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Abstract: Mammalian auditory hair cells transduce sound-evoked traveling waves in the cochlea
into nerve stimuli, which are essential for hearing function. Pillar cells located between the inner and
outer hair cells are involved in the formation of the tunnel of Corti, which incorporates outer-hair-cell-
driven fluid oscillation and basilar membrane movement, leading to the fine-tuned frequency-specific
perception of sounds by the inner hair cells. However, the detailed molecular mechanism underlying
the development and maintenance of pillar cells remains to be elucidated. In this study, we examined
the expression and function of brain-specific angiogenesis inhibitor 3 (Bai3), an adhesion G-protein-
coupled receptor, in the cochlea. We found that Bai3 was expressed in hair cells in neonatal mice and
pillar cells in adult mice, and, interestingly, Bai3 knockout mice revealed the abnormal formation of
pillar cells, with the elevation of the hearing threshold in a frequency-dependent manner. Furthermore,
old Bai3 knockout mice showed the degeneration of hair cells and spiral ganglion neurons in the
basal turn. The results suggest that Bai3 plays a crucial role in the development and/or maintenance
of pillar cells, which, in turn, are necessary for normal hearing function. Our results may contribute
to understanding the mechanisms of hearing loss in human patients.

Keywords: cochlea; hair cell; hearing; knockout mice; pillar cell; spiral ganglion neuron

1. Introduction

Hearing loss is one of the most common sensory impairments in humans [1]. Sen-
sorineural hearing loss, which is caused by damage to the inner ear cells or auditory
nerve, is difficult to treat because most damaged inner ear cells cannot be regenerated in
adult humans. Understanding the molecular mechanisms that regulate the development
and maintenance of the mammalian inner ear structure and/or function is important for
identifying novel therapeutic targets for sensorineural hearing loss.

Auditory information is received and converted into electrical signals in cochlear
hair cells (HCs) in the inner ear, which then activate spiral ganglion neurons (SGNs), and
they are transmitted to the auditory center in the brain [2]. SGNs are bipolar type I and
type II afferent neurons innervating inner hair cells (IHCs) and outer hair cells (OHCs),
respectively. HCs and SGNs are essential for auditory function, and the impairment or loss
of HCs and SGNs is responsible for hearing loss. In addition to HCs and SGNs, pillar cells
(PCs), which are arranged between IHCs and OHCs, are important structural elements
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of the organ of Corti. PCs form the tunnel of Corti, which plays a critical role in hearing
function. Impaired PCs result in a collapsed tunnel of Corti and hearing loss [3]. Recently,
it was reported that the disorganization of microtubules in PCs causes reduced PC stiffness,
the disruption of the cytoskeletal architecture of the cochlea, and consequent hearing loss in
mice [4]. Despite the importance of PCs in hearing function, the molecular context remains
to be elucidated.

Brain-specific angiogenesis inhibitor 3 (Bai3) is an adhesion G-protein-coupled recep-
tor [5], and its extracellular domain binds to C1q-like (C1ql) proteins [6]. The interaction
between C1ql1, as the ligand, and Bai3, as the receptor, plays an indispensable role in
cerebellar synapse organization [7,8]. In the olfactory bulb, Bai3 transduces signals for
synapse formation by binding to the ligand, the pre-synaptic C1ql3 protein [9]. Outside
the central nervous system, Bai3 also plays diverse physiological roles. Bai3 mediates the
inhibitory effects of C1ql3 on insulin secretion from pancreatic beta cells [10]. In myoblasts,
Bai3 promotes the fusion process, which is negatively regulated by C1ql4 [11]. Conversely,
the intracellular domain of Bai3 binds to ELMO1, which is implicated in cytoskeletal re-
modeling [12]. The interaction between Bai3 and ELMO regulates the fusion process in
myoblasts [11,13] and dendrite morphogenesis in Purkinje cells [14].

