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Abstract: The endocannabinoid system regulates physiological processes, and the modulation of
endogenous endocannabinoid (eCB) levels is an attractive tool to contrast the development of
pathological skin conditions including cancers. Inhibiting FAAH (fatty acid amide hydrolase), the
degradation enzyme of the endocannabinoid anandamide (AEA) leads to the increase in AEA
levels, thus enhancing its biological effects. Here, we evaluated the anticancer property of the FAAH
inhibitor URB597, investigating its potential to counteract epithelial-to-mesenchymal transition (EMT),
a process crucially involved in tumor progression. The effects of the compound were determined in
primary human keratinocytes, ex vivo skin explants, and the squamous carcinoma cell line A431. Our
results demonstrate that URB597 is able to hinder the EMT process by downregulating mesenchymal
markers and reducing migratory potential. These effects are associated with the dampening of the
AKT/STAT3 signal pathways and reduced release of pro-inflammatory cytokines and tumorigenic
lipid species. The ability of URB597 to contrast the EMT process provides insight into effective
approaches that may also include the use of FAAH inhibitors for the treatment of skin cancers.

Keywords: keratinocyte-derived skin cancers; epithelial-to-mesenchymal transition; endocannabinoids;
FAAH inhibition; bioactive lipids

1. Introduction

The endocannabinoid system (ECS) is a complex signaling network including endoge-
nous ligands known as endocannabinoids (eCBs), their receptors and transporters, and
enzymes involved in eCB synthesis and degradation. The first eCBs identified in humans
were anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglicerol (2-AG),
two bioactive lipids derived from arachidonic acid [1,2]. Later, other molecules were dis-
covered and classified as endocannabinoid-like substances, such as palmitoylethanolamide
(PEA) and oleoylethanolamide (OEA) [3]. eCBs are produced “on demand” as an adaptive
response to cellular stress to re-establish cell homeostasis. They exert biological functions
mainly through the activation of the cannabinoid receptors CB1 and CB2, which belong to
the family of G-protein-coupled receptors (GPCRs) [4–6], and of peroxisome proliferator-
activated nuclear receptors (PPARα and PPARγ). AEA and 2-AG are metabolized by fatty
acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), releasing arachidonic
acid (AA) and ethanolamine or glycerol, respectively. The endocannabinoid system is
engaged in different physiological processes, thus representing an important homeostatic
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modulator. As a consequence, ECS deregulation is associated with several pathological
conditions, including neurodegenerative disorders, cardiovascular disease, obesity, and
cancer [7–12]. Targeting the endocannabinoid system as a potential anticancer strategy
is an emerging interest. On the one hand, evidence from preclinical studies and clinical
approaches using cannabinoid-based drugs demonstrated their efficacy in counteracting
chemotherapy-induced nausea, vomiting, and pain [11,13–15]. On the other hand, in vitro
and in vivo data revealed that eCBs exert anti-tumor effects, inhibiting cell proliferation,
migration/invasiveness, angiogenesis, and epithelial-to-mesenchymal transition (EMT)
while inducing apoptosis and autophagy in different cancer types [11,16–18].

The skin possesses a functional endocannabinoid system known to regulate physiolog-
ical processes. Hence, the deregulation of ECS contributes to the development of a broad
spectrum of cutaneous pathological conditions including pigmentary disorders, inflam-
matory diseases, and skin cancers [19]. eCBs exert anti-tumor effects in both melanoma
and non-melanoma skin cancer cells [20–26]. The epidermal keratinocyte-derived cancer
cutaneous squamous cell carcinoma (CSCC) is the second most common malignant disease
in the world with increasing incidence [27–29]. Early diagnosed sporadic CSCC is usually
treated with surgery or radiochemotherapy, but the metastatic form is the cause of high mor-
tality and unfavorable prognosis [30,31]. CB1 and CB2 are highly expressed in CSCC and
basal cell carcinoma (BCC) [19,24,31] and several studies demonstrated the anti-proliferative
and anti-migratory effects of (endo)cannabinoids in these tumors [24,32–35]. The epithelial-
to-mesenchymal transition is a crucial event in tumor progression and metastasis [36–39].
This process is regulated by a complex signaling network including the Ras/ERK/MAPK
and PI3K/AKT/STAT3 pathways responsible for the activation of multiple transcription
factors [40–49]. Growth factors (e.g., EGF, TGF-β, IGF-1), pro-inflammatory cytokines (e.g.,
TNF-α, IL-6, IL-8), and bioactive lipids also derived from eCB hydrolysis (e.g., arachidonic
acid AA, HETEs, prostaglandins) have a role in EMT, inducing the loss of epithelial markers
such as E-cadherin and the up-modulation of mesenchymal markers such as N-cadherin,
vimentin, fibronectin, and metalloproteinases (MMP-2 and MMP-9) [50–56]. Based on the
ECS’s role in regulating cutaneous homeostasis, the pharmacological modulation of eCBs
represents a powerful tool for the management of skin diseases and cancers. A promising
therapeutic approach is the use of compounds that act through the inhibition of the eCB
degradation enzymes [57–60], thus excluding most of the side effects observed using ex-
ogenous cannabinoids such as sedation, hepatotoxicity, and addiction [61,62]. URB597 is a
potent and highly selective FAAH inhibitor that leads to an increase in the levels of AEA
and the analogs PEA and OEA, thus enhancing their activity [63]. In the present study, we
investigated the anti-tumorigenic effects of URB597 using primary keratinocytes, ex vivo
skin explants, and the cutaneous squamous carcinoma cell line A431.

The results demonstrated the ability of URB597 to counteract the EMT process and the
migratory capacity by affecting the STAT3 pathway and pro-tumorigenic lipid signaling.
These results indicate the need to further explore the ECS and the use of FAAH inhibitors
for the development of innovative therapeutic approaches in the treatment of keratinocyte-
derived tumors.

