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Abstract: Glioblastoma (GBM), a highly lethal and aggressive central nervous system malignancy,
presents a critical need for targeted therapeutic approaches to improve patient outcomes in con-
junction with standard-of-care (SOC) treatment. Molecular subtyping based on genetic profiles and
metabolic characteristics has advanced our understanding of GBM to better predict its evolution,
mechanisms, and treatment regimens. Pharmacological ascorbate (P-AscH−) has emerged as a
promising supplementary cancer therapy, leveraging its pro-oxidant properties to selectively kill
malignant cells when combined with SOC. Given the clinical challenges posed by the heterogeneity
and resistance of various GBM subtypes to conventional SOC, our study assessed the response of
classical, mesenchymal, and proneural GBM to P-AscH−. P-AscH− (20 pmol/cell) combined with
SOC (5 µM temozolomide and 4 Gy of radiation) enhanced clonogenic cell killing in classical and
mesenchymal GBM subtypes, with limited effects in the proneural subtype. Similarly, following
exposure to P-AscH− (20 pmol/cell), single-strand DNA damage significantly increased in classical
and mesenchymal but not proneural GBM. Moreover, proneural GBM exhibited increased hydrogen
peroxide removal rates, along with increased catalase and glutathione peroxidase activities compared
to mesenchymal and classical GBM, demonstrating an altered H2O2 metabolism that potentially
drives differential P-AscH− toxicity. Taken together, these data suggest that P-AscH− may hold
promise as an approach to improve SOC responsiveness in mesenchymal GBMs that are known for
their resistance to SOC.

Keywords: glioblastoma; chemoradiation; glioblastoma subtypes; pharmacological ascorbate;
antioxidant therapy; prooxidant; hydrogen peroxide; DNA damage

1. Introduction

Glioblastoma (GBM) is the most common and aggressive adult primary brain malig-
nancy, with approximately 14,000 cases diagnosed annually [1–4]. GBM has poor clinical
outcomes, with a 5-year overall survival rate of less than 10% [1–3]. The current standard
of care (SOC) for GBM consists of maximum safe surgical resection followed by radiation
therapy and temozolomide (TMZ) [3]. Unfortunately, effective treatment options for GBM
are faced with multiple challenges, including radiation resistance and radiation-induced
brain injury, the blood–brain barrier, and tumor heterogeneity. GBM tumors are often
resistant to radiation due to altered metabolism, hypoxia, and increased DNA repair ca-
pacity [5,6]. Moreover, radiation therapy is known to induce a variety of injuries to the
brain, ranging from neuroinflammation and cognitive dysfunction to dementia [7,8]. The
blood–brain barrier is altered in GBM due to the interference of tumor vasculature; this
alteration contributes to hypoxia and confers resistance to chemotherapeutic agents such
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as TMZ [9–11]. These challenges underscore the urgent need for innovative approaches to
sensitize GBM to SOC therapy.

Recently, pharmacological ascorbate (high-dose intravenous infusions of vitamin C
resulting in plasma concentrations of ≈20 mM, P-AscH−) has garnered attention as a poten-
tial anticancer agent to enhance the response to SOC therapy across various malignancies,
including GBM [12–16]. When ascorbate is oxidized, it generates high levels of hydrogen
peroxide (H2O2), which can react with redox-active iron, primarily Fe2+, through Fenton
chemistry, resulting in an excess of damaging hydroxyl radicals capable of disrupting
biological macromolecules [12,13,16,17]. Since malignant cells are believed to exhibit al-
tered mitochondrial function, leading to increased steady-state levels of reactive oxygen
species, increased iron concentrations, and reduced levels of antioxidant enzymes (e.g.,
catalase), P-AscH− is hypothesized to be a selective pro-oxidant in cancer cells relative to
their non-malignant counterparts [16–18]. Recently, a phase 2 clinical trial demonstrated
that P-AscH− enhanced SOC clinical outcomes in GBM patients increasing overall survival
to 19.6 months [16,19]. However, a subset of subjects receiving P-AscH− was unresponsive,
prompting the need to identify biologically relevant factors driving P-AscH− response.

GBM subtypes, classified based on their transcriptional profiles into mesenchymal,
classical, and proneural subtypes, offer a potential avenue for refining GBM therapy. While
IDH mutational status and O6-methylguanine-DNA methyltransferase (MGMT) methyla-
tion are primary considerations in GBM treatment, GBM molecular subtypes are currently
underemphasized in patient evaluation. Nonetheless, earlier studies revealed that GBM
subtypes exhibit distinct clinical outcomes, metabolic characteristics, and immune sig-
natures [20,21]. Additionally, it has been observed that patient prognosis varies among
subtypes, with proneural and classical GBMs demonstrating a more favorable outlook com-
pared to mesenchymal tumors [20–22]. Consequently, these subtype-related distinctions
present an opportunity to guide the utilization of P-AscH− therapy in GBM. This study
aimed to conduct the first preclinical assessments of the response of mesenchymal, classi-
cal, and proneural GBM subtypes to P-AscH− therapy, while also investigating potential
disparities in H2O2 metabolism contributing to their varying responses, thus providing a
novel insight into GBM H2O2 metabolism in the context of P-AscH− therapy.

