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Abstract: Biological macromolecules, the fundamental building blocks of life, exhibit dynamic struc-
tures in their natural environment. Traditional structure determination techniques often oversimplify
these multifarious conformational spectra by capturing only ensemble- and time-averaged molec-
ular structures. Addressing this gap, in this work, we extend the application of the single-object
scattering sampling (SOSS) method to diverse biological molecules, including RNAs and proteins.
Our approach, referred to as “Bio-SOSS”, leverages ultrashort X-ray pulses to capture instantaneous
structures. In Bio-SOSS, we employ two gold nanoparticles (AuNPs) as labels, which provide strong
contrast in the X-ray scattering signal, to ensure precise distance determinations between labeled sites.
We generated hypothetical Bio-SOSS images for RNAs, proteins, and an RNA–protein complex, each
labeled with two AuNPs at specified positions. Subsequently, to validate the accuracy of Bio-SOSS, we
extracted distances between these nanoparticle labels from the images and compared them with the
actual values used to generate the Bio-SOSS images. Specifically, for a representative RNA (1KXK), the
standard deviation in distance discrepancies between molecular dynamics snapshots and Bio-SOSS
retrievals was found to be optimally around 0.2 Å, typically within 1 Å under practical experimen-
tal conditions at state-of-the-art X-ray free-electron laser facilities. Furthermore, we conducted an
in-depth analysis of how various experimental factors, such as AuNP size, X-ray properties, and
detector geometry, influence the accuracy of Bio-SOSS. This comprehensive investigation highlights
the practicality and potential of Bio-SOSS in accurately capturing the diverse conformation spectrum
of biological macromolecules, paving the way for deeper insights into their dynamic natures.

Keywords: structure of biomolecules; X-ray scattering; nanoparticle labeling; single molecule; struc-
tural ensemble; RNAs; proteins

1. Introduction

Molecular structures are highly dynamic. The same also holds for biological macro-
molecules governing the complex vital processes in living organisms. From the helical
structures of nucleic acids to the intricate folds of proteins, the three-dimensional archi-
tectures of biomolecules are intertwined with the microscopic origins of life. A plethora
of both experimental and theoretical studies have consistently demonstrated that biolog-
ical macromolecules exist as a large ensemble of conformations, rather than adhering to
a single static structure [1–3]. Small potential barriers between conformations result in
continuous thermal fluctuations across various structures, imparting flexibility to biological
macromolecules [4,5]. For proteins, this dynamic nature gives rise to the concept ‘protein
dynamics’, a topic that has become a notable agenda in the field of structural biology [4,6].
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Flexibility in biological macromolecules grants a physiological adaptability essential to
the function of biological macromolecules [7–13]. Representatively, flexible structures
facilitate the interactions between different molecules that are essential for processes such
as molecular recognition [4,11]. For instance, structural flexibility accounts for the folding
of ribonucleic acids (RNAs) [10] or the protein–nucleic acid recognition [7,8]. Furthermore,
the capacity of proteins to adapt to the external environment stems from structural fluc-
tuations [13]. Accordingly, a comprehensive understanding of these dynamic features
in biological macromolecules is essential for unraveling the complex molecular interplay
of life.

Biological macromolecules can adopt multiple structural conformations, each of which
may potentially contribute to the physiological functions in vivo. Therefore, to scrutinize
the intricate relationship between the physiological function of a molecule and its dynamic
structure, it is largely desirable to capture all conformations. On the other hand, traditional
structure determination techniques, such as X-ray diffraction (XRD) [12,14–16], small-
angle X-ray scattering (SAXS) [17–20], and nuclear magnetic resonance (NMR) [21,22],
predominantly capture time-averaged molecular conformations. In these techniques, the
structural information is derived from a huge ensemble of biological molecules, each
existing in a distinct conformation. If the molecular structure is rigid, meaning that all
molecules within the ensemble adopt a single, identical conformation, then these techniques
can be employed to retrieve the structure with high spatial resolutions. However, when
dealing with biological macromolecules that exhibit structural flexibility, the observables
measured from the ensemble average may not accurately represent those of the individual
molecules within the ensemble. Thus, directly retrieving the full spectrum of possible
structural conformations of the molecule is of paramount importance, yet it presents
significant challenges.