2. Results
2.1. Inhibition of FAAH Induced by URB597 Downregulates Proliferative Capacity and Increases
Anandamide Levels in Primary Keratinocytes

To evaluate the effects of URB597 on cell viability and proliferation, normal human
keratinocytes (NHKs) were incubated with increasing concentrations of the compound
(from 0.01 to 10 µM), and Neutral Red assay and Ki67 immunofluorescence analyses
were performed. Cell viability and proliferation were not influenced by URB597 up to a
1 µM dose. A reduction in both parameters started to be evident at 5 µM (Figure 1A,B). To
investigate the optimal dose of URB597 able to increase eCB levels, the cells were stimulated
with different doses of the molecule, from 0.5 to 10 µM. Intracellular and extracellular
concentrations of anandamide (AEA) were analyzed via HPLC. The results revealed a
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significant increase in intracellular AEA following the treatment with FAAH inhibitor at
all of the concentrations evaluated, with the peak being achieved at 1 µM (Figure 1C). The
amount of extracellular AEA increased in a dose-dependent manner, reaching a plateau in
the dose range between 1 and 10 µM (Figure 1D). To analyze the kinetics of the intracellular
accumulation and extracellular release of AEA, NHKs were incubated with URB597 at
different doses (0.5–1–5 µM) at the indicated time points. The increase in intracellular AEA
was already evident after 3 h of incubation, reached the highest levels at 24 h, and persisted
up to 48 h for the 1 µM dose. At URB597 5 µM, the AEA intracellular levels increased after
3 h, decreased at 24 h, and returned to the vehicle-treated cell value at 48 h (Figure 1E). The
amount of extracellular AEA significantly increased at 3 h, and was still evident at 24 h,
returning to the vehicle-treated cell value at 48 h for all URB597 doses (Figure 1F). Based
on these results, a 1 µM dose of URB597 was considered the optimal dose that was able
to induce a significant increase in intracellular and extracellular levels of AEA, without
inducing cytotoxic effects.
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Figure 1. URB597 downregulates proliferative capacity and increases anandamide levels in NHKs. 
(A) Cell viability evaluated by Neutral Red assay on NHKs treated with increasing concentrations 

Figure 1. URB597 downregulates proliferative capacity and increases anandamide levels in NHKs.
(A) Cell viability evaluated by Neutral Red assay on NHKs treated with increasing concentrations
of URB597 for 48 h. Results are expressed as fold change ± SD relative to vehicle-treated cell value,
which was set as 100 by definition. (B) Quantitative analysis of Ki67-positive cells assessed through
immunofluorescence in response to URB597 treatment for 24 h. Results are expressed as the mean
value ± SD of positive cells/total cells (%). Intracellular AEA production (C) and extracellular release
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(D) in response to increasing concentrations of URB597 after 24 h. Results are expressed as fold
change ± SD relative to vehicle-treated cell value, which was set as 100 by definition. Intracellular
(E) and extracellular (F) amounts of AEA at different time points of incubation with increasing doses
of URB597. Vehicle (white bar), URB597 0.5–1 and 5 µM (light grey, striped bar and dark grey bar,
respectively). Results are expressed as fold change ± SD relative to vehicle-treated cell value, which
was set as 100 by definition. * p < 0.05 vs. vehicle-treated cells; ** p < 0.01 vs. vehicle-treated cells.

2.2. URB597 Contrasts the IGF-1-Induced EMT Process by Regulating Vimentin Expression,
E-Cadherin Localization, and Cytokine Release–Involvement of AKT/STAT3 Signaling Pathway

To investigate the role of the URB597-induced increase in eCB levels in counteracting
EMT, NHKs were stimulated with IGF-1, a well-known growth factor involved in the
switch from an epithelial to mesenchymal phenotype. The immunofluorescence analysis
for the expression of the proliferation marker Ki67 showed that, although IGF-1 induced a
slight increase in the rate of cell growth, URB597 allowed a return to the proliferation level
of the vehicle-treated cells (Figure 2A). Western blot and parallel immunofluorescence anal-
yses demonstrated that URB597 contrasted the increase in vimentin expression induced by
IGF-1 (Figure 2B,C). No modification in the overall expression levels of E-cadherin, either
in response to IGF-1 or URB597, was observed from the Western blot analysis (Figure 2B).
However, the immunofluorescence analysis revealed that the localization of E-cadherin at
the cell–cell borders, which was regularly observed in the vehicle-treated keratinocytes,
was significantly reduced following IGF-1. Conversely, URB597, alone or in combination
with IGF-1, favored the maintenance of a continuous and homogeneous E-cadherin signal
at the plasma membrane (Figure 2D). These results were confirmed in ex vivo experiments.
Morphological analysis showed that IGF-1 was able to induce epidermal alterations, as
evidenced by the presence of intercellular spaces between keratinocytes and increased epi-
dermal thickness. These features were almost completely reverted by URB597 (Figure 2E).
Ex vivo samples were immunostained for E-cadherin and vimentin, the latter of which,
as expected, identified mesenchymal cells. The IGF-1-treated specimens showed reduced
E-cadherin staining, as revealed by a discontinuous signal on the plasma membrane of
keratinocytes. URB597 was able to restore a regular and continuous fluorescent pattern
mainly localized on the plasma membrane, similar to that detected in the vehicle-treated
sample (Figure 2F). To explore whether URB597 was also able to interfere with the pro-
duction of pro-inflammatory cytokines, the release of IL-6 and IL-8 was assessed in the
culture supernatants of NHKs stimulated with IGF-1 via ELISA. In the presence of IGF-1,
keratinocytes showed a significant increase in IL-6 and IL-8 production compared to that of
vehicle-treated cells. URB597 was able to significantly reduce the extracellular release of
both cytokines (Figure 2G).

