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Abstract: Synthesis, the complete 1H- and 13C-NMR assignments, and the long-range C,H coupling
constants (nJC,H) of some hydrogen-deficient carbazolequinones, assessed by a J-HMBC experiment,
are reported. In these molecules, the protons, used as entry points for assignments, are separated by
several bonds with non-protonated atom carbons. Therefore, the use of long-range NMR experiments
for the assignment of the spectra is mandatory; we used HSQC and HMBC. On the other hand, the
measured heteronuclear (C,H) coupling constants 2J to 5J) allow us to choose the value of the long-
range delay used in the HMBC experiment less arbitrarily in order to visualize a desired correlation
in the spectrum. The chemical shifts and the coupling constant values can be used as input for
assignments in related chemical structures.
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1. Introduction

Molecular structure elucidation is at the basis of almost all of organic chemistry. The
main tools needed to achieve this goal are nuclear magnetic resonance (NMR) spectroscopy
and high-resolution mass spectrometry (HRMS). The two-dimensional (2D)-NMR experi-
ments, based on the spin–spin coupling networks of the molecule, play a crucial role in
structure elucidation [1]. Among them, heteronuclear long-range correlation experiments
are essential. These experiments are the only way to connect molecular fragments through
non-protonated carbons or heteroatoms. The oldest, but still the most widely used, is
the HMBC experiment [2,3]. This pulse sequence consists of a few radiofrequency pulses,
making it robust and the most sensitive [4]. The HMBC experiment allows structural infor-
mation to be obtained using long-range correlation signals for C,H spin pairs. The detection
of these correlation signals relies on the correct choice of NMR parameters, especially the
long-range delay that can be adjusted while taking into account the magnitude of the
coupling constants [5]. This delay is calculated as follows: ∆2 = 1/(2 nJC,H). Since organic
compounds have a range of nJC,H values, usually from 2 to 15 Hz [6], ∆2 should be at least
equal to 100 ms. Generally, a delay shorter than the theoretical value is employed to avoid
the decay of 1H magnetization during this delay, particularly for large molecules. When
the experiment is optimized for CH-long-range couplings nJC,H in the range of 6–10 Hz,
it provides access mainly to 3JC,H correlations, whereas the often smaller 2JC,H and 4JC,H
couplings generate weak or invisible correlation signals in the spectra [1,4,7]. However,
the choice is generally made arbitrarily rather than from knowledge of the actual value of
the couplings. Therefore, knowing the coupling constants in model molecules can help
in choosing the adequate NMR parameters and, hence, correctly assigning the signals in
the HMBC spectrum. This is because sometimes, four and even five-bond correlations, in
addition to the common two and three-bond correlations observed using a standard value
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of ∆2 (60–80 ms), are observed. Correlations to four and even six bonds have been observed
for diverse molecular structures and coupling pathways [1,6,8–15]. Some of them are as
simple as ethyl crotonate, which, using a 65 ms delay [8], exhibits a five-bond correlation
between the methyl protons of the alkoxy group and the Cα to the carbonyl group, a
coupling pathway with a high degree of freedom. This is notable because the rigidity of
the molecules has been argued as the reason we observed these non-common couplings. A
special issue is the case of extremely hydrogen-deficient compounds, because their elucida-
tion, in some cases, relies on these type of couplings. Complementary to HMBC, J-HMBC,
among other NMR experiments, has been developed to visualize the very long-range
connectivities [16–22]. The assignment of NMR spectra and measuring long-range C,H
couplings provide insights into the adequate selection of parameters (mainly long-range
delay in HMBC experiment) in the NMR of hydrogen-deficient molecules. These can
also be used as input data for NMR calculations with theoretical methods, because they
need to corroborate the accuracy of the data obtained by comparison with experimental
results or combine the data to obtain information, for example, regarding conformational
equilibrium in flexible molecules [23–25]. On the other hand, quinones have wide struc-
tural diversity [26] and are vastly distributed in nature, including in interstellar dust [27].
They have essential roles in the cell electron transport chain [28] and spark great interest
in toxicology [29,30], medicinal chemistry [31–33], and agriculture as antifungals against
phytopathogenic fungus [34–36]. Furthermore, quinones have relevance as dyes [37] and in
energy storage, especially those with nitrogen atoms in their structures [38,39]. Among this
last class of quinones, carbazole quinones have attracted interest owing to the bioactivities
of some of its members [40,41]. Murrayaquinone A, among others, has shown promising
cytotoxicity [41]. Calothrixin B (Figure 1) has shown a high level of in vitro cytotoxicity
against the HeLa cancer cell line by interacting with human topoisomerase I and gener-
ating reactive oxygen species [42]. Some carbazolequinones show inhibitory effects on
lipopolysaccharide and interferon-gamma-induced nitric oxide production in cells [43].
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Figure 1. Chemical structures of Murrayaquinone A and Calothrixin B.