2. Results
2.1. Glioblastoma Subtypes Exhibit a Differential Response to P-AscH− with SOC

The cytotoxic effect of combining P-AscH− with SOC (5 µM TMZ and 4 Gy IR) in
the three GBM subtypes was initially assessed using a colony formation assay (Figure 1D).
The addition of P-AscH− significantly augmented the cytotoxicity of SOC in classical
GBM cells compared to SOC treatment alone (mean = 0.25, 0.41, respectively, p = 0.001;
see Figures 1A and S1A,B). Interestingly, mesenchymal GBMs, often associated with treat-
ment resistance, displayed a substantial enhancement in cell killing when treated with
SOC + P-AscH− compared to SOC alone (means = 0.25, 0.51, respectively, p = 0.0009,
Figures 1B and S1C–E). The change in cell survival between SOC and SOC + P-AscH− was
more pronounced in mesenchymal GBM cells than in classical GBM cells (∆NSF = 0.26,
0.16, respectively). These findings suggest that mesenchymal GBMs are more sensitive to
P-AscH− therapy compared to classical GBMs. P-AscH− did not enhance the cytotoxic
effects of SOC in proneural GBMs (Figures 1C,D and S1F,G). These data underscore the
distinct responses to P-AscH− observed within different GBM subtypes.
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Figure 1. The effect of P-AscH− on colony formation in different GBM subtypes treated with SOC. 
(A). P-AscH− significantly enhanced SOC in classical GBM. Data are shown from GBM06 and 
GBM76. (B). SOC in mesenchymal GBM was significantly enhanced by the addition of P-AscH−. 
Data presenting U87, U251, and GBM39. (C). P-AscH− did not show differences in response to SOC 
in proneural GBM. Data are shown from GBM117 and GBM85. (D). Representative images showing 
GBM117 colonies treated with SOC and SOC + P-AscH−. * is statistically significant, p < 0.05. ns, not 
significant. Data show normalized survival fractions from 3 replicates in each cell line. Error bars 
represent the standard error of the mean (SEM). 

2.2. DNA Damage Responses following P-AscH− Treatments Are Subtype-Dependent 
DNA damage is a recognized primary mechanism for cell destruction induced by 

both radiation and temozolomide. Therefore, the impact of P-AscH− on the induction of 
DNA damage was evaluated within this model system. Previous research showed that P-
AscH− induces single-strand DNA breaks through site-specific oxidations via hydroxyl 
radicals [23–25]. Thus, it was hypothesized that the induction of single-stranded DNA 
damage by P-AscH− might occur in a subtype-specific pattern, similar to the in vitro en-
hancement of SOC. 

Consistent with the observed cell-killing effects (Figure 1), P-AscH− significantly in-
creased single-stranded DNA damage in both classical and mesenchymal GBM cells. This 
effect was not observed in proneural GBMs (p = 0.006, 0.017, and 0.24, respectively; Figures 
2A and S2A–E). Notably, P-AscH− induced the highest level of single-strand DNA breaks 
in classical GBM when compared to mesenchymal and proneural GBMs (37.5%, 18.9%, 
and 14.4%, respectively; Figures 2A and S2A–F). These results align with the subtype-
specific enhanced cell-killing effects of P-AscH− and emphasize the diverse responses 
within different GBM subtypes. We also assessed the induction of double-stranded DNA 
breaks. Classical GBMs showed a significant increase in double-stranded DNA breaks (p 
= 0.018) with P-AscH− (Figures 2B and S3C). In contrast, this effect was not observed in 
mesenchymal or proneural GBMs (p = 0.78, and 0.97, respectively; Figures 2B and 
S3A,B,D,F). These results align with the subtype-specific enhanced cell-killing effects of 
P-AscH− and underscore the potential significance of DNA damage as a central mecha-
nism of action. 