To overcome these limitations, a myriad of cutting-edge techniques has been proposed
in the fields of XRD [23–25], cryo-electron microscopy (cryo-EM) [26–32], NMR [10,22,33,34],
and optical spectroscopy [35–39]. Notably, single-molecule spectroscopy and nanoparticle-
assisted cryo-electron microscopy sampling (NACS) [27,32] have emerged as viable strate-
gies for capturing single-molecule structures, each presenting distinct benefits and lim-
itations. Single-molecule spectroscopy is invaluable for capturing molecular behaviors
and interactions at the individual molecule level, thus shedding light on the complex
and dynamic processes of biomolecules. Techniques such as single-molecule FRET (sm-
FRET) [36–38] can elucidate dynamic protein structural ensembles in solution by measuring
distances between fluorophores. However, the distance limitation of less than 10 nm for
typical fluorophores and the influence of fluorophore orientation can complicate inter-
pretations. NACS has been developed as a complementary approach. NACS utilizes
gold nanoparticles (AuNPs) to enhance the visualization of protein conformational dis-
tributions. By labeling two distinct sites on a target sample, NACS measures distance
distributions, leveraging the principles of cryo-EM. However, it is important to note that
cryo-EM involves flash freezing molecules, and the freezing process typically takes several
nanoseconds to tens of nanoseconds, during which time molecules may undergo structural
rearrangements. This raises questions about the ability of cryo-EM, and by extension NACS,
to accurately capture the “instantaneous” conformation of molecules, particularly those
that are highly unstable and rarely populated. By contrast, our study employs a novel
experimental scheme, called single-object scattering sampling (SOSS) [25], which is based
on single-molecule X-ray diffraction (Figure 1a). This technique is tailored to capture and
identify individual structural conformations of dynamic biological macromolecules. The
SOSS procedure involves irradiating an isolated molecule with a coherent, ultrashort, and
high-intensity X-ray pulse. The duration of this X-ray pulse is significantly shorter than the
time scale of the typical molecular structural fluctuations, allowing the pulse to capture
the conformation of the molecule at a specific instant, as if “freezing” the molecule in time.
A repeated measurement of the instantaneous structures allows for sampling all possible
structural conformations of the molecule. The relative abundance of each conformation, as
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determined by repetitive sampling, is then used to reconstruct the population distribution
of the structural conformations. In light of these capabilities, SOSS emerges as a promis-
ing technique, holding significant potential for investigating the dynamic features of the
biological macromolecules.
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Figure 1. Single-object scattering sampling (SOSS) of biological molecules (Bio-SOSS). (a) A concep-
tual schematic of the single-object scattering sampling (SOSS) technique. The SOSS technique aims to
retrieve the instantaneous structure of a single molecule using an ultrashort and intense X-ray pulse.
Since the atoms in a molecule scatter the X-ray photons of the incident X-ray pulse, the interatomic
distances within a molecule (representatively denoted by ri and rj) can be retrieved per each X-ray
scattering image (circular pattern). Consequently, N instantaneous conformations within the phase
space of a molecule correspond to N pairs of (ri, rj), resulting in a distribution for interatomic pair
distances along the r axis. (b) An application of SOSS to a biological molecule (Bio-SOSS). (Top) A
biological molecule, such as RNA, has a flexible structure with different conformations (blue-dotted
square). Since the biomolecules mostly consist of light atoms, the X-ray scattering intensity from
each conformation (images in the middle column) is too low to accurately resolve the distribution
of interatomic distances. (Bottom) If the gold nanoparticles (AuNPs) are labeled to two sites (for
example, nucleosides in RNA) of interest, the X-ray scattering images from the AuNP-labeled RNA
exhibit distinctive patterns depending on the distance and orientation between the two AuNPs
(images in the middle column). Thus, we can reconstruct the distribution of structural conformations
by parameterizing the distances between the two AuNPs (red curve in the right column).
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Nevertheless, two challenges remain in implementing SOSS on biomolecules. First,
one should obtain the single molecule scattering snapshot with sufficiently high signal-to-
noise ratios in order to retrieve the structural information from the snapshot. However, it
is challenging to obtain a scattering image of a large biomolecule that is strong enough to
provide three-dimensional structure information with the flux of incident photons from
currently available X-ray sources, including the state-of-the-art X-ray free-electron lasers
(XFELs) [24,40–42]. In addition, for macromolecules such as proteins and nucleic acids,
their complex three-dimensional structures, which are composed of more than thousands of
atoms, make it practically impossible to extract the structure from a single two-dimensional
scattering image regardless of the strength of the scattering signal. One compromise
solution to overcome these two challenging obstacles would be the site-directed labeling
of biological macromolecules using metal nanoparticles [43,44]. Utilizing nanoparticles
composed of heavy elements facilitates the acquisition of clear single-shot single-molecule
scattering snapshots [45]. This is particularly useful when two nanoparticles are labeled
at distinct sites on a biomolecule, as the distance between these two labeled sites can
be routinely determined from the strong interference pattern observed in the scattering
snapshot (Figure 1b). Consequently, the site-directed labeling of two nanoparticles enables
the extraction of a crucial instantaneous structural parameter—the distance between two
labeled sites—from a single scattering snapshot. In this work, we perform proof-of-concept
simulations of the SOSS method on nanoparticle-labeled biological macromolecules, a
technique denoted as Bio-SOSS. Through these simulations, we demonstrate the feasibility
and the potential of Bio-SOSS as a novel approach to probing the dynamic nature of
biological molecules.