Bai3 and C1ql1 have also been suggested to be expressed in the cochlea during inner
ear development by systemic transcriptome analysis (SHIELD database “https://shield.
hms.harvard.edu, doi:10.1093/database/bav071 (accessed on 21 October 2021)” [15]), and
are expected to play a role in the auditory system. Recently, C1ql1 was reported to be
expressed in the mouse cochlea. Biswas et al. determined that C1ql1 is expressed in a subset
of OHCs in the adult mouse cochlea by using a fluorescent reporter gene inserted into the
C1ql1 locus [16]. Another group showed that C1ql1 is expressed in hair cells and spiral
ganglion neurons by immunostaining with an anti-C1ql1 antibody [17]. It is possible that
Bai3 plays a role as a receptor for C1ql1 in the auditory system as well as in other tissues.
However, the expression profiles and the role of Bai3 in the auditory system remain unclear.
Analysis of the function of Bai3 in the mouse auditory system may help to understand the
molecular mechanisms of the development and functions of the auditory system.

In this study, we analyzed the expression of Bai3 in the mouse cochlea and the hearing
function of Bai3 knockout mice to study the function of Bai3 in the auditory system.

2. Results
2.1. Bai3 Is Dispensable for Hair Cell Development in the Neonatal Cochlea

We examined the endogenous expression pattern of Bai3 in mouse cochleae via im-
munohistochemistry. Bai3 immunosignals were detected in hair cells within the embryonic
and neonatal cochleae of Bai3+/+ mice (arrows in Figure 1A and Supplemental Figure
S1A,B), suggesting that Bai3 is expressed in developing hair cells. To examine the effects of
the absence of Bai3 on hair cell development, we performed whole-mount immunostaining
of the neonatal cochlear tissue with an antibody to MYO7a, a marker for HCs, and phal-
loidin and compared the staining pattern of Bai3−/− cochleae with that of Bai3+/+ cochleae.
Despite the expression of Bai3 in HCs during development, the staining patterns of MYO7a
and phalloidin were not significantly different between Bai3−/− and Bai3+/+ mice, and we
did not observe any developmental abnormalities in the HCs of Bai3−/− mice (Figure 2A,B).

We also examined the expression of C1ql1 as a ligand candidate for Bai3 in the cochlea
at P3 using C1ql1+/GFP mice [7]. In these mice, cells expressing C1ql1 also expressed green
fluorescent protein (GFP). Immunosignals of GFP in C1ql1+/GFP cochlea at P3 were observed
in neurons innervating the IHCs (Supplemental Figure S2A). Based on the expression of
C1ql1 in neurons innervating the basal membrane of IHCs (Supplemental Figure S2B,C),
which express Bai3, we hypothesized that the interaction between C1ql1 and Bai3 plays
a role in the refinement of neuronal innervation in HCs. We examined the innervation
patterns of neurons that were positive for neurofilament H (Figure 2C) and peripherin
(Figure 2D) into HCs in the cochlea at P3. However, we did not find any abnormal
innervation patterns of neurons in either the Bai3−/− or C1ql1−/− cochlea (Figure 2C,D;
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Supplemental Figure S3), suggesting that neither Bai3 nor C1ql1 is indispensable in the
innervation of neurons to HCs at this stage.

2.2. Bai3 Is Expressed in Adult Pillar Cells in the Mouse Cochlea

The expression of Bai3 in hair cells is decreased in adult mice. Contrastingly, in adult
mice, Bai3 immunosignals were detected in PCs (Figure 1B), but not in adult Bai3−/− pillar
cells (Supplemental Figure S1C).
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of Corti, respectively. Tissues were co-immunostained with MYO7a (red). Nuclei were stained with 
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were stained with Hoechst 33258 (blue). 