Figure 1. The effect of P-AscH− on colony formation in different GBM subtypes treated with SOC.
(A). P-AscH− significantly enhanced SOC in classical GBM. Data are shown from GBM06 and GBM76.
(B). SOC in mesenchymal GBM was significantly enhanced by the addition of P-AscH−. Data
presenting U87, U251, and GBM39. (C). P-AscH− did not show differences in response to SOC in
proneural GBM. Data are shown from GBM117 and GBM85. (D). Representative images showing
GBM117 colonies treated with SOC and SOC + P-AscH−. * is statistically significant, p < 0.05. ns, not
significant. Data show normalized survival fractions from 3 replicates in each cell line. Error bars
represent the standard error of the mean (SEM).

2.2. DNA Damage Responses following P-AscH− Treatments Are Subtype-Dependent

DNA damage is a recognized primary mechanism for cell destruction induced by
both radiation and temozolomide. Therefore, the impact of P-AscH− on the induction of
DNA damage was evaluated within this model system. Previous research showed that
P-AscH− induces single-strand DNA breaks through site-specific oxidations via hydroxyl
radicals [23–25]. Thus, it was hypothesized that the induction of single-stranded DNA
damage by P-AscH− might occur in a subtype-specific pattern, similar to the in vitro
enhancement of SOC.

Consistent with the observed cell-killing effects (Figure 1), P-AscH− significantly
increased single-stranded DNA damage in both classical and mesenchymal GBM cells.
This effect was not observed in proneural GBMs (p = 0.006, 0.017, and 0.24, respectively;
Figures 2A and S2A–E). Notably, P-AscH− induced the highest level of single-strand
DNA breaks in classical GBM when compared to mesenchymal and proneural GBMs
(37.5%, 18.9%, and 14.4%, respectively; Figures 2A and S2A–F). These results align with
the subtype-specific enhanced cell-killing effects of P-AscH− and emphasize the diverse
responses within different GBM subtypes. We also assessed the induction of double-
stranded DNA breaks. Classical GBMs showed a significant increase in double-stranded
DNA breaks (p = 0.018) with P-AscH− (Figures 2B and S3C). In contrast, this effect
was not observed in mesenchymal or proneural GBMs (p = 0.78, and 0.97, respectively;
Figures 2B and S3A,B,D,F). These results align with the subtype-specific enhanced cell-
killing effects of P-AscH− and underscore the potential significance of DNA damage as a
central mechanism of action.
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Figure 2. DNA damage following 1 h treatment with 20 pmol/cell P-AscH−. Classical (GBM06 and 
GBM76), mesenchymal (U87, U251, GBM39), and proneural (GBM117) data are shown. (A). Single-
strand DNA breaks as % tail DNA in GBM subtypes following P-AscH− treatment using the alkaline 
comet assay. Representative images (right) showing alkaline comets in GBM06 cells. (B). Double-
strand breaks as % tail DNA in GBM subtypes following P-AscH− treatment using the neutral comet 
assay. Representative images (right) showing neutral comets in GBM117 cells. The scale on all 
representative images is 200 µm. * is statistically significant, p < 0.05. ns, not significant. Data are 
shown from 3 replicates in each cell line. Error bars represent the standard error of the mean (SEM). 

2.3. GBM Subtypes Exhibit Subtype-Dependent Differences in Hydrogen Peroxide Metabolism 
H2O2 is considered the primary mediator of P-AscH− cancer cell toxicity due to its 

ability to react with redox-active iron, leading to DNA oxidative damage [16,17,26–29]. 
Since P-AscH− has been demonstrated to enhance the cell-killing effects of SOC and induce 
DNA damage in a subtype-dependent manner (Figures 1 and 2), we hypothesized that 
H2O2 metabolism varied amongst the three GBM subtypes. 

The classical subtype had the lowest rate of H2O2 removal (5.2 × 10–12 s−1 cell−1 L) in 
comparison to both mesenchymal (8.5 × 10–12 s−1 cell−1 L, p = 0.476), and proneural cells (21.2 
× 10–12 s−1 cell−1 L, p = 0.0001; Figure 3A and Table S1). Given the observed differences in 
the rate of H2O2 removal amongst the subtypes, we examined the enzymatic activity of 
both catalase (Cat) and glutathione peroxidase (GPx). Cat and GPx both play central roles 
in H2O2 metabolism. No significant differences were observed in the mesenchymal and 
proneural cells in either Cat (p = 0.52) or GPx (p = 0.99) activity (Figure 3B,C). However, 
classical GBMs showed significantly lower CAT activity in comparison to both mesenchy-
mal and proneural GBM cells (p = 0.0003, and 0.0124, respectively; Figures 3B,C and 
S4A,B). Significantly lower GPx activity was also observed in classical GBM cells com-
pared to both mesenchymal and proneural cells (p = 0.01 and 0.03, respectively; Figures 
3B,C and S4A,B). Following the assessment of H2O2 metabolism in GBM subtypes, it ap-
pears that they have different capacities to remove H2O2 which can be attributed to the 
differential activities of Cat and GPx among the different subtypes. However, it is note-
worthy that the differences in H2O2 metabolism between mesenchymal and proneural 
GBM may not be the sole factor responsible for mediating P-AscH− toxicity and inducing 
DNA damage. 