To investigate the molecular mechanisms by which URB597 regulates the expression
of EMT inducers and effectors, we explored the PI3K/AKT and JAK/STAT3 pathways as
the main key transducers of IGF-1 signaling. Immunofluorescence analysis performed at
different time points demonstrated that the increased phosphorylation levels of AKT and
STAT3 in response to IGF-1 were significantly down-modulated by URB597 (Figure 3A,B).
The results were also confirmed using parallel Western blot analysis (Figure 3C,D).
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Figure 2. URB597 contrasts the EMT phenotype induced by IGF-1 by reducing vimentin expres-
sion, modulating E-cadherin localization, and decreasing the release of pro-inflammatory cytokines.
(A) Immunofluorescence and quantitative analysis of Ki67 stained NHKs following IGF-1 (100 ng/mL)
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stimulation for 48 h in the presence or absence of URB597 (1 µM). Results are expressed as the mean
value ± SD of positive cells/total cells (%). Scale bar: 20 µm. (B) Western blot of vimentin and
E-cadherin on NHKs in response to IGF-1 and URB597. Representative blots are shown. GAPDH was
used as an endogenous loading control. Densitometric scanning of band intensities was performed
to quantify the change in protein expression. Results are expressed as fold change ± SD relative
to vehicle-treated cell value, which was set as 1-fold in each case. Immunofluorescence and signal
intensity measurement of vimentin (C) and E-cadherin (D) in NHKs treated as above. Nuclei are
counterstained in DAPI. Scale bar: 10 µm. Data are representative of three independent experiments.
(E) Hematoxylin-and-eosin-stained sections and (F) immunofluorescence for E-cadherin and vimentin
proteins from ex vivo skin explants stimulated with IGF-1 in the presence or absence of URB597
(5 µM). Nuclei in (F) are counterstained with DAPI and the basal membrane is outlined with a white
dashed line. Scale bar: 50 µm (E), 20 µm (F). (G) IL-6 and IL-8 quantitation by ELISA in URB597- and
vehicle-treated cells following IGF-1 stimulation for 48 h. * p < 0.05 vs. vehicle-treated cells; ** p < 0.01
vs. vehicle-treated cells; # p < 0.05 vs. IGF-1-treated cells; ## p < 0.01 vs. IGF-1-treated cells.
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(100 ng/mL)-stimulated cells following the treatment with URB597 (1 µM) at the indicated time
points. Results are expressed as fold change ± SD of the intensity mean/cell relative to the vehicle-
treated cell value, which was set as 1 by definition. (B) Immunofluorescence and quantitative analysis
of positive pSTAT3 cells/total cells following IGF-1 treatment in the presence or absence of URB597
at the indicated time points. Results are expressed as positive cells/total cells ± SD (%). Scale bar:
20 µm. Western blot of pAKT (C) and pSTAT3 (D) in NHKs stimulated with IGF-1 in the presence or
absence of URB597. Representative blots are shown. GAPDH was used as an endogenous loading
control. Densitometric scanning of band intensities was performed to quantify the change in protein
expression. Results are expressed as fold change ± SD relative to vehicle-treated cell value, which
was set as 1-fold in each case. * p < 0.05 vs. vehicle-treated cells; ** p < 0.01 vs. vehicle-treated cells;
# p < 0.05 vs. IGF-1-treated cells; ## p < 0.01 vs. IGF-1-treated cells.

2.3. URB597 Contrasts the TNF-α-Induced EMT Process by Modulating E-Cadherin Localization
and by Promoting Keratinocyte Differentiation

As inflammatory cytokines are known to be involved in favoring the EMT process, we
also studied the potential anticancer role of URB597 in counteracting EMT induced by the
stimulation with the pro-inflammatory cytokine TNF-α on ex vivo samples. Morphological
and E-cadherin/vimentin immunofluorescence analyses showed that the stimulation with
TNF-α induced an increase in the intercellular spaces associated with alterations in epider-
mal cell–cell adhesions, as revealed by the reduced E-cadherin expression, features that
were both recovered by URB597 (Figure 4A,B). As TNF-α is known to affect the keratinocyte
differentiation process, skin biopsies were evaluated for the expression of keratin 1 (K1)
and filaggrin as early and late differentiation markers, respectively. In response to TNF-α
stimulation, the keratinocyte differentiation appeared perturbed, showing a reduced ex-
pression of K1 at the basal epidermal layers and the presence of a discontinuous signal for
filaggrin at the outermost epidermal layers. Following URB597, the staining pattern of both
proteins was restored and appeared comparable to those observed in the vehicle-treated
samples (Figure 4C).

2.4. URB597 Reduces the Proliferative and Migratory Potential and Counteracts the EMT Process
in the A431 Squamous Carcinoma Cell Line

To evaluate the anti-tumor effects induced by URB597, we next employed the human
cutaneous squamous carcinoma cell line A431 and investigated the ability of the compound
to modulate the EMT phenotype. We first analyzed the effect of URB597 on cell viability
and growth. The Neutral Red assay revealed no significant differences in cells treated with
URB597 at any dose compared with the vehicle (Figure 5A), indicating the higher resistance
of tumor cells in comparison to primary keratinocytes. However, the evaluation of cell
growth demonstrated a dose-dependent reduction in Ki67-positive cells following URB597,
suggesting a possible entry in the G0/G1 resting phase of the cell cycle (Figure 5B). This
finding was supported by the parallel increase in the negative regulator of the cell cycle
p21 observed in cells treated with URB597 (Figure 5C).