2. Results and Discussion

We present a proof-of-concept of a novel algorithm designed to accurately retrieve the
distribution of three-dimensional (3D) interatomic distances within a fluctuating single-
stranded ribonucleic acid (ssRNA) chain comprising 2255 atoms (Figure 2a). Each nu-
cleotide in the ssRNA is composed of a ribose sugar, a phosphate group, and one of four
bases: adenine (A), cytosine (C), guanine (G), and uracil (U). Owing to its dynamic nature,
the structure of the ssRNA incessantly fluctuates, resulting in time-dependent variations
in the distances between any two nucleosides of interest. These structural fluctuations
were sampled in a total of 100 snapshots generated through molecular dynamics (MD)
simulations. For each snapshot, we performed labeling of two selected nucleotides on
the RNA with gold nanoparticles (AuNPs). The two sites for labeling were carefully se-
lected to prevent any potential collisions with other atoms in the RNA chain. The details
of this selection process are comprehensively described in the Section 3. Consequently,
we conducted simulations for a total of 18 pairs of labeling sites. For each snapshot, we
generated the single-shot single-molecule X-ray scattering pattern for the RNA labeled
with AuNPs. To generate the patterns, we assumed a hypothetical X-ray scattering setup
with a two-dimensional (2D) area detector. We then simulated the mock experimental
single-object X-ray scattering pattern, Sexp, as detected by the area detector (Figure 2). To
check the dependence of Sexp and the efficiency of retrieving the inter-site distances on
various experimental parameters, Sexp was simulated with varying experimental parame-
ters including the size of the AuNPs, the energy of the X-ray photons, the focal size of the
X-ray pulse, and the intensity of the X-ray pulse. By analyzing each scattering pattern, we
extracted the 3D distance information (r) between the AuNPs. We assumed that this value
corresponds to the distance between the two labeled nucleotides on the RNA, denoted as
ri,j. Repeating this process, we were able to construct a histogram of the distances between
the two nucleotides.
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Figure 2. Bio-SOSS simulation. (a) A schematic diagram of the Bio-SOSS experiment. In the experi-
ment, the incident ultrashort, ultraintense X-ray probe pulse was spatially focused to a well-defined
position where the biomolecule of interest (ssRNA in this work) labeled with gold nanoparticles
(AuNPs) was located. The scattered X-ray signal from the molecule was recorded on the 2D area
detector placed at l away from the sample position. We defined the z-axis as the direction of incident
X-ray, and the x- and y-axes as the two unit vectors constituting the detector plane perpendicular
to the X-ray propagation. The simulated X-ray scattering images depend on several controllable
parameters related to the properties of the X-ray, AuNPs, and detector. The focal size, wavelength,
and direct beam intensity of the X-ray are represented as f, λ, and I, respectively (dotted square on
the left). The radius of the AuNP used for the labeling is expressed as R (dotted square in the center).
The size of a single pixel and number of pixels in the detector are denoted as p and n, respectively
(dotted square on the right). (b) (Left) The mock X-ray scattering image from the experiment (Sexp).
(Right) Sexp consists of the scattering signals from the single molecule of AuNP-labeled ssRNA
(SAuNP–RNA), depicted by a molecule in the center, and the random noise (Snoise). (c) (Left) The X-ray
scattering image of the Bio-SOSS algorithm (Stheo). (Right) Stheo took the scattering from the pair
of the two AuNPs (SAuNP), depicted by a pair of two AuNPs in the center, into consideration. The
distance between the two AuNPs were optimized to generate Stheo, which best reproduces Sexp.
A pair of sample images for Sexp and Stheo, selected from the images for SRNA, SAuNP, SAuNP-RNA,
Snoise, Sexp, and Stheo (Figure S2), is visualized on the left. We note that the scattering intensity was
logarithmically scaled to depict the weak signals in the high q (Figure S3). Details for the generation
of simulated images are explicitly described in the Supporting Information (SI).

An experimental single-object X-ray scattering pattern should contain the interference
from all pairs of atoms in the ssRNA as well as AuNPs. In addition, the experimental data
contain noise. Considering this, Sexp was generated by adding the simulated single-object
X-ray scattered image from the AuNP-labeled ssRNA, SAuNP–RNA, and the sum of Poisson
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random noise and uniform random noise at each detector pixel, Snoise (Figure 2b). The goal
is to extract the distance between two AuNPs from the Sexp, while the instant structure of
ssRNA at the moment of X-ray scattering is not known. The X-ray scattering intensity from a
molecule depends on the form factor of constituent atoms, as well as the effects of molecular
structures such as interatomic distances. In the case of the former, the atomic form factor
increases with an increase in the number of electrons, or the atomic number. Given that
the ssRNA chain is composed exclusively of lighter atoms—phosphorus, oxygen, nitrogen,
carbon, and hydrogen—the scattering pattern originating solely from the RNA is weaker
in comparison to those inclusive of the considerably heavier gold (Z = 79) nanoparticles, as
depicted in Figure 2c. Hence, the incorporation of AuNP labels significantly amplifies the
scattering signal, thereby facilitating the extraction of precise structural information.

More specifically, the signal SAuNP–RNA can be depicted as follows:

SAuNP-RNA = SAuNP + SRNA + SAuNP*RNA = SAuNP, 1 + SAuNP, 2 + SAuNP, 1*2 + SRNA + SAuNP*RNA
= |f AuNP,1|2 + |f AuNP,2|2 + 2|f AuNP,1 · f AuNP,2| + |f RNA|2 + 2|f AuNP,1 · f RNA| + 2|f AuNP,2 · f RNA|
= 2|f AuNP,1|2 + 2|f AuNP,2 · f AuNP,2| + |f RNA|2 + 2|f AuNP,1 · f RNA| + 2|f AuNP,2 · f RNA|

(1)

where SAuNP represents the scattering signal from AuNPs, SRNA denotes the scattering
signal from the RNA, and SAuNP,1 and SAuNP,2 correspond to the scattering signals from
each of the two individual AuNPs. SAuNP*RNA represents the scattering cross-term be-
tween the AuNPs and the RNA, and SAuNP, 1*2 denotes the scattering cross-term between
one AuNP and the other. f AuNP,1 and f AuNP,2 correspond to the scattering amplitude of
each of the two individual AuNPs, and f RNA denotes the scattering amplitude of the
RNA. Assuming that the two AuNPs are Identical in terms of their composition and
shape, |f AuNP,1|2 = |f AuNP,2|2. When the scattering signal from the AuNPs is signifi-
cantly stronger than that from the RNA, that is, |f AuNP,1| >> |f RNA|, Equation (1) can be
approximated as follows:

SAuNP-RNA
= 2|f AuNP,1|2 + 2|f AuNP,2 · f AuNP,2| + |f RNA|2 + 2|f AuNP,1 · f RNA| + 2|f AuNP,2 · f RNA|
∼= 2|f AuNP,1|2 + 2|f AuNP,2 · f AuNP,2| + 2|f AuNP,1 · f RNA| + 2|f AuNP,2 · f RNA|
∼= 2|f AuNP,1|2 + 2|f AuNP,2 · f AuNP,2| = SAuNP

(2)

Our strategy involves the assumption that |f AuNP,1| >> |f RNA|. Consequently, Equation (2)
holds true, allowing for accurately approximating the single-object scattering pattern from an
AuNP-labeled ssRNA with that from two AuNPs alone.