Figure 1. Expression of Bai3 in mouse cochleae. Immunosignals of Bai3 (green) were observed in hair
cells of Bai3+/+ mice at P3 (A) (yellow hollow arrows), suggesting that Bai3 is expressed in cochlear
hair cells of newborn mice. The left and right panels in (A) indicate the cochlea and organ of Corti,
respectively. Tissues were co-immunostained with MYO7a (red). Nuclei were stained with Hoechst
33258 (blue). In the adult mouse cochlea, Bai3 immunosignals were detected in pillar cells (arrows in
(B)). Tissues were co-immunostained with MYO7a (white) and phalloidin (red). Nuclei were stained
with Hoechst 33258 (blue).
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innervation patterns of NF-H-positive (C) and peripherin-positive (D) neurons in the cochlea are 
not significantly different between Bai3+/+ and Bai3−/− mice at P3. 
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Figure 2. Normal development of hair cells and neuron innervation in Bai3-/- mice. (A,B) Whole-
mount immunohistochemistry with the MYO7a antibody and phalloidin, respectively. The devel-
opment of hair cells is not significantly different between Bai3+/+ and Bai3−/− mice at P3, and the
innervation patterns of NF-H-positive (C) and peripherin-positive (D) neurons in the cochlea are not
significantly different between Bai3+/+ and Bai3−/− mice at P3.

2.3. High-Frequency Dominant Hearing Loss in Bai3−/− Mice

To examine the function of Bai3 in the auditory system, we compared the ABRs in
Bai3+/+ and Bai3−/− mice (Figure 3A–C). Bai3−/− mice showed increased thresholds at
16, 24, and 32 kHz compared to Bai3+/+ mice (Figure 3A), although the threshold was
not significantly different between Bai3+/+ and Bai3−/− mice at 8 kHz. Representative
results from the ABR waves at 24 kHz in 14-week-old mice are shown in Figure 3B. Wave I
represents neuronal activation in spiral neurons in the cochlea, and wave II and beyond
represent neuronal activation in the central nervous system (CNS). Bai3−/− mice showed
altered waveforms of waves I–III (Figure 3B), and the average wave I amplitude was
significantly lower in Bai3−/− mice than in Bai3+/+ mice (p < 0.001, Figure 3C). These results
suggest that the impaired ABR observed in Bai3−/− mice is generated, at least in part, in the
cochlea and/or spiral ganglion neurons. We found that some old Bai3−/− mice at 17 months
of age (seven ears from four mice) showed no measurable response at the highest stimulus
levels tested. To investigate the deficits in OHC electromotility, we assessed the DPOAEs.
DPOAE testing revealed increased thresholds at 16 and 24 kHz in Bai3−/− mice compared
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to Bai3+/+ mice (Figure 3D,E), although the threshold was not significantly different at 8
kHz between Bai3+/+ and Bai3−/− mice. We also examined the hearing ability of young
(14–17 weeks of age) and old adult mice (17 months of age). Regardless of age, Bai3−/−

mice showed elevated thresholds at 16 kHz and higher frequencies compared to Bai3+/+

mice in both the ABR and DPOAE. These results suggest that Bai3−/− mice have hearing
impairment at high frequencies.
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of the cochlea. Thresholds are elevated at 16 kHz and higher frequencies in Bai3−/− mice compared
to Bai3+/+ mice. Bai3+/+ (4 weeks of age), n = 8 ears from four mice; Bai3−/− (4 weeks), n = 6 ears
from three mice; Bai3+/+ (17 weeks), n = 8 ears from four mice; Bai3−/− (17 weeks), n = 12 ears from
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six mice; Bai3+/+ (17 months), n = 6 ears from three mice; Bai3−/− (17 months), n = 8 ears from
four mice. Error bars indicate the standard deviation. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Statis-
tical significance was analyzed using a t-test between Bai3+/+ and Bai3−/− mice at each frequency.
(B) Representative ABR measurements at 24 kHz in Bai3+/+ (left) and Bai3−/− (right) mice at 14 weeks
of age. Roman numerals mark the peaks of the standard ABR waves. Averages of wave I amplitude
(maximum sound pressure level, 24 kHz) are shown in (C). Bai3+/+ (17 weeks), n = 8 ears from
four mice; Bai3−/− (17 weeks), n = 12 ears from six mice. Error bars indicate the standard deviation.
*** p < 0.001. Our data show the lower amplitude of wave I in Bai3−/− vs. Bai3+/+, indicating that
the elevated threshold of ABR is, at least in part, due to cochlear damage. Delayed latency of later
waves was not observed in Bai3−/− mice. (D) Distortion product otoacoustic emission (DPOAE)
measurements were performed at 8, 16, and 24 kHz. DPOAE thresholds were determined as the
L1 dB SPL when the 2f1-f2 was 0 dB, and average DPOAE thresholds are shown in (E). Bai3+/+