We analyzed the gene expression profile of markers related to EMT (Figure 6A). After
URB597 treatment, the results evidenced a significant downregulation of the mRNA ex-
pression of the EMT markers FIBRONECTIN, N-CADHERIN, MMP2 and MMP9, SNAI1,
and the keratinocyte activation marker KERATIN 6 (K6) (Figure 6A). Western blot and
immunofluorescence accompanied by quantitative image analysis revealed the ability of
URB597 to downregulate vimentin and fibronectin and up-modulate the keratinocyte dif-
ferentiation marker involucrin. Conversely, neither the expression nor the localization of
E-cadherin varied following the treatment (Figure 6B,C). We next investigated the impact
of URB597 on the levels of phosphorylation for AKT, STAT3, p38, and ERK1/2. The results
demonstrated that URB597, except for AKT signaling, reduced the phosphorylation levels
of all of the signal transducers evaluated (Figure 6D), thus supporting its crucial role in
counteracting the activation of the EMT-associated pathways. The reduction in STAT3
phosphorylation was confirmed through immunofluorescence analysis at different time
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points (Figure 6E). Finally, we investigated the effects of URB597 on cell migration/invasion
performing the scratch wound assay on A431 cells stimulated with IGF-1 in the presence
or absence of URB597. The quantitation of the edge distance reduction in the different ex-
perimental conditions demonstrated the capacity of URB597 to contrast the pro-motogenic
effect induced by IGF-1 (Figure 6F).
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Figure 4. URB597 counteracts the EMT process triggered by TNF-α modulating E-cadherin localiza-
tion and promoting keratinocyte differentiation. (A) Hematoxylin-and-eosin-stained sections from
vehicle and TNF-α (20 ng/mL) stimulated ex vivo skin explants treated or not with URB597 (5 µM)
for 4 days. Double immunofluorescence staining for E-cadherin and vimentin (B) and filaggrin and
K1 (C) on ex vivo skin specimens treated as above. Nuclei are counterstained with DAPI and the
basal membrane is outlined with a white dashed line. Scale bar: 50 µm (A), 20 µm (B,C).

2.5. URB597 Modulates the Profile of Pro-Tumorigenic Lipid Species in A431 Cancer Cells

To assess the effects of URB597 on arachidonic acid (AA) levels and its metabolic
pathway, which is known to be involved in EMT promotion, we evaluated the follow-
ing AA-related bioactive lipids: 5(S)-hydroxyeicosatetraenoic acid (5-HETE) and 15(S)-
hydroxyeicosatetraenoic acid (15-HETE) as 5- and 15-lipoxygenase (LOX) metabolites, re-
spectively; 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and 15-hydroperoxyeicosatetrae
noic acid (15-HPETE) as precursors and 5-oxoeicosatetraenoic acid (5-oxoETE) and 15-
oxoeicosatetraenoic acid (15-oxoETE) as the oxidation products. In addition, we measured
PGE2, PGD2, and PGF2-α as representative products of cyclooxygenase 2 (COX-2). The
results showed a relevant decrease in free AA following URB597 treatment (Figure 7A),
which is directly related to the inhibition of AEA hydrolysis. This reduced availability of
AA also resulted in a significant reduction in the levels of its metabolites (Figure 7B–J).
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Figure 5. Effects of URB597 on cell viability and proliferative potential of A431 squamous carcinoma
cell line. (A) Cell viability evaluated using Neutral Red assay on A431 cells treated with increasing
concentrations of URB597 for 48 h. Results are expressed as fold change ± SD relative to vehicle-
treated cell value, which was set as 100 by definition. (B) Immunofluorescence and quantitative
analysis of Ki67-positive cells in response to 1 µM and 10 µM URB597 treatment. Results are expressed
as the mean value ± SD of positive cells/total cells (%). Nuclei are counterstained with DAPI. Scale
bar: 20 µm. (C) Western blot of p21 in A431 cells treated with 1 µM and 10 µM doses of URB597 in the
presence or absence of URB597. Representative blots are shown. β-actin was used as an endogenous
loading control. Densitometric scanning of band intensities was performed to quantify the change in
protein expression. Results are expressed as fold change ± SD relative to vehicle-treated cell value,
which was set as 1-fold in each case. * p < 0.05 vs. vehicle-treated cells; ** p < 0.01 vs. vehicle-treated
cells; § p < 0.05 vs. 1 µM URB597-treated cells.
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Figure 6. URB597 counteracts the EMT process by downregulating EMT markers and associated
intracellular signaling pathways and decreases migratory potential in A431 cells. (A) Real-time
RT-PCR analysis of a panel of genes involved in EMT phenotype on A431 cells treated with URB597
(1 µM). All mRNA values were normalized against the expression of GAPDH and were expressed
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relative to vehicle-treated cell value. (B) Western blot and corresponding densitometric analysis
of vimentin, E-cadherin, fibronectin, and involucrin on A431 cell lysates treated with URB597 for
48 h. Representative blots are shown. GAPDH and β-tubulin were used as endogenous loading
controls. Densitometric scanning of band intensities was performed to quantify the change in protein
expression. Results are expressed as fold change ± SD relative to vehicle-treated cell value, which
was set as 1-fold in each case. (C) Immunofluorescence staining and signal intensity measurement of
vimentin, E-cadherin, and fibronectin on A431 cells in the presence or absence of URB597 treatment.
Results are expressed as mean intensity ± SD/cell in comparison to vehicle-treated cell value, which
was set as 1 by definition. Nuclei are counterstained with DAPI. Scale bar: 20 µm. (D) Western blot and
corresponding densitometric analysis of IGF-1 (100 ng/mL)-induced phospho-AKT, phospho-STAT3,
phospho-p38, and phospho-ERK on A431 cells in the presence or absence of URB597. Representative
blots are shown. (E) Immunofluorescence and quantitative analysis of the mean fluorescence intensity
± SD/cell of pSTAT3 in IGF-1-stimulated A431 following the treatment with URB597 at 5, 15, and
30 min. Nuclei are counterstained with DAPI. Scale bar: 10 µm. (F) Representative images of the
scratch wound assay on A431 cells stimulated with IGF-1 in the presence or absence of URB597 for
24 h. Quantitative analysis of the reduction in the distance of the leading edges with respect to the
T0 value, which was set as 100 for definition. Scale bar: 100 µm. * p < 0.05 vs. vehicle-treated cells;
** p < 0.01 vs. vehicle-treated cells; # p < 0.05 vs. IGF-1-treated cells; ## p < 0.01 vs. IGF-1-treated cells.
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5HpETE (D), 15HETE (E), 15oxoHETE (F), and 15HpETE (G) in A431 cells at different time points of
incubation with URB597 (1 µM). Intracellular amount of PGE2 (H), PGD2 (I), and PGF2-alpha (J) in
A431 cells following the treatment with URB597 at the indicated time points. Lipid amount is
measured as nM/mg total proteins and the results are expressed as mean value ± SD. * p < 0.05 vs.
vehicle-treated cells; ** p < 0.01 vs. vehicle-treated cells.