Our interest in biologically active quinones has led us to achieve their unequivocal
structural characterization using NMR [44], assess the antitumor activity of isoquino-
linequinones [45], and study carbazolequinones via mass spectrometry [46]. This work
aims to study some hydrogen-deficient o-carbonyl carbazolequinone derivatives, whose
molecular skeleton has been previously studied by us [46], in addition to measuring their
long-range heteronuclear coupling constants and evaluating the effects of the substituents
on them.

2. Results
2.1. Synthesis

The compounds were obtained following the synthetic sequence depicted in Scheme 1,
in which the first step is the on-water C-N oxidative coupling of quinone 1 with aromatic
amines previously described by us [47]. In the second step, amino quinones were used as
starting products in an oxidative coupling with palladium acetate under a nitrogen atmo-
sphere, generating the corresponding o-carbonyl carbazolequinones CQ-1–CQ-6, following
a procedure which has previously been described [46].
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Scheme 1. Synthesis of the studied carbazolequinones and numbering used in their structures.
Compounds CQ-1 and CQ-4 have been previously described [46].

2.2. Complete NMR Assignments of the 13C NMR

Tables 1 and 2 show the assignments of these spectra, which were not straightforward
because the central regions of these structures consist only of carbonyl and quaternary
carbon atoms aside from nitrogen atoms. The resonances of these atoms must be correlated
via long-range J(CH) by the concerted use of 1H-detected one bond (C-H) heteronuclear
single quantum coherence (HSQC) [48] and long-range C-H heteronuclear multiple bond
connectivity (HMBC) [2].

Table 1. 13C assignments of the studied compounds.

Compound CQ-1 CQ-2 CQ-3 CQ-4 CQ-5 CQ-6

X H OMe Cl Br COMe F

C1 114.4 115.6 116.2 116.5 114.4 116.1

C2 127.1 118.4 127.2 129.8 126.5 115.9

C3 124.6 157.6 129.1 117.1 133.3 160.1

C4 122.4 102.3 121.3 124.4 123.9 106.8

C5 123.9 123.9 124.8 125.4 123.4 124.4

C6 138.2 138.2 136.6 136.8 140.4 134.9

C7 116.6 116.6 116.0 115.8 117.5 116.4

C8 183.1 183.1 183.0 183.0 183.2 182.9

C9 159.0 159.0 158.9 158.9 158.8 159.0

C10 130.3 130.4 130.4 130.4 130.3 130.4

C11 178.1 177.8 177.9 177.9 177.9 177.9

C12 135.7 135.6 136.7 136.5 137.2 137.0

C13 183.6 183.7 183.5 183.5 183.5 183.6

C14 127.0 127.0 127.0 127.0 127.0 127.0

C15 158.6 158.6 158.6 158.6 158.7 158.6

C16 39.5 39.5 39.5 39.5 39.5 39.5

gem-Me 26.7 26.6 26.6 26.6 26.6 26.6

OMe 55.8

MeCO 31.1

The 1H NMR spectra of the tricyclic skeleton of the six carbazolequinones show the
protons of the AB system corresponding to the enone moiety 14-H and 15-H, where 15-H
resonates at a lower field due to the resonance effect of the carbonyl group. On the other
hand, the aromatic protons 4-H and 1-H are easily distinguishable from each other because
of the deshielding effect that the carbonyl group at C8 exerts over 4-H. In addition, for
CQ-2 to CQ-6, the multiplicity of the aromatic resonance also allows for assignment. Based
on this, and using the HSQC experiment, the protonated carbons were identified. Then, via
the HMBC method, the non-protonated carbons were assigned. Figure 2 shows some of the
long-range correlations (4JC,H and 5JC,H) that allowed both fragments to be joined.
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Table 2. 1H assignments of the studied compounds.