To test this idea, we first simulated the single-object X-ray scattering images, Stheo,
using only the scattering signals from the two AuNPs, SAuNP, while neglecting the con-
tribution from the fluctuating RNA backbone (Figure 2c). The resulting Stheo was then
compared to Sexp, which is the sum of SAuNP–RNA and Snoise, with the primary contribution
coming from SAuNP–RNA. The qualitative comparison, as illustrated in Figure 2b,c, confirms
that SAuNP–RNA can indeed be accurately approximated by SAuNP, given that the princi-
pal oscillating features in these patterns are nearly identical in shapes. To quantitatively
validate this observation, we conducted further analysis. In this process, the distance r
was iteratively optimized to minimize the sum-of-squares of residual at each detector pixel
intensity, |Sexp − SAuNP|2, scaled by the error at each pixel. To confirm the validity of our
approach, we compared the optimized distance, rfit, with the actual distance between the
two labeled AuNPs, denoted as rAuNP. Our simulation results validate that the optimized
interparticle distances, rfit, closely mirror the actual distances between the AuNPs, rAuNP.
Consequently, the reconstructed distribution of rfit, denoted as p(rfit), obtained through
Bio-SOSS, accurately mirrors the true distribution, p(rAuNP) (Figure 3). The consistency
was observed regardless of the labeling sites.
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Figure 3. Bio-SOSS reveals the distance distribution between selected pairs of nucleosides. (a–f) The
distribution of retrieved distances between each of the six selected pairs of AuNPs that are substituted
to the oxygen atoms of the phosphate group (black dotted line) and the target distribution from
MD snapshots (red histogram). In each panel, the ssRNA is schematically shown with the labeling
sites indicated with yellow spheres. We implemented the Bio-SOSS to retrieve the distance between
AuNP-labeled sites at each MD snapshot. The reconstructed distribution of distances between each
pair of AuNPs throughout the 100 MD snapshots were sorted into histograms and compared with the
real distribution computed directly from the molecular structures in the MD snapshots. The notable
consistency between these two sets of results underscores the potential of Bio-SOSS in capturing
the diverse conformations of a RNA molecule. For visualization purposes, we randomly selected
six pairs of AuNPs, denoted as (a–f). We labeled the AuNP at the following residues of the target
RNA structure: (a) (12nd, 13rd), (b) (12nd, 16th), (c) (15th, 47th), (d) (15th, 50th), (e) (28th, 47th), and
(f) (16th, 50th). The remaining 12 pairs are presented in Figures S4 and S5.

We quantitatively evaluated the accuracy of the distance retrieval method by calculat-
ing the discrepancies between rfit and rAuNP at each snapshot (Figure 4). For this analysis,
we gathered 1800 pairs of rfit and rAuNP values corresponding to all 18 labeling-site pairs, as
analyzing only 100 pairs specific to a particular nucleotide pair would result in insufficient
data. The resulting distributions of the 1800 rfit and rAuNP values, denoted as p(rfit) and
p(rAuNP), are plotted and compared in Figure 4a. A satisfactory agreement between p(rfit)
and p(rAuNP) can be observed. By examining the distribution of discrepancies between
rfit and rAuNP, denoted as p(rfit − rAuNP), we found that the errors in r-values, ∆rAuNP,
follow a Gaussian distribution centered at zero (Figure 4b). This distribution has a standard
deviation of approximately 0.23 Å, demonstrating that the structural retrieval error of
Bio-SOSS is within this range.
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Figure 4. Statistical accuracy of Bio-SOSS. (a) A comparison between the distributions of distances
between two AuNPs obtained from the analysis of single-object X-ray snapshots (rfit, depicted by the
black line) and the actual distances between the two AuNPs (rAuNP, depicted by the red vertical bars).
For a statistical visualization, the distances shown in this diagram were merged from a collection of 18
available pairs of AuNP-labeling sites in the ssRNA strand. The vertical axis represents the probability,
or the number frequency of each bin normalized by the total number count. (b) The distribution of
difference distances between rfit and rAuNP, |rfit − rAuNP|, was analyzed by fitting it to a Gaussian
distribution function. The average (∆ravg) and standard deviation (∆rstd) of the distribution of
differences, derived from the fitting results, were 0.052 Å and 0.23 Å, respectively. These extracted
values were considerably smaller than typical interatomic bond lengths, demonstrating a remarkable
accuracy of Bio-SOSS. The distribution of (c) distances and (d) difference distances between the AuNPs
and AuNP-labeled sites were shown. Both distributions were decomposed into three Cartesian unit
vectors: x, y, and z. The average and standard deviation of the difference distance distribution
along each axis are presented in the inset of (d). The above indicates that the Bio-SOSS method
offers higher resolution when measuring distances projected onto the xy-plane (perpendicular to
the incident X-ray) compared to distances along the z-axis (parallel to the incident X-ray). We note
that the Bio-SOSS simulation in this figure assumes the following experimental conditions: R = 9 Å,
n = 250 pixels, p = 234 µm, I = 1014, l = 40 mm, and f = 100 nm.

To provide a more comprehensive analysis, we decomposed both rfit and rAuNP into
their constituent components, xfit, yfit, and zfit, and xAuNP, yAuNP, and zAuNP, respectively.
These components represent the 3D projections of the vector pointing from one AuNP
to the other. The comparisons of xfit and xAuNP, yfit and yAuNP, and zfit and zAuNP are
depicted in Figure 4c. Subsequently, we calculated the discrepancies between xfit and
xAuNP, yfit and yAuNP, and zfit and zAuNP to obtain ∆x, ∆y, and ∆z. Decomposing the
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3D distance r into its x, y, and z directional components elucidates the key factor that
governs the accuracy of distance retrieval. Figure 4d illustrates the distinct widths of
the distributions of ∆x, ∆y, and ∆z. It is noteworthy that the width of ∆z is comparable
to that of ∆rAuNP, indicating that the accuracy in determining the r value is primarily
influenced by the accuracy achieved in quantifying the distance along the z-direction. This
can be rationalized by considering the richness of information available in the x and y
directions, which lie perpendicular to the propagation direction of the X-ray pulse, in
comparison to the z-direction. In terms of the momentum transfer vector q, the maximum
magnitudes of q in the x- and y-directions, denoted as qx and qy, covered by a detector
are substantially larger than the component in the z-direction, denoted as qz. Taking the
Fourier-transform relationship between r-space and q-space into account, as the maximum
achievable magnitude q in q-space increases, the minimum resolvable r in the r-space
decreases. Therefore, due to the limitations in qz compared to qx and qy, the precision in
resolving distances in the z-direction is compromised relative to the x and y directions.