3. Discussion

In vitro and in vivo studies demonstrated the therapeutic potential of ECS modulation
in different tumors including skin cancers [64–67]. Although the ECS is involved in tumor
physiopathology, the tone of eCBs and the expression levels of their receptors and metabolic
enzymes determine the activation of pro- or anti-tumor signaling pathways [11,68]. The
pharmacological inhibition of FAAH demonstrated beneficial effects in several cancer cell
lines by enhancing the anti-proliferative, pro-apoptotic, and anti-migratory capabilities of
eCBs [17,18,57,69–72].

In the present study, we explored the anti-tumor effect of URB597 treatment in con-
trasting the EMT process. In NHKs treated with URB597 1 µM, we did not observe a
decrease in proliferating cells under basal conditions. We speculate that this is due to the
failure to achieve the high concentrations of eCBs (micromolar range) that, when admin-
istered exogenously, induce significant anti-proliferative and pro-apoptotic effects [19].
Nevertheless, the same dose of URB597 was able to counteract the growth induced by IGF-1
stimulation. Conversely, in A431 cancer cells, the compound counteracted the proliferative
capacity even in the absence of pro-mitogenic stimuli mediated by the growth factors. We
hypothesize that the inhibition of FAAH may be even more effective in vivo, where the
tumor milieu is enriched with growth factors or cytokines and eCBs reach higher levels.
The reduced expression of vimentin underlined the possible role of URB597 not only in
disfavoring a crucial effector of EMT, but also in counteracting the pro-tumorigenic signals
associated with keratinocyte dedifferentiation. Indeed, it has been reported that in tumor
epithelial cells, vimentin modulates keratin expression by switching from a differentiated to
a dedifferentiated phenotype [73,74]. The increased migratory potential and loss of cell–cell
adhesions associated with the downregulation of E-cadherin expression are other hallmarks
of EMT in epithelial cells [75,76]. Immunofluorescence analysis showed that URB597 was
able to maintain E-cadherin on the plasma membrane. This localization is fundamental
to stabilize cell–cell adhesions and prevent the translocation of β-catenin into the nucleus
and the consequent activation of genes involved in cell motility and cancer progression.
The investigations on skin explants reinforced these findings, demonstrating the ability of
URB597 to ameliorate IGF-1-induced epidermal alterations by reducing enlarged epidermal
intercellular spaces and restoring cell–cell adhesions.

In the presence of inflammatory stimuli, which are known to promote and sustain the
EMT process, URB597 decreased the expression of vimentin and reduced the extracellular
release of IL-6 and IL-8 caused by IGF-1 treatment, thus demonstrating a dual action on
both the production of cytokines and their downstream signals. The increased activity of
PI3K/AKT and STAT3 signaling pathways has effects on the transcriptional machinery
of proto-oncogenes involved in cancer progression and invasiveness [77–80]. The finding
that URB597 reduced the phosphorylation levels of AKT and STAT3 suggests that it may
act on multiple signaling pathways that coexist in the complex tumor environment, thus
exerting a crucial and broad role in weakening pro-malignant signals. Since few reports
have evaluated the role of FAAH inhibitors in counteracting tumor progression in skin
cancers, we extended the study to the squamous carcinoma cell line A431. Promising results
were obtained in cancer cells, since URB597 reduced proliferative potential, downregu-
lated EMT markers, and promoted keratinocyte differentiation. Cancer cells change lipid
metabolism to support tumor progression toward high malignancy and aggressiveness;
thus, the identification of lipid-targeted therapeutic strategies is particularly attractive. The
tumor milieu is enriched in bioactive lipids, e.g., prostanoids and eicosatetraenoic acids,
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generated by the arachidonic acid (AA) metabolic pathway, that represent the main drivers
of the EMT process [81]. 5(S)-Hydroxyeicosatetraenoic acid (5-HETE) and prostaglandins
are metabolites of 5-lipoxygenase (5-LOX) and cyclooxygenase 2 (COX-2) and promote
cancer cell proliferation and EMT by inducing the ERK pathway [82–84]. eCB degradation
enzymes such as FAAH are the primary source of arachidonic acid, free fatty acids, and
other metabolites that exert pro-tumorigenic activity. Hence, the reduction in pro-neoplastic
signaling lipids (prostaglandins and HETEs) that we observed in response to URB597 treat-
ment suggests a crucial role of this compound in inducing biochemical changes in cancer
cells that impair tumor progression and metastasis.

In line with this observation, the inhibition of eCB-degrading enzymes appears to be
an intriguing tool for developing innovative anticancer therapies. Reducing the turnover
of eCBs prolongs their beneficial anti-tumor effects; however, the levels of FAAH were
found to be higher or more downregulated than in healthy tissues depending on the cancer
type [85–88]. This implies that FAAH inhibition has to be contextualized based on the
tumor type considered to understand what contribution a decrease in its activity may
provide. Data from the literature highlight that the antitumor properties of URB597 are
enhanced when the inhibitor is used in combination with AEAs, synthetic analogs, or PEAs
due to synergistic action [6,17,19,69,72,89,90]. Brunetti et al. [57] reported that an increased
eCB concentration results in the higher activity of PPARs, transcription factors involved
in anti-proliferative and anti-inflammatory effects. Therefore, acting simultaneously by
inhibiting FAAH and stimulating the activity of PPARs may represent a new approach to
cancer therapy.