Figure 2. DNA damage following 1 h treatment with 20 pmol/cell P-AscH−. Classical (GBM06
and GBM76), mesenchymal (U87, U251, GBM39), and proneural (GBM117) data are shown.
(A). Single-strand DNA breaks as % tail DNA in GBM subtypes following P-AscH− treatment
using the alkaline comet assay. Representative images (right) showing alkaline comets in GBM06
cells. (B). Double-strand breaks as % tail DNA in GBM subtypes following P-AscH− treatment using
the neutral comet assay. Representative images (right) showing neutral comets in GBM117 cells. The
scale on all representative images is 200 µm. * is statistically significant, p < 0.05. ns, not significant.
Data are shown from 3 replicates in each cell line. Error bars represent the standard error of the
mean (SEM).

2.3. GBM Subtypes Exhibit Subtype-Dependent Differences in Hydrogen Peroxide Metabolism

H2O2 is considered the primary mediator of P-AscH− cancer cell toxicity due to its
ability to react with redox-active iron, leading to DNA oxidative damage [16,17,26–29].
Since P-AscH− has been demonstrated to enhance the cell-killing effects of SOC and induce
DNA damage in a subtype-dependent manner (Figures 1 and 2), we hypothesized that
H2O2 metabolism varied amongst the three GBM subtypes.

The classical subtype had the lowest rate of H2O2 removal (5.2 × 10−12 s−1 cell−1 L)
in comparison to both mesenchymal (8.5 × 10−12 s−1 cell−1 L, p = 0.476), and proneural
cells (21.2 × 10−12 s−1 cell−1 L, p = 0.0001; Figure 3A and Table S1). Given the observed
differences in the rate of H2O2 removal amongst the subtypes, we examined the enzy-
matic activity of both catalase (Cat) and glutathione peroxidase (GPx). Cat and GPx
both play central roles in H2O2 metabolism. No significant differences were observed
in the mesenchymal and proneural cells in either Cat (p = 0.52) or GPx (p = 0.99) activ-
ity (Figure 3B,C). However, classical GBMs showed significantly lower CAT activity in
comparison to both mesenchymal and proneural GBM cells (p = 0.0003, and 0.0124, re-
spectively; Figures 3B,C and S4A,B). Significantly lower GPx activity was also observed in
classical GBM cells compared to both mesenchymal and proneural cells (p = 0.01 and 0.03,
respectively; Figures 3B,C and S4A,B). Following the assessment of H2O2 metabolism in
GBM subtypes, it appears that they have different capacities to remove H2O2 which can
be attributed to the differential activities of Cat and GPx among the different subtypes.
However, it is noteworthy that the differences in H2O2 metabolism between mesenchymal
and proneural GBM may not be the sole factor responsible for mediating P-AscH− toxicity
and inducing DNA damage.
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Figure 3. Differential H2O2 metabolism in GBM subtypes. (A). Hydrogen peroxide removal rates 
(10−12 s−1 cell−1 L) in GBM subtypes). Classical (GBM06 and GBM76), mesenchymal (U87, U251, 
GBM39), and proneural (GBM117 and GBM117) data are shown (B). Catalase activity (mk units per 
mg protein) in GBM subtypes. Classical (GBM06 and GBM76), mesenchymal (U251 and GBM39), 
and proneural (GBM117) data are shown. (C). GPx1 activity (munit per mg protein) in GBM 
subtypes. Classical (GBM06 and GBM76), mesenchymal (U251 and GBM39), and proneural 
(GBM117) data are shown. Data are shown from 3 replicates per cell line. * is statistically significant, 
p < 0.05. ns, not significant. Data are shown from 3 replicates in each cell line. Error bars represent 
the standard error of the mean (SEM).  
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could enhance SOC therapy in vivo and that the frequency of P-AscH− dosing played a 
crucial role in response. We conducted a study comparing the overall survival of mice 
bearing mesenchymal U87 xenografts treated with SOC ± P-AscH− using two separate P-
AscH− dosing schedules as outlined in Table 1. Sequence 1 dosed P-AscH− three days per 
week, while Sequence 2 dosed ascorbate five days per week. 