(14 weeks), n = 8 ears from four mice; Bai3−/− (14 weeks), n = 14 ears from seven mice; Bai3+/+

(17 months), n = 10 ears from five mice; Bai3−/− (17 months), n = 8 ears from four mice. Statistical
significance was analyzed using a t-test between Bai3+/+ and Bai3−/− at each frequency. Error bars
indicate the standard deviation. *, p < 0.05; **, p < 0.01; *** p < 0.001.

2.4. Pillar Cells Are Thinner in Bai3−/− Mice

To investigate the mechanisms underlying hearing impairment in Bai3−/− mice, we
performed a histological analysis of adult Bai3−/− mice and found that the stalks of the outer
pillar cells were thinner in Bai3−/− mice compared to those of Bai3+/+ mice, suggesting
that the pillar cells were not properly formed in the cochleae of Bai3−/− mice (Figure 4A,B).
These results suggest that Bai3 expression is required for the development and/or main-
tenance of pillar cells. As the structural organization of cochlear cells is supported by
cytoskeleton proteins, we examined the actin cytoskeleton by immunostaining, but we
did not find any abnormal staining of beta-actin or phalloidin in Bai3−/− mice (Figure 4C
and Supplemental Figure S4) compared to Bai3+/+ mice. Furthermore, we did not find
any significant differences in the expression pattern of acetylated tubulin, which PCs are
composed of, in Bai3−/− PCs compared to Bai3+/+ PCs (Figure 4C).

2.5. Hair Cells and Spiral Ganglion Neurons Are Degenerated in the Basal Turn of Old
Bai3−/− Mice

While examining the hearing ability of Bai3−/− mice, we found that some old Bai3−/−

mice showed no measurable ABR. We fixed such ‘scale out’ Bai3−/− mice, performed a
histological analysis, and compared the results with those of age-matched Bai3+/+ mice.
We observed a loss of MYO7a-positive HCs in the basal turn of Bai3−/− mice but not in
age-matched Bai3+/+ mice (right in Figure 5A,B). In the middle turn, MYO7a-positive IHCs
were observed in Bai3−/− mice as well as in Bai3+/+ mice (left in Figure 5A,B); however,
OHCs were not clearly identified, probably due to the abnormal structure of the organ
of Corti in Bai3−/− mice. We also found significant degeneration of TUBB-positive cells
in Rosenthal’s canal at the basal turn in Bai3−/− mice (p < 0.0001, Figure 5C,D). We did
not detect any specific immunosignals of Bai3 in SGNs in any of the mice we examined,
suggesting that the degeneration of SGNs in Bai3−/− mice is not the primary phenotype
caused by the deletion of the Bai3 gene.
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Figure 4. Thinner pillar cells in Bai3−/− adult mice. (A) HE staining of cochlea showed that stalks of
outer pillar cells were thinner in Bai3−/− mice than in Bai3+/+ mice (arrowheads). (B) Quantitation
of diameter of stalks of outer pillar cells. Error bars indicate the standard deviation. n = 24 sections
from three mice in each group. *** p < 0.001. (C) Sections of organ of Corti at basal cochlear turn were
immunostained with acetylated tubulin (green) and beta-actin (red) antibodies. We did not detect
any significant differences in the expression pattern of either acetylated tubulin or beta-actin between
Bai3+/+ and Bai3−/− mice at 11 weeks of age. Nuclei were stained with Hoechst 33258 (blue).
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Figure 5. Degeneration of hair cells and spiral ganglion neurons in old Bai3−/− mice. (A) Cochlear
sections were immunostained with neuron-specific class III b-tubulin (TUBB3) antibody (green),
MYO7a antibody (red), and phalloidin (white). Fluorescent images were overlaid with bright-field
images. The organ of Corti (yellow dotted line) is missing at the basal turn of the Bai3−/− cochlea
(bottom right). Nuclei were labeled with Hoechst 33258 (blue). Scale bar: 20 µm. Regions marked by
the yellow dotted line in (A) are enlarged in (B) without the bright-field image. MYO7a-positive HCs
(red) are lost at the basal turn of Bai3−/− cochleae. (C) Cochlear sections were immunostained with
TUBB3 antibody (green). Scale bar: 50 µm. Loss of TUBB-positive SGNs is observed in the basal turn
of Bai3−/− cochleae (bottom right). (D) Quantitation of SGN density at the basal and middle turns of
the cochlea of mice at 14–17 months of age. The number of TUBB-positive cells in Rosenthal’s canal
was counted and expressed as #SGNs per 104 µm2. Data are presented as mean ± standard deviation.
n = 9 sections from three mice in each group. ***, p < 0.001; ****, p < 0.0001.