The distributions of ∆x, ∆y, and ∆z were quantitatively evaluated, revealing a marked
discrepancy in the breadth of ∆z compared to ∆x and ∆y. For this analysis, we employed
Gaussian functions to fit the respective distributions and then extracted the center and
width (standard deviation) of the optimum Gaussian fits. Consequently, we found that
the center values for ∆x and ∆y were −4.6 × 10−3 and −6.0 × 10−5 Å, respectively,
which are practically zero. The standard deviations for ∆x and ∆y were calculated to be
5.3 × 10−2 and 5.0× 10−2 Å, respectively, both residing within the atomic scale. Conversely,
the center value and standard deviation for ∆z, at 1.8 × 10−2 and 0.37 Å, respectively, were
considerably higher compared to the other two axes. Nevertheless, these values remain
smaller relative to the typical pair distances in a macromolecule, which are depicted for
the RNA on the horizontal axis of the distribution diagrams for r in Figures 3 and 4a. Such
findings underscore the potential of Bio-SOSS in accurately delineating the local structural
configurations inherent to biological macromolecules.

To comprehensively evaluate the versatility of Bio-SOSS on a wider spectrum of
biomolecules, we conducted a quantitative investigation of its accuracy using ten distinct
biomolecules (Figure S1), comprising four RNAs, five proteins, and an RNA–protein
complex. Our results demonstrate a notable agreement between the actual distances
(rAuNP) and those retrieved by Bio-SOSS (rfit), as depicted in Figures S18–S21. This level
of agreement is comparable to that observed for the MD snapshots of the target RNA
(PDB ID: 1KXK). Employing the same experimental parameters as those used to obtain the
simulation results shown in Figure 4, the standard deviation of the distance differences,
σ(∆r), for these ten biomolecules ranged from 0.097 Å to 0.33 Å (Tables S1 and S2). In
addition, the results suggest a positive correlation between the σ(∆r) value and the size
of the biomolecules, which can be characterized either by the molecular weight or the
number of residues (Figure S6). A more detailed discussion on this topic is provided in the
“Bio-SOSS on various biomolecules” section of the Supporting Information.

To determine the optimal conditions for the retrieval of interatomic distances using the
Bio-SOSS method, we quantitatively assessed the impact of the experimental parameters
on the statistical distributions of ∆rAuNP. Six conditions were varied in the simulations:
the size of the AuNPs (R), the wavelength of the X-ray photons (λ), the focal size of the
X-ray pulse (f ), the intensity of the X-ray pulse (I), the sample-to-detector distance (l), and
the number of pixels in the detector (p). It should be emphasized that f and I of the X-ray
pulse are interrelated, as they collectively define a key independent variable—the number
of X-ray photons per unit area. Despite this interconnection, it is essential to recognize the
capacity to independently adjust these parameters during the experimental procedure. In
light of this, we investigated the effects of varying the two parameters to comprehensively
understand their impact on our results.

Scattering images were generated under a variety of experimental conditions, and from
these images, the 3D distances, rfit, were subsequently extracted. To isolate the influence of
each parameter, we systematically varied one parameter at a time while keeping the other
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parameters constant. The fitted distance, rfit, for each image was compared to the actual
distance, rAuNP. Subsequently, the distributions of discrepancies between rfit and r AuNP,
∆rAuNP = rfit − rAuNP, were generated and fitted with a Gaussian function (Figures S7–S17).
The standard deviations of the Gaussian functions obtained from the fitting results, plotted
according to conditions, are presented in Figures 5 and 6. We decomposed both rfit and rAuNP
into their respective x, y, and z directional components and performed a comparative analysis.
The deviations in these components, denoted as ∆x, ∆y, and ∆z, were quantitatively assessed
by fitting their respective distributions to Gaussian functions and subsequently determining
the center and standard deviation of the best-fit Gaussian functions. The standard deviation
values of ∆x, ∆y, and ∆z, along with the standard deviation values of ∆rAuNP, are collectively
displayed in Figures 5 and 6.
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Figure 5. Dependence of the Bio-SOSS accuracy on the size of AuNPs. (a) The standard deviation
of the distance differences depicted as a function of the radius of AuNP, R. The plot shows that the
accuracy of the distance retrieval improves with larger AuNPs. (b) Dependence of the AuNP form
factor on R. The AuNP form factors were normalized with the atomic form factor of carbon to show
the relative importance of the labeled AuNP compared to those from the RNA chain. The form
factors were calculated along the diagonal axis of the detector plane and converted to the momentum
space (q). We note that the relative form factors of AuNPs generally decrease in smaller AuNPs,
contributing less to the overall X-ray scattering signal, thereby reducing the accuracy of Bio-SOSS.