Further research into the properties of endocannabinoids and the design of multi-target
compounds is an emerging field to define new, more potent, and useful pharmacological
strategies to reduce the drug doses needed to achieve therapeutic efficacy in skin cancers.

4. Materials and Methods
4.1. Cell Cultures, Ex Vivo Skin Explants, and Treatments

NHKs were grown in defined Medium 154 supplemented with Human Keratinocyte
Growth Supplement (HKGS) (Life Technologies, Monza, Italy), plus antibiotics and calcium
chloride (0.07 mM). The cells were subcultured once a week, and the experiments were
performed between passages 2 and 4. The A431 cutaneous squamous carcinoma cell line
was maintained in basal DMEM (Euroclone, Milan, Italy) supplemented with 10% FBS,
L-glutamine (2 mM), and penicillin/streptomycin (100 µg/mL). The cell cultures were
routinely tested for Mycoplasma infection. For each experiment, at least three different
donors were used.

The NHKs and A431 were maintained in growth-factor-free and serum-free medium,
respectively, for 24 h before the treatment with URB597 (cyclohexyl carbamic acid 3′-
carbamoylbiphenyl-3-yl ester) dissolved in DMSO (Sigma-Aldrich, Milan, Italy). Control
cells were treated with an equal volume of the vehicle. Human Insulin-Like Growth
Factor-1 (IGF-1) (Millipore Corporation, Temecula, CA, USA) and Tumor Necrosis Factor-α
(TNF-α) (Peprotech, Rocky Hill, NJ, USA) were used.

Ex vivo skin explants after subcutaneous fat excision were cut with a punch of 4 mm
diameter and cultured, with the dermis downside, on Transwell permeable supports
(6.5 mm diameter, 0.4 µm pore size) into standard well plates at the air–liquid interface.
The skin samples were cultured in defined Medium 154 (Life Technologies) supplemented
with Human Keratinocyte Growth Supplement (Life Technologies), 10% FBS, antibiotics,
and calcium chloride (1.5 mM). After treatments, the skin samples were fixed in formalin
and embedded in paraffin.

4.2. Neutral Red Assay

Cells treated with URB597 (ranging from 0.01 to 10 µM) for 48 h were then incubated
with Neutral Red (0.05 mg/mL) (Sigma Aldrich Srl) for 2 h at 37 ◦C and lysed in an acetic
acid/ethanol solution. The absorbance at 540 nm was measured using a µQUANT spec-
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trophotometer (Biotek Instruments, Winooski, VT, USA). The measurement was performed
in triplicate for each sample.

4.3. Immunofluorescence Analysis

The NHKs and A431 cells were fixed either with 4% paraformaldehyde followed by
0.1% Triton X-100 to allow permeabilization or with cold methanol at −20 ◦C. The cells
were then incubated with the following primary antibodies: anti-Ki67 rabbit polyclonal an-
tibody (ab15580) (1:300), anti-vimentin rabbit polyclonal antibody (1:400), anti-cytokeratin
1 rabbit polyclonal antibody (ab93652) (1:200) (Abcam) (Cambridge, UK); anti-fibronectin
mouse monoclonal antibody (SC-8422) (1:400) (Santa Cruz Biotechnology); anti-E-cadherin
mouse monoclonal antibody (1:200) (DakoCytomation); phospho-AKT (Ser473) rabbit mon-
oclonal antibody (1:100), phospho-STAT3 (Tyr705) rabbit monoclonal antibody (1:100) (Cell
Signaling). The primary antibodies were visualized using goat anti-rabbit Alexa Fluor
546 conjugate, goat anti-mouse Alexa Fluor 546, and goat anti-mouse Alexa Fluor 488 conju-
gate antibodies (1:800) (Thermo Fisher Scientific). Coverslips were mounted using ProLong
Gold antifade reagent with DAPI (Invitrogen). The fluorescence signal was evaluated by
recording the stained images using a CCD camera (Zeiss, Oberkochen, Germany). The
quantitative analysis of the fluorescence intensity was performed using the Zen 2.6 (blue
edition) software (Zeiss). For the measurement of Ki67 and phospho-STAT3 staining, the
number of positive cells/total cells (%) was counted and the results expressed as the mean
value ± SD. For E-cadherin, vimentin, fibronectin, and phospho-AKT fluorescent signals,
the results were expressed as a fold change of the mean fluorescence intensity/cell ± SD
relative to the vehicle-treated cell value, which was set as one by definition. At least
150 cells were measured for each condition from three different experiments.

4.4. Immunohistochemical Analysis

Paraffin sections were stained with hematoxylin and eosin (H&E) for histomorpho-
logical analysis. For immunofluorescence staining, tissue sections were dewaxed and
processed for antigen retrieval and then incubated with the following primary antibodies:
anti-E-cadherin mouse monoclonal antibody (M3612) (1:200) (DakoCytomation, Glostrup,
Denmark), anti-vimentin rabbit polyclonal antibody (ab92547) (1:400), anti-Filaggrin mouse
monoclonal antibody (SC-66192) (1:100) (Santa Cruz Biotechnology, Santa Cruz, CA, USA);
anti-Cytokeratin 1 rabbit polyclonal antibody (ab93652) (1:100) (Abcam, Cambridge, UK).
Primary antibodies were visualized with goat anti-mouse Alexa Fluor 488 conjugate anti-
body (1:800) and goat anti-rabbit Alexa Fluor 546 conjugate (1:800) (Thermo Fisher Scientific,
Italy). Coverslips were mounted using ProLong Gold Antifade Reagent with DAPI (Life
Technologies, Monza, Italy). Staining signals were analyzed by recording images using a
CCD camera (Zeiss, Oberkochen, Germany).