3. Discussion

We found that Bai3 is expressed in the mouse inner ear, and that the hearing threshold
is increased at high frequencies in Bai3−/− mice. Pillar cells in Bai3−/− mice were thinner
than those in Bai3+/+ mice. The degeneration of hair cells and spiral ganglion neurons was
also observed in old Bai3−/− mice. These results suggest that Bai3 is required for normal
hearing function in mice.

HCs at the basal turn detect high-frequency sounds, whereas those at the apical turn
detect low-frequency sounds [18]. In old Bai3−/− mice, we observed the loss of HCs and
the degeneration of SGNs in the basal to midbasal turn, but not in the middle and apical
turns. These results indicate that the frequency-dependent hearing impairment and region-
specific cell degeneration observed in Bai3−/− mice were consistent. However, the elevation
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of the ABR thresholds at high frequencies was also apparent in young adult Bai3−/− mice at
4 and 17 weeks of age, although histological abnormalities such as the degeneration of HCs
and SGNs were not observed in young adult Bai3−/− mice. These results suggest that the
degeneration of HCs and SGNs is not a primary cause of the elevated hearing threshold in
Bai3−/− mice. We also have to consider that the mice used in this study were on a C57BL6
background and thus carry a mutation in the cdh23 gene, and hearing loss appears at a
younger age than in other strains [19]. It is possible that the phenotypes reported in this
study are affected by a mutation in the cdh23 gene. Future studies using Bai3−/− mice on
other genetic backgrounds, such as CBA or C57BL6, in which the mutation site in the cdh23
gene was corrected by genome editing [19], may help us to understand the roles of Bai3 in
auditory functions.

To understand the primary effect of Bai3 deficiency in the cochlea, we focused on
the cytoskeleton in Bai3−/− cochleae. Previously, it was reported that the intercellular
domain of Bai3 interacts with ELMO [13,14]. Bai3 and ELMO also bind to the dedicator
of cytokinesis 1 (Dock180) to activate the Rac pathway in neurons and are involved in the
reconstitution of the cytoskeleton in Purkinje cells [14]. These results suggest that Bai3
is involved in cytoskeletal organization. Cochlear pillar cells, in which Bai3 is expressed,
harbor a distinctive cytoskeletal architecture with long bundles of microtubules integrated
with actin filaments [20,21]. The number of microtubules is closely correlated with the
stiffness of PCs, which are responsible for the proper transmission of auditory signals.
These results led us to hypothesize that Bai3 regulates cytoskeletal organization in PCs.
However, we did not find any abnormal staining of acetylated tubulin or actin in Bai3−/−