CQ-1 CQ-2 CQ-3 CQ-4 CQ-5 CQ-6

H1 7.56 7.46 7.58 7.53 7.64 7.59

H2 7.42 7.06 7.44 7.56 8.00 7.31

H3 7.35 - - - - -

H4 8.11 7.52 8.06 8.22 8.70 7.77

H14 6.26 6.25 6.26 6.27 6.28 6.26

H15 7.01 7.06 7.02 7.02 7.02 7.01
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Tables 3–8 show the measured coupling constants (absolute values in Hz) for the
studied carbazolequinones, obtained from J-HMBC experiments [16].

Table 3. Coupling constants for CQ-1.

H4
2J C3 2.1 3J C7 2.0 3J C2 5.6 3J C6 7.3

H1
3J C3 9.1 4J C12 6.1 4J C4 2.0

H2
2J C3 1.9 3J C4 4.9 3J C6 10.0

H15
2J C16 2.5 3J C17/18 2.4 3J C9 7.2 3J C13 10.1 4J C10 2.0

H14
3J C16 7.5 3J C10 4.1 4J C17/18 2.0 4J C11 2.1 4J C11 2.1

H17/18
3J C17/18 4.9 2J C16 3.8 4J C14 2.3 3J C9 3.6

Table 4. Coupling constants for CQ-2.

H4
2J C3 2.9 3J C6 7.4 4J C1 2.0

H1
3J C5 2.9 3JC3 11.0 4J C4 2.6 4J C7 5.7

H2
2J C1 2.0 2J C3 2. 3 3J C4 5.6 3J C6 10.0

H15
2J C16 2.3 3JC17/18 2.1 3J C9 7.3 3J C8 2.8 3JC13 10.1 4J C10 2.0 5J C7 2.3

H14
2J C13 2.1 3J C16 7.5 3J C10 4.2 4J C17/18 2.1 4J C9 2.2 4J C11 2.5

H17/18
2J C16 3.3 3JC17/18 4.9 3J C15 3.7
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Table 5. Coupling constants for CQ-3.

HN 2J C12 5.6 2J C6 3.1 3J C5 2.9 3J C7 4.9

H4
3J C7 2.6 3J C2 7.5 3J C6 6.8 4J C1 2.8

H1
2J C2 3.6 3J C5 5.6

H2
2J C1 3.4 3J C4 8.0 3J C6 9.7

H3
2J C2 2.5 3 J C1 8.2 3J C5 9.1 4J C6 2.5

H15
2J C16 2.8 3J C17/18 2.1 3J C9 7.1 3J C13 10.5 4J C10 1.8 4J C8 2.4 5J C7 2.3

H14
2J C13 1.8 3J C16 7.4 3J C10 4.1 4JC17/18 1.8 5J C9 2.0 4J C111.8

H17/18
2J C16 3.4 3J C17/18 4.3 3J C9 3.5 4J C14 1.8

Table 6. Coupling constants for CQ-4.

H4
2J C3 3.5 3J C7 2.1 3J C2 4.6 3J C6 8.0

H1
3J C5 5.3 3J C3 10.0 4J C12 5.8

H2
2J C3 2.2 3J C4 4.5 3J C6 9.0

H15
2J C16 3.0 3J C17/18 3.2 3J C9 7.5 3J C13 10.0 4J C10 2.7 5J C7 2.1

H14
2J C13 3.0 3J C16 8.0 3J C10 3.5 4JC17/18 2.9 4J C9 3.0 4J C11 3.4

H17/18
2J C16 3.1 3J C17/18 3.5 3J C9 3.5

Table 7. Coupling constants for CQ-5.