One of the most crucial parameters governing the accuracy of Bio-SOSS is the size
of the AuNPs used for labeling, denoted as R. To quantify the effect of R, we traced the
dependence of the standard deviation of the difference distribution, σ(∆r), at five distinct Rs,
namely 6, 7.5, 9, 10.5, and 12 Å. We found a monotonic decrease in σ(∆r), or an enhancement
in the Bio-SOSS accuracy, as R increased (Figure 5a). These results can be attributed to the
positive dependence of the AuNP form factor, f AuNP, on R (Figure 5b), which qualitatively
accords with the tendency in Figure 5a. As R increased, the relative contribution of X-ray
scatterings from AuNPs became more significant compared to those from the fluctuating
RNA backbone. On the other hand, it is noteworthy that when R became large, a disparity
between the two AuNPs and the actual distance between the two labeled sites on the
biomolecule also arose. This potentially poses negative impacts on the accuracy of Bio-
SOSS. Furthermore, for the practical implementation of Bio-SOSS, it is essential to consider
both chemical and physical interactions between the AuNPs and the target biomolecule to
be labeled. Larger nanoparticles, particularly those with substantial surface charges, are
prone to stronger interactions with the target biomolecule, potentially leading to distortions
in its native conformation [46]. Since the primary objective of the Bio-SOSS method is to
retrieve the native conformation of the biomolecule, rather than the altered conformation
due to AuNPs, it is generally less preferable to use nanoparticles of large sizes during the
experimental labeling process. In this regard, the choice of metal for nanoparticle labeling
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can also be of critical importance. For example, AuNPs offer several advantages: (1) they
can be synthesized in small sizes, (2) their surface charges can be tailored to desired levels,
and (3) they exhibit weak oxidative properties. Collectively, these characteristics make
AuNPs superior candidates for Bio-SOSS applications. It is important to note that our
simulated labeling process and the results presented in Figure 5 do not take these chemical
and physical interactions into account. Instead, our primary aim is to demonstrate the
Bio-SOSS method’s capability to retrieve distances in biomolecules, regardless of whether
the labeled molecule undergoes denaturation. In practice, the successful application of
Bio-SOSS relies on selecting an optimal AuNP size that strikes a balance between the effects
of scattering interactions, as discussed in this paragraph (where a larger R is advantageous
due to the increased scattering contribution from the AuNPs), and the effects of chemical
and physical interactions (where a smaller R is preferable to minimize distortions from the
native conformation).

The X-ray wavelength, or energy, used for the scattering experiment directly deter-
mines the maximum range of q (qmax) that encrypts the structural information of a molecule.
Since the reciprocal (q) and radial (r) spaces are interrelated by Fourier transformation, the
scattering data with larger q improve the accuracy of structural retrieval at the entire radial
space. Therefore, it is commonly assumed that a higher X-ray energy is more beneficial in
X-ray scattering experiments. However, our observation in Figure 6a counters this intuition,
as the standard deviation of ∆r, σ(∆r), increases as the X-ray energy increases. In other
words, using an X-ray at higher energy is proven to be disadvantageous for the accuracy
of the Bio-SOSS. To assess these results, we calculated the radial resolution limit rlim at
each X-ray condition by implementing the well-known relationship rlim = 2π/qmax, and
obtained: 6.7, 4.4, 3.3, 2.2, 1.7, 1.3, and 1.1 Å (at 3, 4.5, 6, 9, 12, 15, and 18 keV, respectively).
All of these values are notably larger than the extracted standard deviations of ∆r, implying
that the additional information obtained from the lengthened q range is not crucial to the
functioning of the Bio-SOSS structure. On the other hand, when we computed the dq value
corresponding to a single pixel at the center of the detector, we obtained the values 0.009,
0.013, 0018, 0.027, 0.036, 0.044, and 0.053 Å−1 at 3, 4.5, 6, 9, 12, 15, and 18 keV, respectively,
which are increasing according to the X-ray energy. Therefore, we conclude that the primary
factor determining the statistical accuracy of Bio-SOSS is not the maximum range of q-space
but rather the q-space resolution corresponding to a single pixel in the detector. It is also
expected from the form factors of an AuNP (Figure 5b) where f AuNP(q) at smaller qs are
notably greater by several orders in a logarithmic scale than those in larger qs. To system-
atically look into the impacts of the two countering effects, we investigated the statistical
dependence of the Bio-SOSS accuracy on the size of a 2D area detector. Considering that
the pixel size is kept at a constant value of 234 µm, a larger detector increases the maximum
available q range while maintaining the single-pixel dq as constant. Figure 6b confirms that
the standard deviation of ∆r remained almost constant as the number of detector pixels
increases. This observation coincides with our hypothesis that the single-pixel dq, rather
than the maximum q value, primarily decides the accuracy of Bio-SOSS.

We also observed how σ(∆r) depends on I (Figure 6c). A straightforward tendency was
observed up to 1016 photons, where brighter X-ray reduced σ(∆r), improving the accuracy
of the Bio-SOSS. On the other hand, when we used an ultra-intense X-ray with a 1017 photon
count, the accuracy of the structure retrieval between the two AuNPs significantly worsened.
This is because the scattering image from these ultra-intense X-ray sources is sensitive
not only to the distance between two AuNPs but also to the delicate structures of RNA.
Thus, at these high fluences, we expect that the structural resolution of the RNA backbone
becomes high enough to resolve the light atoms at that cost of reducing the distance
retrieval accuracy between the two AuNPs. Nevertheless, considering that a typical X-ray
photon flux for the X-ray scattering experiments at X-ray linear free electron lasers (XFELs)
lies between 1012 and 1013, we can assume that the accuracy of Bio-SOSS will increase at
stronger fluences within the experimental conditions available in near future.
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The X-ray wavelength, or energy, used for the scattering experiment directly deter-
mines the maximum range of q (qmax) that encrypts the structural information of a 

Figure 6. Influence of experimental parameters on Bio-SOSS accuracy. (a–f) The standard deviation
of the distance differences, σ(∆r), visualized as a function of (a) X-ray energy, Ex-ray, (b) number
of pixels, n, (c) number of incident X-ray photons, I, (d,e) X-ray focal size at the sample position,
f, and (f) sample-to-detector distances, l. In (a), an increase in Ex-ray leads to a monotonic rise in
σ(∆r), while (b) shows that σ(∆r) remains constant with varying n, highlighting the pivotal role
of single-pixel resolution (dq) in Bio-SOSS accuracy, as opposed to maximum q on the detector.
The relationship between σ(∆r) and the variables I and f, as illustrated in (c,d), implies that there
exist optimal conditions for Bio-SOSS with respect to both parameters. Panel (f) demonstrates the
dependency of σ(∆r) on l, unveiling the complex interplay between single-pixel resolution and
incident X-ray intensity. Note that (e) serves as an expanded view of panel (d), emphasizing the
trends near the optimal range from f = 3.2 nm to 316 nm.