PCs compared to that in Bai3+/+ under our experimental conditions.
Although we did not find any altered immunostaining for the cytoskeleton in Bai3−/−

mice in this study, it is still possible that Bai3 is implicated in the structure of the organ
of Corti, because we found not only thinner pillar cells but also collapsed tunnel of Corti
in some Bai3−/− mice (two out of five) at the age of 9–11 weeks (Supplemental Figure S4).
Although individual phenotypic variation in the tunnel of Corti is observed, abnormal for-
mation of the tunnel of Corti is not inconsistent with the phenotypes of thinner pillar cells in
Bai3−/− mice. The tunnel of Corti has been implicated in OHC-driven fluid flow oscillation,
which is required for hearing function [22] and structural maturation of the organ of Corti,
including the opening of the tunnel of Corti during development. OHC-driven fluid flow
oscillation is accompanied by the onset of hearing function [23], indicating that the proper
structure of the cochlea, including the tunnel of Corti, is indispensable for transmitting
mechanical sound stimuli. An abnormal tunnel of Corti and hearing impairment have been
previously reported in several mutant mice. For example, Fgfr3-mutant mice showed a
failure of PC differentiation and tunnel of Corti formation [3]. Moreover, the stiffness of
Fgfr3-deficient PCs was only 50% of that of the control PCs [24]. Fgfr3-mutant mice also
showed reduced innervation of OHCs and profound hearing loss. A dominant-negative
Gjb2 mutation in mice also resulted in a reduction in the number of microtubules in PCs
and the failure of the opening of the tunnel of Corti during early postnatal stages such as
P8 [25]. It has been suggested that Gjb2 is indispensable in the maturation of the tunnel
of Corti. Notably, Gjb2-dominant-negative transgenic mice did not show ABRs. These
results indicate the importance of the structure of the tunnel of Corti ensured by PCs in
hearing function. Recently, it was reported that GAS2 protein harboring microtubule-
and actin-binding domains was required to organize and stabilize the microtubules in
PCs [4], and that GAS2-mutant mice showed a decrease in PC stiffness and hearing loss.
Interestingly, both human patients with GAS2 gene mutations and GAS2-mutant mice
showed hearing loss, which was more pronounced at higher frequencies. The mechanisms
underlying high-frequency dominant hearing impairment reported in GAS2-mutant mice
are unknown. In this study, an elevated threshold was observed at high frequencies in
Bai3−/− mice, although thinner pillar cells and an abnormal structure of the tunnel of Corti
were observed from the basal region to the apex along the cochlear turn (Figure 4 and
Supplemental Figure S4). Even though the average thresholds of ABR were not altered
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at 8 kHz in Bai3−/− mice compared to Bai3+/+ mice, our DPOAE results showed slightly
reduced activity even at 8 kHz in young adult Bai3−/− mice (Figure 3D). These results
suggest that the lack of Bai3 protein affects hearing function at low and high frequencies,
but the effect is more pronounced at higher frequencies. Since mechanical and electrical
properties differ between the basal and apical regions of the cochlea, we have discussed
the possible mechanisms underlying high-frequency dominant hearing impairment in
Bai3−/− mice. (1) Abnormal formation of the pillar cells and the tunnel of Corti caused by
Bai3 deletion affects mechanics more severely in the basal region than in the apical region
of the cochlea. PCs at the cochlear basal turn corresponding to higher frequencies have
a greater number of microtubules than those at the apical turn corresponding to lower
frequencies [26]; thus, the mechanical properties of the tunnel of Corti, and thereby the
organ of Corti, are different depending on the region along the cochlear length [27]. It is
suggested that the altered cytoskeletal structure of PCs affects the mechanics required to
process sound stimulation differently depending on the region along the cochlear length,
which may result in frequency-dependent hearing impairment. (2) The mechanisms by
which basilar membrane vibrations are translated into neural excitation differ between the
apical and basal regions of the cochlea [28]. It is possible that the synchronized vibration
of the basilar membrane in a broad area compensates for the subtle impairment of the
structure of the organ of Corti in the apex; however, in the basal region, subtle impairment
of the structure of the organ of Corti affects sound processing more severely, resulting in an
elevated hearing test threshold. Although the molecular roles of Bai3 in the cytoskeletal
architecture were not elucidated in this study, further studies, such as electron microscopic
analysis, may reveal the roles of Bai3 in the cytoskeletal architecture in the cochlea and the
mechanisms of the frequency-dependent hearing impairment found in Bai3−/− mice.