H4
3J C7 2.2 3J C2 7.3 3J C6 7.6 3J CO 3.6 4J C1 2.8

H1
3J C3 7.0 3J C5 5.3 4J CO 1.9 5J C8 2.0

H2
3J C4 6.0 3J C6 10.1 3J CO 2.8

H15
2J C16 2.7 3J C17/18 2.1 3J C9 7.2 3J C13 10.4 4J C10 2.0 4J C8 3.0

H14
2J C13 1.9 3J C16 7.6 3J C10 3.9 4J C17/18 3.0 4J C9 2.0 4J C11 2.1 5J C12 3.0

H17/18
2J C16 3.7 3J C17/18 5.0 3J C9 4.0

CH3-CO 2J CO 6.0

Table 8. Coupling constants for CQ-6.

H4
2J C3 5.0 2J C5 5.0 3J C7 2.0 3J C6 7.6

H1
3J C3 4.4 3J C5 6.1 4J C4 2.3

H2
2J C3 4.1 3J C6 10.1 3J C4 3.9 4J C5 4.1

H15
2J C16 2.2 3J C17/18 2.0 3J C9 7.1 3J C13 10.5 4J C10 2.0 4J C8 2.7 5J C7 2.3

H14
2J C13 2.1 3J C16 7.7 3J C10 4.1 4J C17/18 2.0 4J C9 2.0 4J C11 2.5

H17/18
2J C16 3.6 3J C17/18 4.8 3J C9 3.9

3. Discussion

The NMR spectra of the tricyclic skeleton of the six carbazolequinones were assigned
as previously discussed. All molecules, except CQ-2, exhibited five-bond C,H coupling
between H15 and C7 of 2–3 Hz, in the same range of several four-bond correlations.
However, CQ-3 and CQ-6 also exhibited 4JC,H of 5.7 and 4.1 Hz. The 3J had values in the
broad range of 2.0 to 11 Hz, and the two bond correlations ranged between 1.8 and 5.6 Hz.
This wide dispersion of the coupling constant values makes it difficult to predict a small
range for the value of a constant. Therefore, the data obtained from reference compounds
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like these can be used as input data for assigning similar structures through experimental
procedures or theoretical calculations.

4. Materials and Methods

NMR spectra were recorded on a Bruker Avance III 600 NMR spectrometer equipped
with a 5 mm TCI cryogenic probe using 5 mm NMR tubes in dimethyl sulfoxide solutions.
Chemical shifts were reported as ppm downfield from TMS for 1H NMR, and as relative to
the central DMSO-d6 resonance (39.4 ppm) for 13C NMR. Melting points were uncorrected
and were measured using an Electrothermal 9100 apparatus. High resolution mass spectra
(HRMS) were obtained using a high-resolution magnetic trisector (EBE) mass analyzer.
Commercially available starting materials and solvents were used without further purifica-
tion. Silica gel 60 (70–230 mesh) and alu-Foil 60 F254 were used for column chromatography
and analytical TLC, respectively.

Synthesis of Carbazolequinones: General Procedure
In a Schlenk tube, under an inert atmosphere, a mixture of one equivalent of the

respective anilinoquinone and one equivalent of Pd(OAc)2 in glacial acetic acid was heated
under reflux for 4 h, and then filtered. The filtered mixture was extracted 3 times with
ethyl acetate and washed with a sodium bicarbonate solution; the organic phase was dried
with anhydrous sodium sulfate and then evaporated under vacuum. Column chromatog-
raphy on silica gel with hexane: ethyl acetate 1:1 as the eluent allowed us to obtain pure
carbazolequinones.