Both Sequence 1 and Sequence 2 resulted in a significant reduction in tumor growth 
rates compared to SOC treatment alone (p = 0.005 and 0.0009, respectively). However, 
there were no significant differences in tumor growth between Sequence 1 and Sequence 
2 (p > 0.9999; Figure 4A). Animals were observed for up to 66 days post treatment to assess 
overall survival. While there were no discernible differences in tumor growth between 
Sequence 1 and 2 (Figure 4A), Sequence 2 significantly improved overall survival when 
compared to both SOC alone and Sequence 1 (p = 0.0002 and 0.027, respectively; Figure 
4B). Body weight changes across all groups followed a similar pattern (Figure 4C), with 
no notable body weight changes observed with additional P-AscH− doses. These findings 
are in line with our previously reported data in an orthotopic U87 model, thus demon-
strating the capacity of P-AscH- to enhance SOC in both a flank and an orthotopic model 
[19]. Collectively, these data support the notion that P-AscH− represents a promising strat-
egy for enhancing SOC therapy and that increased dosing of P-AscH− enhances GBM tu-
mor control. 

Figure 3. Differential H2O2 metabolism in GBM subtypes. (A). Hydrogen peroxide removal rates
(10−12 s−1 cell−1 L) in GBM subtypes). Classical (GBM06 and GBM76), mesenchymal (U87, U251,
GBM39), and proneural (GBM117 and GBM117) data are shown (B). Catalase activity (mk units per
mg protein) in GBM subtypes. Classical (GBM06 and GBM76), mesenchymal (U251 and GBM39), and
proneural (GBM117) data are shown. (C). GPx1 activity (munit per mg protein) in GBM subtypes.
Classical (GBM06 and GBM76), mesenchymal (U251 and GBM39), and proneural (GBM117) data are
shown. Data are shown from 3 replicates per cell line. * is statistically significant, p < 0.05. ns, not
significant. Data are shown from 3 replicates in each cell line. Error bars represent the standard error
of the mean (SEM).

2.4. Increased P-AscH− Dosing Further Improves Overall Survival in a Murine Xenograft Model
of Mesenchymal GBM

Mesenchymal GBMs are well known for their aggressive nature and resistance to
SOC treatment [30,31]. Since P-AscH− significantly improves the response to SOC and
induced DNA damage in mesenchymal GBM cells in vitro, we postulated that P-AscH−

could enhance SOC therapy in vivo and that the frequency of P-AscH− dosing played a
crucial role in response. We conducted a study comparing the overall survival of mice
bearing mesenchymal U87 xenografts treated with SOC ± P-AscH− using two separate
P-AscH− dosing schedules as outlined in Table 1. Sequence 1 dosed P-AscH− three days
per week, while Sequence 2 dosed ascorbate five days per week.

Table 1. Treatment groups, doses, and frequency of treatment.

Phase Active Treatment (2 Weeks) Adjuvant Phase (2 Weeks)

Treatment IR TMZ P-AscH− IR TMZ P-AscH−

Control - - - - - -

SOC 2 Gy × 3
weekly.

2.5 mg kg−1

weekly
- - 2.5 mg kg−1

weekly
-

Sequence 1 2 Gy × 3
weekly.

2.5 mg kg−1

weekly
4 g kg−1 ×
3 weekly

- 2.5 mg kg−1

weekly
4 g kg−1

weekly

Sequence 2 2 Gy × 3
weekly.

2.5 mg kg−1

weekly
4 g kg−1 ×
5 weekly

- 2.5 mg kg−1

weekly
4 g kg−1

weekly

Both Sequence 1 and Sequence 2 resulted in a significant reduction in tumor growth
rates compared to SOC treatment alone (p = 0.005 and 0.0009, respectively). However,
there were no significant differences in tumor growth between Sequence 1 and Sequence
2 (p > 0.9999; Figure 4A). Animals were observed for up to 66 days post treatment to
assess overall survival. While there were no discernible differences in tumor growth
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between Sequence 1 and 2 (Figure 4A), Sequence 2 significantly improved overall survival
when compared to both SOC alone and Sequence 1 (p = 0.0002 and 0.027, respectively;
Figure 4B). Body weight changes across all groups followed a similar pattern (Figure 4C),
with no notable body weight changes observed with additional P-AscH− doses. These
findings are in line with our previously reported data in an orthotopic U87 model, thus
demonstrating the capacity of P-AscH− to enhance SOC in both a flank and an orthotopic
model [19]. Collectively, these data support the notion that P-AscH− represents a promising
strategy for enhancing SOC therapy and that increased dosing of P-AscH− enhances GBM
tumor control.
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Figure 4. Increasing P-AscH− doses in mesenchymal GBM further enhances overall survival in
a xenograft mouse model. Control (n = 10), SOC (n = 6), Sequence 1 (n = 5), Sequence 2 (n = 9).
(A). Tumor growth rate of U87 xenografts with SOC compared to P-AscH− 3 times/week and
5 times/week. (B). Percent overall survival in mice with U87 tumors following treatment with the
addition of P-AscH− 3 days per week or 5 days per week. (C). Body weights in grams (g) of mice
in the control group and the 3 treatment groups showed no significant changes in body weight. * is
statistically significant, p < 0.05. Error bars represent the standard error of the mean (SEM).
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3. Discussion