Biswas et al. demonstrated that C1ql1 is expressed in a subset of OHCs in adult mice
and also suggested that Bai3 is localized at the afferent post-synaptic sites of OHCs [16].
However, the Bai3 immunosignals at the afferent post-synaptic sites were below the de-
tection limit under our experimental conditions. It is still possible that low levels of Bai3
play a role in synapse formation or maintenance by binding to C1ql1 in the cochlea of adult
mice and may contribute to the hearing impairment in Bai3−/− mice. Alternatively, the
abnormally formed pillar cells and tunnel of Corti could indirectly affect the formation or
maintenance of synapses between OHCs and efferent nerves in Bai3−/− mice.

Mutations in the Bai3 gene have been described in association with human diseases.
The Bai3 gene is implicated in psychiatric disorders such as schizophrenia and bipolar
disorder [29–34], suggesting a role for Bai3 in the CNS. Bai3 was reported to be expressed in
the cerebellum [7] and granule cells of the olfactory bulb [9] in the CNS, but its expression in
the auditory pathway in the CNS remains unknown. It would be interesting to investigate
the precise expression of Bai3 in the auditory pathway in the CNS, as well as in the
peripheral organs and cochlea, to understand the role of Bai3 in auditory function. However,
in our current ABR results, we did not find any changes in the latency between waves I
and III or III–V, suggesting that Bai3 is dispensable in the auditory pathway in the CNS.
Although a relationship between Bai3 gene mutations and human patients with hearing
loss has not been reported so far, our finding that Bai3 in the cochlea is required for the
normal development of pillar cells, which are indispensable for hearing function, may help
us to understand the pathogenesis of hearing loss and find novel therapeutic targets for
hearing restoration in the future.

In conclusion, we showed that Bai3 deficiency leads to the abnormal formation of
pillar cells and an elevated hearing threshold at high frequencies. Furthermore, we showed
the degeneration of HCs and SGNs in the basal turn of old Bai3−/− mouse cochleae. These
novel findings suggest that Bai3 in the cochlea is required for normal hearing function.
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4. Materials and Methods
4.1. Mice

Bai3−/− mice were generated as reported previously [7]. Briefly, exons 8 and 9 of the
Bai3 gene were deleted, resulting in a functional deficiency of the Bai3 protein. Bai3−/−

mice were maintained on a C57BL/6 background.

4.2. Immunofluorescence

Adult anesthetized mice were transcardially perfused with phosphate-buffered saline
(pH 7.4) and 4% PFA (paraformaldehyde; Nacalai Tesque, Inc., Kyoto, Japan). Cochleae
were removed from the mice, perfused with 4% PFA through the round window, oval
window, and apex, and then fixed for an additional 24 h in PFA at 4 ◦C. They were then
decalcified for two days in decalcifying solution B (FUJI FILM, Osaka, Japan) at 4 ◦C.
The cochleae from neonatal mice were dissected without transcardial perfusion and fixed
with 4% PFA overnight at 4 ◦C. On embryonic day 18.5, the cochleae were fixed with 4%
PFA for 2 h at 4 ◦C. These tissues were used for whole-mount or section immunostaining.
For immunostaining using frozen sections, the cochleae were incubated in 10% sucrose
for 1 h at 4 ◦C and then in 30% sucrose overnight at 4 ◦C. The cochleae were frozen
using Tissue-Tek OCT compound (Sakura Finetek Japan Co., Ltd., Tokyo, Japan) and cut
into 7 µm frozen sections. For immunostaining using paraffin sections, the cochleae were
decalcified for 7 days in decalcifying solution B at 4 ◦C, and 4 µm paraffin sections were
used for analysis. Antigen retrieval was performed using 10 mM citrate buffer (pH 6), and
tissues were permeabilized with 0.3% Triton-X100 in phosphate-buffered saline. Tissues
were blocked using normal donkey serum (Abcam, Cambridge, UK). Details of the antigen
retrieval, permeabilization, and blocking methods are summarized in Supplemental Table S1.
After incubation with primary antibodies overnight at 4 ◦C, the sections were incubated
with the appropriate secondary antibodies conjugated with Alexa Fluor (1:500, Thermo
Fisher Scientific, Waltham, MA, USA) for 1–2 h at room temperature. The following
primary antibodies were used: guinea pig anti-Bai3 (1:100, A323 created in Kakegawa et al.,
2015 [7]), mouse anti-MYO7a (1:30; DSHB, Iowa City, IA, USA), rabbit anti-MYO7a (1:100;
Proteus Biosciences, Ramona, CA, USA), rabbit anti-SOX2 (1:200; Abcam), goat anti-SOX2
(1:200; R&D Systems, Minneapolis, MN, USA), chick anti-neurofilament-H (1:1000; Abcam),
rabbit anti-peripherin (1:100; sigma, Burbank, CA, USA), mouse anti-acetylated tubulin
(1:1000; sigma, Burbank, CA, USA), rabbit anti-beta-Actin (1:500; Cell Signaling Technology,
Danvers, MA, USA) and mouse anti-TUBB3 (1:1000; Promega, Madison, WI, USA). Actin
filaments were stained with phalloidin conjugated with rhodamine or alexa-647 (1:500;
Thermo Fisher Scientific). Nuclei were counterstained with Hoechst 33258 (1:1000; Dojin,
Tokyo, Japan). Images were captured using a Zeiss LSM 700 confocal microscope (Zeiss,
Jena, Germany). The localization of certain frequencies in the cochlea used for whole-mount
immunostaining was determined using the ImageJ (version 1.52a, NIH, New York, NY,
USA) Measure Line plugin “https://www.masseyeandear.org/research/otolaryngology/
eaton-peabody-laboratories/histology-core (accessed on 19 December 2019)”.

