDA-approved pharmaceuticals focusing on modulating Ca2+ sensitivity for chronic HF
treatment [136]. Currently, three compounds—bepridil, levosimendan, and pimobendan—
are prescribed for HF outside the United States. Levosimendan failed to gain FDA approval,
and the use of bepridil was discontinued due to these compounds’ tendency to cause fatal
cardiac arrhythmias, particularly torsade de pointes.

Understanding these mechanisms provides valuable insights into the disease’s eti-
ology. Elevated myofilament Ca2+ sensitivity has been identified in numerous studies
on end-stage HF patients [58,65,137], marking it as a significant risk factor for ventricu-
lar tachyarrhythmias, a frequent HF complication [84]. These findings together build a
strong case for the hypothesis that reducing myofilament Ca2+ sensitivity might offer a
transformative anti-arrhythmic strategy, revolutionizing the treatment landscape for HF.
Despite this, Ca2+ de-sensitizing agents are currently rare, with their potential only recently
coming to light. Blebbistatin (BLEB), which acts as an actin–myosin uncoupler, has shown
its capability to adjust the dependency of force development on Ca2+ to the right, with
negligible impacts on cardiac ion channels [138,139]. Baudenbacher et al. [84] replicated this
phenomenon, illustrating that BLEB lowers myofilament Ca2+ sensitivity in TnT mutant
mice and counteracts the Ca2+ sensitizing impact of EMD. In line with these findings, BLEB
effectively halted the heightened incidence of ventricular tachycardia across all groups
with increased Ca2+ sensitivity (TnT mutants and those treated with EMD). This marks
the first instance demonstrating that decreasing Ca2+ sensitivity in myofilaments holds
anti-arrhythmic properties, potentially offering a therapeutic advantage for individuals
suffering from hypertrophic cardiomyopathy.

Expanding upon this perspective, the introduction of cardiac myosin inhibitors such
as mavacamten represents a significant breakthrough in targeting the fundamental mecha-
nisms of HCM. Mavacamten, a pioneering, targeted, and cardiac-specific myosin inhibitor,
has gained approval from the US Food and Drug Administration for the treatment of adults
with HCM [140]. This marks a crucial shift in the therapeutic approach, focusing on the
underlying pathophysiological processes of the condition. Clinical trials have highlighted
the efficacy of mavacamten, demonstrating its capacity to improve cardiac output and
exercise capability, alongside a notable reduction in LV outflow tract (LVOT) gradients in
HCM patients [141,142]. The drug’s mechanism of action, which involves normalizing the
balance of “on” and “off” myosin heads within cardiac muscle cells, directly addresses the
hypercontractile nature of HCM [141,143]. This modulation, by alleviating LVOT obstruc-
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tion and reducing LV filling pressures, effectively addresses two of the primary challenges
encountered in the management of HCM.

Crucially, mavacamten’s ability to reduce Ca2+ sensitivity emerges as a pivotal aspect
of its therapeutic profile [143]. This reduction in Ca2+ sensitivity, coupled with its impact
on alleviating diastolic dysfunction, could position mavacamten as a promising agent
in the broader context of HF treatment. It offers a novel approach, especially in HF
subtypes where abnormal Ca2+ sensitivity and diastolic dysfunction are prevalent and
contribute significantly to disease progression. By targeting these core pathophysiological
elements, mavacamten extends beyond just providing symptomatic relief, suggesting
a potential for improved patient outcomes in various HF scenarios. This shift towards
modulating fundamental cardiac mechanics with drugs like mavacamten highlights the
need for ongoing research and clinical trials. It is imperative to investigate and comprehend
the full spectrum of benefits offered by cardiac myosin inhibitors further. Such research
is crucial in broadening our understanding of their potential applications across diverse
HF pathologies. The continued exploration of mavacamten and similar therapies holds the
promise of revolutionizing HF management, offering more effective, targeted treatments
that could significantly alter the course of the disease and improve patients’ quality of life.

6. Conclusions

The alterations in Ca2+ sensitivity and their relationship with the incidence of cardiac
relaxation rate and diastolic dysfunction in HF present significant clinical implications. A
deeper understanding of these changes can guide the development of innovative thera-
peutic strategies targeting Ca2+ handling and sensitivity. Nonetheless, further research is
warranted to fully elucidate the complex interplay between Ca2+ regulation, myofilament
sensitivity, and their implications in different forms of HF. This knowledge can pave the
way for more effective and targeted treatments for this debilitating disease.
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