10,10-dimethyl-5H-benzo[b]carbazole-6,7,11(10H)-trione (CQ-1) [46]
A total of 60 mg (0.24 mmol) of 3-anilino-8,8-dimethylnaphthalene-1,4,5(8H)-trione

and Pd(OAc)2 45 mg (0.18 mmol) in glacial acetic acid (4 mL) yielded 32 mg of CQ-1 (54%
yield). 1H NMR (600.23 MHz, DMSO-d6) δ: 1.62 (s, 6H, 2XCH3), 6.26 (d, J = 10 Hz, 1H,
14-H), 7.01 (d, J = 10 Hz, 1H, 15-H), 7.35 (dd, J1 = 8.2 Hz, J2 = 7.9 Hz, 1H, 3-H), 7.42 (dd,
J1 = 8.2 Hz, J2 = 7.9 Hz, 1H, 2-H), 7.56 (d, J = 8.2 Hz, 1H, 1 o 4-H), 8.11 (d, J = 7.9 Hz, 1H,
1 o 4-H), 12.90 (s, 1H). 13C NMR (150.93 MHz, DMSO-d6) δ: 26.68 (2XCH3), 114.39, 116.82,
122.41, 123.91, 124.57, 127.04, 127.12, 130.27, 135.68, 138.17, 158.60, 158.99, 178.12, 183.14,
183.65. IR(KBr): 3237, 1683, 741 cm−1. M.p.: 297–299 ◦C. HRMS (ESI) m/z: calculated for
C18H13NO3 M+ 291.0895, 291.0894 was found.

2-methoxy-10,10-dimethyl-5H-benzo[b]carbazole-6,7,11(10H)-trione (CQ-2)
A total of 58 mg of 3-(4-methoxyphenylamino)-8,8-dimethylaminonaphthalene-1,4,5-

(8H)-trione (0.18 mmol) reacted with 40 mg of palladium acetate (II) (0.24 mmol), yielding
32 mg of CQ-2 (55% Yield). 1H NMR (600.23 MHz, DMSO-d6) δ: 1.62 (s, 6H, 2XCH3),
3.85 (s, 3H, O-CH3), 6.25 (d, J = 10 Hz, 1H, 14-H), 7.00 (d, J = 10 Hz, 1H, 15-H), 7.06 (dd,
J1 = 8.8 Hz, J2 = 2 Hz, 1H, 3-H), 7.46 (d, J = 9 Hz, 1H, 4-H), 7.52 (d, J = 2 Hz, 1H, 1-H), 12.83 (s,
1H). 13C NMR (150.93 MHz, DMSO-d6) δ: 26.66 (2XCH3), 55.86 (O-CH3), 102.29, 115.60,
116.40, 118.39, 124.95, 127.03, 130.42, 133.39, 135.64, 157.61, 158.60, 159.13, 177.79, 182.91,
183.73. IR(KBr): 3253, 1687, 836 cm−1. M.p.: 278–280 ◦C. HRMS (ESI) m/z: calculated for
C19H15NO4 M+ 321.1001, 321.1007 was found.

2-cloro-10,10-dimethyl-5H-benzo[b]carbazole-6,7,11(10H)-trione (CQ-3)
A total of 180 mg of 3-((4-chlorophenyl)amino)-8,8-dimethylnaphthalen-1,4,5(8H)-

trione (0,548 mmol) and 123 mg of palladium acetate (II) (0,548 mmol) allowed us to obtain
77 mg of CQ-3 (43% yield). 1H-NMR (600.23 MHz, DMSO-D6) δ 1.61 (s, 6H, 2XCH3),
6.26 (d, J = 10 Hz, 1H, 8-H), 7.02 (d, J = 10 Hz, 1H, 9-H), 7.44 (dd, J1 = 9 Hz, J2 = 2 Hz, 1H,
3-H), 7.58 (d, J = 9 Hz, 1H, 4-H), 8.06 (d, J = 2 Hz, 1H, 1-H), 13.10 (s, 1H, NH). 13C-NMR
(150.93 MHz, DMSO-d6) δ 26.62 (2XCH3), 115.96, 116.19, 121.27, 124.79, 127.04, 127.25,
129.08, 130.38, 136.61, 136.69, 158.61, 158.91, 177.93, 182.96, 183.56. M.p.: 248–250 ◦C. HRMS
(ESI) m/z: calculated for C18H12ClNO3 M+ 325.0506, 325.0495 was found.