4.5. Western Blot Analysis

Cells were lysed in RIPA lysis buffer supplemented with a protease/phosphatase
inhibitor cocktail (Boster Biological Technology Co., Pleasanton, CA, USA), and then soni-
cated. The total cell lysates were clarified using centrifugation at 12,000 rpm for 10 min at
4 ◦C and then stored at −80 ◦C until analysis. Following the spectrophotometric protein
measurement, equal amounts of protein were resolved on acrylamide SDS-PAGE and trans-
ferred onto nitrocellulose membrane (Amersham Biosciences, Milan, Italy). The protein
transfer efficiency was checked with Ponceau S staining (Sigma-Aldrich, St. Louis, MO,
USA). The membranes were first washed with water, blocked with EveryBlot Blocking
Buffer (Bio-Rad Laboratories Srl, Milan, Italy) for 10 min at room temperature, and then
treated overnight at 4 ◦C with primary antibodies (according to the data sheet instructions).
The primary antibodies anti-vimentin (ab92547) (1:1000) and anti-involucrin (ab53112)
(1:500) (Abcam, Cambridge, UK); anti-E-cadherin (M3612) (1:1000) (DakoCytomation
(Glostrup, Denmark); anti-Fibronectin (SC-8422) (1:1000) (Santa Cruz Biotechnology, CA,
USA); anti-phospho-AKT (Ser473) (#4060) (1:1000), anti-AKT (#2920) (1:1000), anti-phospho-
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STAT3 (Tyr705) (#9145) (1:2000), anti-STAT3 (#9139) (1:2000), anti-phospho-p38 MAP kinase
(Thr180/Tyr182) (#4511) (1:1000), anti-p38 MAPK (#9212) (1:1000), anti-phospho-p44/42
MAPK (ERK1/2) (Thr202/Tyr204) (#4370) (1:2000), anti-ERK2 (#1647) (1:1000), anti-p21
Waf1/Cip1 (#2947) (1:1000) were purchased from Cell Signaling (Danvers, MA, USA).
Secondary antibodies: anti-mouse IgG HRP-conjugated antibody (#7076) (1:3000) and
anti-rabbit IgG HRP-conjugated antibody (#7074) (1:8000) (Cell Signaling, Danvers, MA,
USA). The antibody complexes were visualized using Amersham ECL Western Blotting
Detection Reagent (GE Healthcare, Buckinghamshire, UK). Anti-α-actin antibody (A5441)
(1:10,000) and anti-GAPDH antibody (G9545) (1:5000) (Sigma-Aldrich) were used as the
loading control. The protein levels were quantified by measuring the optical densities of
specific bands using the UVI-TEC Imaging System (Cambridge, UK). The control value
was taken as one-fold in each case.

4.6. Protein Determination Using Sandwich Enzyme-Linked Immunosorbent Assay (ELISA)

Culture supernatants were collected and centrifuged to remove cell detritus. Aliquots
were stored at −80 ◦C until use. The IL-6 and IL-8 protein levels were determined using
commercially available ELISA kits (Diaclone SAS, Besancon Cedex, France) according to the
manufacturer’s instructions. The results were normalized for the number of cells contained
in each sample. The measurement was performed in duplicate for each sample. The
absorbance at 450 nm was recorded using a DTX880 Multimode Detector spectrophotometer
(Beckman Coulter srl., Milan, Italy).

4.7. RNA Extraction and Real-Time RT-PCR

Total RNA was isolated using the AurumTM Total RNA Mini kit (Bio-Rad, Milan, Italy)
according to the manufacturer’s instructions. The total RNA samples were stored at −80
◦C until use. Following DNAse I treatment, cDNA was synthesized using a mix of oligo-dT
and random primers and RevertAidTM First Strand cDNA synthesis kit (Thermo Fisher
Scientific, Monza, Italy) according to the manufacturer’s instructions. Real-time RT-PCR was
performed in a total volume of 10 µL with SYBR Green PCR Master Mix (Bio-Rad, Milan, Italy)
and 200 nM concentration of each primer. The sequences of all primers used are shown in
Table 1. Reactions were carried out in triplicate using a CFx96TM Real-Time System (Bio-Rad).
Melt curve analysis was performed to confirm the specificity of the amplified products. The
expression of mRNA (relative) was normalized to the expression of GAPDH mRNA using the
change in the ∆cycle threshold (∆Ct) method and calculated based on 2−∆Ct.

4.8. Scratch Assay

A431 cells were seeded on 35 mm Petri dishes and allowed to grow until confluence.
A cell-free area was then generated by wounding the cell monolayer using a pipette tip.
After repeated washes, the cells were immediately fixed (time zero, T0) or treated with
IGF-1 (100 ng/mL) in the presence or absence of URB597 (1 µM) and then fixed after 24 h.
Images were recorded using a CCD camera and the migratory ability was determined by
measuring the edge distance using the Zen 2.6 software. The results are expressed as fold
change with respect to T0, which was set as 100 by definition from three experiments.

4.9. Lipid Extraction

Lipids were extracted accordingly using the Bligh and Dyer procedure with slight mod-
ifications [91]. Briefly, the lipids were extracted with chloroform:methanol (2:1) (2 × 1 mL)
after the addition of butylhydroxytoluene to prevent the oxidation of oxygen-sensitive
compounds. Then, 10 µL of a mixture of deuterated standards (d17C16:0 8µM; d4PGD2
1µM; d4PGE2 1 µM; d85HETE 1 µM; d815HETE 1 µM) were added to control the analytical
performance and to calculate the relative abundance of the lipid species detected. The
samples were vortexed and centrifuged at 10,000× g for 10 min at 4 ◦C. The extraction
procedure was repeated twice and the organic layers were collected and evaporated under
nitrogen. The dried lipid extract was stored at −80 ◦C until the analysis.
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Table 1. Forward (F) and reverse (R) primers used for the real-time RT-PCR analysis.