The f at the point of interaction also plays a critical role in the spatial resolution of the
reconstructed molecular structure. If the X-ray pulses are spatially broad, the intensity per
unit area diminishes and the overall scattering intensity decreases. On the other hand, if the
X-ray pulses are too tightly focused, the scattering contribution from the RNA backbone
and other minor distances becomes non-negligible. In this case, the X-ray scattering images
contain mixed structural information not only from the two AuNPs but also from the RNA
backbone, as in the case where we use the X-ray pulses with 1017 photon flux. The standard
deviation of ∆r as a function of the X-ray focal size (Figure 6d,e) portrays the combined
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effect of these two contradicting dependencies, leading to a U-shaped optimal range of
focal sizes from 3.2 to 100 nm. Finally, the trend of σ(∆r) with respect to l (Figure 6f) shows
a combined effect of (1) maximum q, (2) single-pixel dq, and (3) X-ray intensity per unit
area. As l lengthens, all of these three dependent variables decrease. Here, the increase in
single-pixel dq resolution accounts for the initial enhancement in σ(∆r) from 20 to 40 mm
while the reduction in unit X-ray intensity predominantly contributes to the decay of the
Bio-SOSS accuracy from 40 mm to 80 mm.

3. Materials and Methods
3.1. Characteristics of Biomolecules Used for Bio-SOSS Simulations

We used four RNAs, one RNA–protein complex, and five proteins for our Bio-SOSS
simulations. The selected RNAs were: (1) the rRNA of the HIV-1 virus (PDB ID: 1EBQ,
9.36 kDa) [47], (2) the yeast ai5g group II intron (PDB ID: 1KXK, 22.67 kDa) [48], (3) the
tRNA for the aspartylation mechanism (PDB ID: 6UGG, 49.63 kDa) [49], and (4) the adeno-
sylcobalamin riboswitch (PDB ID: 4GXY, 61.46 kDa) [50], serving as representative ex-
amples. Additionally, we included a ribosomal RNA–protein complex (PDB ID: 1MMS,
70.43 kDa) [51] in our simulations. The proteins selected for simulation included: (1) the
first WW domain of human Smurf1 (PDB ID: 2LB0, 5.32 kDa) [52], (2) photoactive yellow
protein (PDB ID: 2PHY, 14.05 kDa) [53], (3) myoglobin (PDB ID: 1MBN, 17.87 kDa) [54], (4) a
single unit of green fluorescent protein (PDB ID: 4KW4, 27.23 kDa) [55], and (5) hemoglobin
(PDB ID: 2HHB, 64.74 kDa) [56]. This diverse group of biomolecules highlights the versa-
tility of the Bio-SOSS method. The structures of these biomolecules are shown in Figure
S1, along with details such as molecular weight, total number of atoms, and the number
of bases or residues. Initially, we employed the Bio-SOSS simulations on single static
structures of these biomolecules in various orientations to verify the method’s capability in
retrieving distances between the AuNPs. Additionally, we conducted molecular dynamics
(MD) simulations specifically on the yeast ai5g group II intron RNA (1KXK) to capture a
range of dynamic structural conformations. The application of Bio-SOSS simulations to
these diverse conformational snapshots effectively demonstrated the capability of Bio-SOSS
in revealing the complex and dynamic structures inherent in these biomolecules.

3.2. Labeling of Gold Nanoparticles and Generation of Orientational Diversity in RNAs, Proteins,
and an RNA–Protein Complex

To obtain diverse molecular orientations for the ten biomolecules (Figure S1), we
utilized the Euler rotation method. This method allowed us to introduce orientational
variations into the three-dimensional coordinates of the biomolecules without altering
their relative connectivity or size. Starting with well-established PDB structures [47–56],
we generated 30 different sets of Euler angle pairs (α, β, γ) at random. By applying
each of the 30 distinct Euler rotations to the original structure obtained from the PDB, we
generated 30 unique cartesian coordinates for each biomolecule. These sets maintained the
molecular conformation of the biomolecules but exhibited different orientations concerning
the laboratory frame (the frame defined by the direction of the propagation of incident X-ray
pulses and detector alignment, as described in Figure 2a). Within each of these structures,
we introduced two AuNPs with a specific radius denoted as R. Specifically, we selected
two oxygen atoms of the phosphate group (“O1P” and “O2P”, also denoted as “OP1”
and “OP2” in some PDB files) for RNAs and the oxygen atoms involved in the peptide
bond (–CO–NH–) for proteins as the labeling positions. From the available positions of
AuNP pairs, we randomly selected between two and six pairs of AuNP positions, ensuring
that their inter-AuNP distances, denoted as rAuNP, covered a broad range of distances
within the limits allowed by the respective biomolecule in our simulations. To achieve this,
we applied a constraint requiring a minimum difference of 10–15 Å in the rAuNPs for the
selected pairs. We imposed an additional constraint that the distance rAuNP should surpass
2.4 times the radius R to avoid the proximity of the two AuNPs. Further details can be
found in Section 1-1 of the Supporting Information. Tables S1 and S2 provide a summary
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of the sizes of the ten biomolecules, alongside the minimum and maximum rAuNP, the
number of tested pairs, and the corresponding σ(∆r) values obtained from the Bio-SOSS
simulations for each biomolecule.