2-bromo-10,10-dimethyl-5H-benzo[b]carbazole-6,7,11(10H)-trione (CQ-4) [46]
A total of 41 mg of 3-[(4-bromophenyl)amino]-8,8-dimethylnaphthalene-1,4,5(8H)-

trione (0,11 mmol) and Pd(OAc)2 (25 mg, 0,11 mmol) yielded 17 mg of CQ-4 (39%). 1H
NMR (600.23 MHz, DMSO-d6) δ: 1.61 (s, 6H, 2XCH3), 6.27 (d, J = 9.9 Hz, 1H, 14-H), 7.02 (d,
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J = 9.9 Hz, 1H, 15-H), 7.53 (d, J = 8.6 Hz, 1H, 4-H), 7.56 (dd, J1= 8.8 Hz, J2= 1.8 Hz, 1H, 3-H),
8.22 (d, J = 1.3 Hz, 1H, 1-H), 13.10 (s, 1H, NH). 13C NMR (150.93 MHz, DMSO-d6) δ 187.55,
181.64, 181.44, 178.41, 177.03, 159.62, 145.04, 144.27, 137.91, 130.74, 130.25, 128.01, 126.40,
118.03,112.43, 31.24, 27.63. IR: 3220, 1690, 817 cm−1. M.p.: 272–274 ◦C. HRMS (ESI) m/z:
calculated for C18H12BrNO3 M+ 369.0001, 368.9987 was found.

2-acetyl-10,10-dimethyl-5H-benzo[b]carbazole-6,7,11(10H)-trione (CQ-5)
3-((4-acetylphenyl)amino)-8,8-dimethylnaphthalen-1,4,5(8H)-trione (139 mg, 0.415 mmol)

and palladium acetate (II) (93 mg, 0.415 mmol) reacted, yielding 47 mg of CQ-5 (34% yield).
1H-NMR (600.23 MHz, DMSO-d6)δ 1.63 (s, 6H, 2XCH3), 2.67 (s, 3H, CH3CO), 6.28 (d,
J = 10 Hz, 8-H), 7.02 (d, J = 10 Hz, 9-H), 7.64 (d, J = 9 Hz, 1H, 4-H), 8.00 (dd, J1 = 2 Hz,
J2 = 9 Hz, 1H, 3-H), 8.70 (d, J = 2 Hz, 1H, 1-H), 13.19 (s, 1H, NH). 13C-NMR (150.93 MHz,
DMSO-d6) δ 26.63, 27.25, 114.43, 117.45, 123.43, 123.95, 126.54, 127.05, 130.26, 133.28, 137.25,
140.45, 158.66, 158.81, 177.95, 183.23, 183.56. M.p.: 252–254 ◦C. HRMS (ESI) m/z: calculated
for C20H15NO4 M+ 333.1001, 333.0995 was found.

2-fluoro-10,10-dimethyl-5H-benzo[b]carbazole-6,7,11(10H)-trione (CQ-6)
3-((4-fluorophenyl)amino)-8,8-dimetilnaphthalen-1,4,5(8H)-trione (220 mg, 0.7 mmol)

reacted with palladium acetate (II) (151 mg, 0.7 mmol), of CQ-6 17 (97 mg, 45%). 1H-NMR
(600.23 MHz, DMSO) δ 1.61 (s, 6H, 2XCH3), 6.26 (d, J = 10 Hz, 1H, 8-H), 7.01 (d, J = 10 Hz,
1H, 9-H), 7.31 (ddd, J1 = 9 Hz, J2 = 9 Hz, J3 = 3 Hz, 1H, 3-H), 7.59 (dd, J1 = 9 Hz, J2 = 4 Hz,
1H, 4-H), 7.77 (dd, J1 = 9 Hz, J2 = 3 Hz, 1H, 1-H), 13.05 (s, 1H, NH). 13C-NMR (150.93 MHz,
DMSO) δ 26.63, 106.78, 106.95, 115.84, 116.01, 116.13, 116.19, 116.60, 116.64, 124.29, 124.36,
127.03, 130.42, 134.89, 137.00, 158.62, 159.00, 159.30, 160.88, 177.89, 182.89, 183.60. M.p.:
251–253 ◦C. HRMS (ESI) m/z: calculated for C18H12FNO3 M+ 309.0801, 309.0790 was found.
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