P-AscH− is hypothesized to exhibit antioxidant properties in non-malignant tissue while
acting as a cytotoxic pro-oxidant agent in cancerous tissue [12,16,17,29]. Recent clinical data
have shown promising outcomes for GBM patients treated with P-AscH− [16,19]. Given the
significance of these findings, this study aimed to gain insights into how different GBM
subtypes respond to P-AscH− therapy, potentially guiding future clinical applications
of P-AscH− in conjunction with SOC. We present evidence that P-AscH− significantly
enhances the response to SOC in classical and mesenchymal GBM, whereas this effect is
not observed in proneural GBM. Our clonogenic survival data demonstrated that P-AscH−

enhances the response to SOC exclusively in classical and mesenchymal GBM cells, with
both subtypes exhibiting significant increases in single-stranded DNA breaks. Only classical
GBMs had a significant increase in double-stranded DNA breaks. Thus, classical GBM
cells were the most sensitive to DNA damage induced by P-AscH−. Although P-AscH− is
primarily believed to affect DNA through the induction of single-strand breaks [23–25], it
is conceivable that double-strand breaks are also created due to spontaneous generation or
impaired DNA repair processes or close proximity of single-strand breaks, suggesting that
classical GBMs may possess defective DNA repair machinery that promotes the persistence
of single-strand breaks into double-strand breaks [32,33]. Interestingly, these findings reveal
that P-AscH− responses do not consistently align with the known prognostic outcomes of
these subtypes, as proneural tumor cells often exhibit increased therapeutic sensitivity to
SOC [21,22]. In summary, our study highlights the GBM subtype-specific effectiveness of
P-AscH− in vitro which is strongly associated with the induction of DNA damage.

To elucidate the differential responses to P-AscH−, we evaluated H2O2 metabolism
in the three GBM subtypes. Proneural GBM cells had a high H2O2 removal rate along
with elevated Cat and GPx activities. These results are consistent with proneural cell
resistance to P-AscH− therapy which can be attributed to their proficient H2O2 removal
capacity. In contrast, classical GBM cells demonstrated decreased H2O2 removal rates and
Cat and GPx activities compared to mesenchymal and proneural GBM cells, indicating an
enhanced sensitivity to P-AscH−-induced DNA damage. This suggests that in classical
GBM cells, Cat and GPx enzymes may play a more significant role in modulating responses
to H2O2. Although mesenchymal GBM cells exhibited significantly lower H2O2 removal
rates compared to proneural GBM, no differences were observed in their CAT and GPx
activities. The distinct response patterns of these two subtypes may be attributed to other
components of the antioxidant enzyme machinery, such as peroxiredoxins or superoxide
dismutases [16,34]. Another contributing factor to the differential responses to P-AscH−

is the intracellular availability of Fe2+, which we have observed to be a major driver of
P-AscH− toxicity in GBM [16,35]. In aggregate, the differences in H2O2 metabolism be-
tween mesenchymal and proneural GBMs appear to be multifaceted, warranting further
investigation to address other antioxidant enzymes and iron metabolic alterations. Mes-
enchymal GBMs are known for their poor prognosis due to their enhanced resistance
to chemotherapy and radiotherapy as prior studies indicated that the transition from a
proneural to a mesenchymal subtype promotes a therapy-resistant phenotype [30,31]. Our
study demonstrated encouraging responses to P-AscH− in mesenchymal GBM cells, which,
when combined with SOC, increased susceptibility to P-AscH−-induced DNA damage.