3.3. An Application of Single-Object Scattering Simulation (SOSS) to Biological Molcules

The proof-of-concept simulation of Bio-SOSS comprised four key steps: (1) prepa-
ration of atomic coordinates; (2) computation of X-ray scattering snapshots; (3) retrieval
of the distance between two gold nanoparticles attached to the two positions of interest;
(4) statistical sampling of the distance distribution and evaluation of their accuracies.

As the primary step, we prepared the atomic coordinates of the AuNP-labeled biologi-
cal macromolecule fluctuating freely within space. Structural snapshots of this fluctuating
molecule were theoretically obtained by molecular dynamics (MD) simulations. The
AuNPs were attached to randomly selected pairs of two atoms in a molecule, with the only
constraint ensuring no collision between the other existing atoms over the entire set of snap-
shots. A detailed account of the MD simulation procedure and the attachment algorithm of
AuNPs to the molecular snapshots is provided in the Supporting Information (SI).

Subsequently, hypothetical X-ray scattering snapshots, Sexp, for the AuNP–biomolecule
complexes were calculated by using the instantaneous structure of the complex prepared
in the first step. In the calculation, the scattering was assumed to be measured on a
two-dimensional area detector using the following equation.

S(u, Ω) = 0.5 (1 + cos2 2θ) · Ω · re ·
∫

I(t) · Σj fj(t) · |expi∆k(u)·xj(t)|2 dt (3)

In this equation, u is the position vector of a detector pixel, Ω is the solid angle of the
detector pixel, θ is a half of the scattering angle corresponding to the pixel, re is the classical
radius of an electron, I(t) is the instant photon flux at time t, fj(t) is the atomic form factor of
the jth atom at time t, ∆k(u) is the change in the scattering vector, and xj(t) is the position
vector of the jth atom at time t. This equation calculates the number of elastically scattered
photons. Incoherent scattering is ignored in this calculation. To calculate the scattering
intensity detected at each pixel, we considered the intensity only at the center of the pixel
and assumed that the intensity is equal at all different positions within one pixel. The form
factor of a nanoparticle was approximated as follows [57].

f AuNP(q, R) = 3 f Au(q) · [sin(qR) − qR · cos(qR) ] · q−3 (4)

Here, q is the magnitude of the momentum transfer vector between the incident and
elastically scattered X-ray photon, R is the radius of the nanoparticle, f AuNP is the X-ray
scattering form factor of the nanoparticle of radius R, and f Au is the X-ray scattering form
factor of a gold (Au) atom. The detailed parameters and considerations for the calculation
of X-ray scattering snapshots are listed in the Supporting Information.

The third stage involves the retrieval of the distance between the two positions of
interest where the two AuNPs are labeled. The theoretical image, Stheo, was simulated
assuming that the scattering solely comes from the two AuNPs. The three-dimensional
distances between the two AuNPs, namely xfit, yfit, and zfit, were iteratively optimized
to minimize the least-squares difference between the mock experimental and simulated
images, |Sexp − Stheo|2, scaled by the pixel errors. An in-depth description of the fitting
procedure is provided in the Supporting Information.

The least-squares minimization was repeatedly conducted to obtain a set of xfit, yfit,
and zfit for each hypothetically generated experimental X-ray scattering snapshot. These
extracted values were compared to the distance between the two sites of interest, namely
xAuNP, yAuNP, and zAuNP, obtained directly from the MD snapshots that were used to
generate the theoretical X-ray scattering data, Stheo. Finally, we employed a Gaussian
distribution function to describe the distribution of the difference between the distances
from the SOSS and those from the MD snapshots, ∆x, ∆y, ∆z.
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3.4. Molecular Dynamics Simulation

To generate the various model structures for RNA, we performed the MD simulations
using a crystal structure from the yeast ai5g group II intron (PDB ID: 1KXK) [48] as the
initial structure. The simulations were performed using the GROMACS 2018 package with
the Amber03 force field, in combination with the SPCE water model [58]. The system was
equilibrated under the NVT condition for 100 ps with a velocity-rescale thermostat (τT = 2 fs
and T = 300 K) and was subsequently equilibrated under the NPT condition for 500 ps with
a velocity-rescale thermostat (τT = 2 fs and T = 300 K) and a Parrinello–Rahman barostat
(τT = 2 fs and T = 300 K). Following the equilibration, we conducted 5 ns production
simulations on the equilibrated structure under both 300 K and 400 K conditions. After the
simulations, model structures were sampled at 50 ps intervals from each MD trajectory.

4. Conclusions

In this work, we introduced a modified version of SOSS, denoted Bio-SOSS, to cap-
ture the array of structural conformations of biological macromolecules. Our systematic
investigation has evaluated the plausibility of the Bio-SOSS method, shedding light on the
influence of critical parameters such as AuNP size, X-ray energy, and other pivotal factors
on its accuracy and reliability. Through a rigorous and systematic exploration, we have
pinpointed the optimal conditions essential for obtaining precise measurements, thereby
laying the groundwork for future realization of the Bio-SOSS methodology. The insights
gleaned from our study are crucial for the continuous refinement of the Bio-SOSS method,
significantly enhancing its capability to capture the structure of various conformations,
including the rarely populated states, that are intricately linked with complex biological
processes. The Bio-SOSS method, with its exceptional structural sensitivity and its ability
of capturing rarely populated states, holds immense potential to revolutionize our method-
ologies for deciphering complex biological processes. As we continue to delve into the
capabilities of Bio-SOSS, we expect that this method will unveil intricate details of the
dynamic structures of biological macromolecules. This, in turn, is expected to substantially
enhance our overall comprehension of vital biological phenomena, thereby catalyzing
pioneering discoveries and innovative breakthroughs in biochemistry, molecular biology,
and related disciplines.
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