Gene Oligonucleotide Sequences (5′-3′) Amplicon Size Accession Number

E-CADHERIN F: GAACGCATTGCCACATACAC
R: ATTCGGGCTTGTTGTCATTC 118 bp NM_004360.5

FIBRONECTIN F: CCTCGAAGAGCAAGAGGCAG
R: GCTTCAGGTTTACTCTCGCA 202 bp NM_001365522.2

GAPDH F: TGCACCACCAACTGCTTAGC
R: GGCATGGACTGTGGTCATGAG 198 bp NM_001289746

K6 F: AGTCCTGCTTCTCTTC
R: CTGCTGTGGCTCCTGATG 107 bp NM_005554.4

MMP-2 F: AGAAGGCTGTGTTCTTTGCAG
R: AGGCTGGTCAGTGGCTTG 88 bp NM_004530.6

MMP-9 F: TGACAGCGACAAGAAGTG
R: CAGTGAAGCGGTACATAGG 143 bp NM_004994.3

N-CADHERIN F: GGACTATGATTACCTGAACGACTG
R: AGTTAAAGCCTAGCTTCTGAATGC 161 bp NM_001792.5

SNAI1 F: ACTATGCCGCGCTCTTTCC
R: GTCGTAGGGCTGCTGGAAG 111 bp NM_005985.4

SNAI2 F: TGGTTGCTTCAAGGACACAT
R: GCAAATGCTCTGTTGCAGTG 77 bp NM_003068.5

4.10. AEA High-Performance Liquid Chromatography/Mass Spectrometry

HPLC–MS/MS analyses were performed on a quadrupole tandem mass spectrometer
6400 coupled to a 1200 HPLC Liquid Chromatography system from Agilent Technologies
(Palo Alto, CA, USA). A Zorbax Eclipse XDB C8 column (150 × 4.6 i.d. 5 µm particle
size) from Agilent Technologies (Palo Alto, CA, USA) was used and operated at 40 ◦C.
Isocratic elution (30% mobile phase A and 70% of mobile phase B) at a constant flow rate
of 0.45 mL/min was performed. Mobile phase A consisted of 2 mM ammonium acetate
in water containing 0.1% formic acid (w/v) and mobile phase B consisted of acetonitrile
containing 0,1% formic acid (w/v). The autosampler was thermostated at 5 ◦C. Sample
aliquots of 5 µL were injected into the analytical system. HPLC-MS/MS analyses were car-
ried out in positive electrospray ionization mode (ESI+). Quantification was performed with
multiple reaction monitoring (MRM) of the transition m/z 348→ 62 for AEA and 356→ 62
for d8-AEA (IS for AEA). The collision energy was set at 12 eV. For the quantification of
AEA, a linear curve was generated where the ratio of AEA standard peak area to d8-AEA
peak area was plotted versus the amount of AEA standard. The results were calculated as
pmoles/106 cells and reported as fold change in comparison to vehicle-treated cells.

4.11. Assessment of Pro-Inflammatory Lipid Mediators by High-Performance Liquid
Chromatography/Mass Spectrometry

The prostaglandins (PGD2, PGE2, PGF2α) and lipoxygenase-derived metabolites of
arachidonic acid (AA), in particular, 5HETE, 5oxoETE, 5HpETE, 15HETE, 15oxoHETE, and
15 HpETE, in A431 cells were measured via HPLC–MS/MS. Chromatographic separation
was carried out using the Agilent Technologies 1200 HPLC Liquid Chromatography System
(Palo Alto, CA, USA) with a C18 column (Symmetry, 3.5 µm, 100 mm × 2.1 mm, Waters) as
previously reported [92,93]. Briefly, the mobile phase flow rate was 0.2 mL/min. Mobile
phase A consisted of acetonitrile–water–formic acid (20:80:0.1, v/v/v), and mobile phase
B consisted of acetonitrile–formic acid (100:0.1, v/v). Mobile phase B was increased from
0 to 100% in a linear gradient over 6 min and maintained at 100% until 10 min. Mobile
phase B was then decreased to 0% from 10 to 11 min and maintained at 0% until 22 min.
The column temperature was maintained at 40 ◦C. The injection volume was 5 µL. The
overall run time was 25 min. Negative ion electrospray tandem mass spectrometry was
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carried out with an Agilent Technologies triple quadrupole 6400 mass spectrometer at
unit resolution with multiple reaction monitoring (MRM) performed by monitoring the
following transitions: PGD2 351→ 233; PGD2-d4 (IS for PGD2) 355→ 233; PGE2 351→
315; PGE2-d4 (IS for PGE2) 355→ 319; PGF2α353→ 193; PGF2α-d4 (IS for PGF2α) 357→
197; 5HETE 319→ 115; 5oxoETE 317→ 245; 5HpETE 335→ 203; 5HETE-d8 (IS for 5HETE,
5oxoETE and 5HpETE) 327→ 116; 15HETE 319→ 175; 15oxoETE 317→ 113; 15HpETE 335
→ 113; 15HETE-d8 (IS for 15HETE, 15oxoETE and 15HpETE) 327→ 226; AA 17 303→ 303;
d17C16:0 (IS for AA) 272→ 272. For each compound to be quantified, an internal standard
was selected and a linear curve was generated where the ratio of analyte standard peak
area to internal standard peak area was plotted versus the amount of analyte standard. The
results were calculated as nM/mg of total proteins.

4.12. Statistical Analysis

Data were represented as mean ± standard deviation (SD) of a minimum of three
independent experiments. Statistical significance was assessed using paired Student’s
t-test or ANOVA followed by Tukey’s multiple comparison test using GraphPad Prism
(GraphPad Prism Software 8.0.2, Boston, MA, USA). p < 0.05 was considered statistically
significant.
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