Previously, GBM patients were administered 82.6 g ascorbate infusions three times a
week, resulting in plasma ascorbate concentrations of ≈20 mM [16,19]. In this study, we uti-
lized a previously established P-AscH− dosing model (4 g kg−1) that was shown to enhance
GBM response to standard of care therapy in flank and orthotopic GBM xenografts [16,19].
This study aimed to evaluate if P-AscH- dosing frequency had an impact on tumor control.
The concentrations of AscH- achieved in the central nervous system through pharma-
cological dosing remain unclear; however, concentrations in the cerebrospinal fluid are
known to be approximately 3.5–4.5 times greater than those observed in plasma [36–38].
Thus, it can be speculated that AscH− concentrations in the cerebrospinal fluid following
P-AscH- administration may reach ≥20 mM, which may be a key contributing factor to the
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successful application of P-AscH- in the context of GBM. In U87 tumors, we observed that
increasing the frequency of P-AscH- administration with SOC from three days per week
to five days per week during the active treatment phase significantly improved overall
survival without inducing significant toxicities. These preclinical findings suggest that
GBM patients with mesenchymal tumors may benefit from increased P-AscH− dosing
regimens, thus potentially guiding the design of future P-AscH− clinical trials. Addition-
ally, mesenchymal GBMs exhibit a unique and robust tumor microenvironment, enriched
with tumor-associated macrophages [31,39], presenting another potential mechanism of
P-AscH− that has yet to be comprehensively explored in GBM [15]. In conclusion, this
study highlights the potential role of the GBM subtype as a biomarker for P-AscH− therapy.
The observed variability in H2O2 metabolism across these subtypes necessitates further
investigation, given the clinical demand for effective GBM treatment strategies.

4. Materials and Methods
4.1. Cell Lines

All GBM cells (Table 2) were cultured in DMEM-F12 media with the following addi-
tives: 15% FBS, 1% penicillin-strep, 1% Na-pyruvate, 1.5% HEPES, 0.1% insulin, and 0.02%
fibroblast growth factor. Cells were maintained at 37 ◦C with 5% CO2. All experiments
were performed at 4% O2 and 70–80% cell confluency.

Table 2. Characteristics of cell lines used in this study.

Cell Line Source Subtype Sex IDH Status MGMT
Methylation

U251 Millipore Sigma Mesenchymal M Wild-type Unmethylated
U87 ATCC Mesenchymal M Wild-type Unmethylated

* GBM06 Primary tumor Classical M Wild-type Unmethylated
* GBM76 Recurrent tumor Classical M Wild-type Methylated
* GBM39 Primary tumor Mesenchymal M Wild-type Methylated

* GBM117 Primary tumor Proneural M Wild-type Methylated
* GBM85 Primary tumor Proneural M Wild-type Methylated

* Cells obtained from the Mayo Clinic GBM patient-derived xenograft repository.

4.2. Colony Formation Assay

To determine the effect of P-AscH− in conjunction with SOC on reproductive integrity
in the different GBM subtypes, classical, mesenchymal, and proneural cells were plated at
1–2 × 105 cells per 60 mm dish. Within 24 h of plating, cells were serially treated with 5 µM
temozolomide for 1 h and 20 pmol/cell P-AscH− for 1 h and were irradiated with 4 Gy.
Subsequently, cells from control or treated dishes were collected by treatment with trypsin
(0.25%). Trypsin was inactivated with BR15 media containing 15% FBS and additives. Cell
counts were made with a Coulter Counter and the cells were plated at various densities and
allowed to grow for 1–4 weeks in complete media at 4% O2. Subsequently, the cells were
stained with Coomassie Blue dye, colonies greater than 50 cells per plate were counted and
recorded, and clonogenic cell survival was determined as described previously [40]. The
surviving fraction was determined using the following equation:

Surviving Fraction =
number of colonies counted

number of cells plated

Treatment groups were normalized to an untreated control to determine the normal-
ized surviving fraction (NSF).

4.3. P-AscH− Treatments

A 1M stock solution of ascorbic acid was used in all experiments. For in vitro studies,
cells on a dedicated “count” dish were counted, and the number of cells per dish was used
to calculate the volume of 1M ascorbic acid solution to treat the cells at 20 pmol/cell. For
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in vivo studies, the volume of ascorbic acid to be injected intraperitoneally was calculated
based on a 4 g kg−1 mouse weight dose.

4.4. Neutral and Alkaline Comet Assays

Neutral and alkaline comet assays were carried out using the R&D CometAssay Elec-
trophoresis Starter Kit (R&D, Minneapolis, MN) following the manufacturer’s instructions,
with slight modifications. Briefly, cells were harvested immediately after P-AscH− treat-
ment and resuspended in DPBS at 2 × 105 cells/mL. A total of 25 µL of cell suspension was
mixed with agarose, and 50 µL of the mixture was spread on the well of a glass slide. Slides
were dried in the dark at 4 ◦C for 10 min. Slides were then incubated in cold lysis buffer
for 45 min at 4 ◦C. Following lysis, slides were incubated in a neutral buffer for 15 min or
alkaline buffer for 20 min at room temperature. Slides were subjected to electrophoresis at
21 V in the appropriate buffer for 40 min for the neutral assay and 30 min for the alkaline
assay. Slides were washed in water twice for 5 min, then in 70% ethanol for 5 min. Then,
the slides were completely dried at 37 ◦C for 15 min. Slides were stained with 1X SYBR
Gold (ThermoFisher, Waltham, MA, USA) for 30 min at room temperature in the dark.
Excess stain was removed, and slides were briefly rinsed in water before allowing them to
dry at 37 ◦C for 10 min. Fluorescent microscopy was used to image comets, and data were
analyzed using the autoanalyzer software CometScore 2.0.0.38 to obtain percent tail DNA
(http://rexhoover.com/index.php?id=cometscore, accessed: 21 December 2021).

4.5. Hydrogen Peroxide Removal Assay

The rate (kcell) of the removal of extracellular H2O2 by different subtypes of GBM
was determined using the para-hydroxyphenylacetic acid (pHPA) plate reader assay as
described previously [41,42]. A total of 50,000 cells from various subtypes of GBM were
seeded per well of a 96-well (Costar Clear) bottom plate. Cells were incubated for at least
48 h at 37 ◦C, 4% O2, and 5% CO2. Subsequently, 10 uM hydrogen peroxide was added to
wells and the system was quenched at predetermined times to determine the concentration
of H2O2 remaining in the wells using a quenching solution of horseradish peroxide (HRP)
that reacts with H2O2. This reaction of HRP with H2O2 activates HRP and subsequently
oxidizes pHPA, resulting in a fluorescent dimer that corresponds to the H2O2 remaining in
each well. Cells in each well were counted using a hemocytometer and the observed kcell
was determined.

4.6. Catalase Activity Assay

Catalase activity was determined using Abei’s method via UV-Vis spectroscopy, de-
tecting the disappearance of H2O2 at 240 nm, ε240 = 39.4 M−1 cm−1 [43]. A total of 55.6
mM potassium phosphate buffer (pH 7.0) was used as the working buffer for this assay. The
catalase reaction was initiated by adding an excess of 30 mM H2O2 to a final concentration
of 10 mM in the assay cuvette. The absorbance of hydrogen peroxide was monitored
immediately upon the start of the reaction for 120 s (s) at 10 s intervals. The natural log of
the rate of H2O2 disappearance was then used to determine the kU of activity. Activity was
then normalized to protein content in the sample as measured using the DC Protein Assay
Kit (Bio-Rad, Hercules, CA, USA).

4.7. Glutathione Peroxidase Activity Assay

Glutathione peroxidase 1 (GPx) activity was determined spectrophotometrically using
the method of Lawrence and Burk [44]. Briefly, in a buffer containing reduced glutathione
(1 mM), glutathione reductase (1 E.U./mL), and NADPH (0.2 mM), activity in samples or
standards was determined by measuring the disappearance of NADPH at 340 nm following
the addition of H2O2 (final concentration = 0.25 mM). A unit of GPx activity was defined
as 1 µmole of NAPDH oxidized/min. Activity was then normalized to protein content in
the sample as measured using the DC Protein Assay Kit.

http://rexhoover.com/index.php?id=cometscore
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4.8. U87 Xenograft Murine Model

Female 6–8-week-old athymic nude mice (Envigo, Indianapolis, IN, USA) were used
for this study. All procedures were approved by the University of Iowa Institutional Animal
Care and Use Committee and conformed to NIH guidelines (IACUC protocol #0121207).
Animals were kept at the University of Iowa animal care facility in a temperature-controlled
environment with a 12 h light/12 h dark cycle. In total, 2 × 106 U87 GBM cells were
subcutaneously injected into the right flanks of nude mice. Upon the formation of palpable
tumors, animals were randomly assigned to the following groups: control, SOC, Sequence
1, and Sequence 2 (Table 2). Ionizing radiation (IR) was delivered in 2 Gy fractions to
the flank for a total of 12 Gy using the University of Iowa Xstrahl small animal radiation
research platform. Temozolomide (TMZ) was delivered intraperitoneally at 2.5 mg kg−1.
P-AscH− was administered intraperitoneally at 4 g kg−1. Treatment consisted of two active
treatment weeks followed by two adjuvant weeks. Dosing frequencies are shown in Table 1.
A tumor volume > 1500 mm3 or tumors with necrotic ulceration were considered criteria
for euthanasia.

4.9. Statistical Analysis

A one-way ANOVA with the Brown–Forsythe test was used to analyze colony forma-
tion assays, hydrogen peroxide removal assay, catalase activity, and GPx activity. Paired
two-tailed t-tests were performed to analyze DNA damage data. Tumor growth rate and
body weight data were analyzed using a two-way ANOVA. Overall survival data were
analyzed on a Kaplan–Meier curve with the Gehan–Breslow–Wilcoxon test. GraphPad
Prism 9 software was used for all statistical analyses.
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