4.3. Morphological Analysis of Pillar Cells with Hematoxylin and Eosin Staining

Inner ears were fixed as above and decalcified for 7 days at 4 ◦C. Paraffin sections of
4 µm thickness were made in the horizontal plane parallel to the modiolus and stained
with hematoxylin and eosin. Eight sections were analyzed for one mouse, and three mice
were used for each genotype. The diameter of the stalk of outer pillar cells in the organ of
Corti at the most basal and apical turns in the section was measured using ImageJ.

4.4. Auditory Brainstem Response and Distortion Product Otoacoustic Emission

Auditory brainstem response (ABR) and distortion product otoacoustic emission
(DPOAE) measurements were performed as described previously [35]. Briefly, the mice
were anesthetized by injecting a mixture of medetomidine (0.3 mg/kg), midazolam
(4.0 mg/kg), and butorphanol (5.0 mg/kg). ABR waveforms were recorded at 5 dB sound

https://www.masseyeandear.org/research/otolaryngology/eaton-peabody-laboratories/histology-core
https://www.masseyeandear.org/research/otolaryngology/eaton-peabody-laboratories/histology-core
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pressure level (SPL) intervals at 8, 16, 24, and 32 kHz, decreasing from the maximum
amplitude until the waveform, which is the average of 256 responses, could no longer be
visualized. The threshold level was determined as the point above which any wave could
be detected. Maximum sound pressure levels were set at 105, 107, 102, and 112 dB for 8, 16,
24, and 32 kHz, respectively. When no response was observed at the highest sound level
available, the threshold was designated as 10 dB greater than that level.

DPOAEs were tested according to the primary tones, F1 and F2, which were set at an
F2/F1 ratio of 1.22. The intensity of F1 (L1) was changed in 10 dB steps between 20 and
80 dB SPL, and the intensity of F2 (L2) was maintained at 10 dB under that of L1. The 2F1-F2
distortion components were estimated to constitute the DPOAE level. Hearing thresholds
were estimated using L1-obtained 2F1-F2 as 0 dB. The probe for this measurement, which
contained two receivers and one microphone, was developed and calibrated according to
the EPL Acoustic System Assembly Manual (Massachusetts Eye and Ear Infirmary, Boston,
MA, USA). A real-time processor (RP2.1, Tucker Davis Technology, Alachua, FL, USA) was
used to generate the stimulus signals and digital–analog conversions of the recorded sound
signals. Customized software based on LabVIEW version 2015 (National Instruments,
Austin, TX, USA) was used to control the processor and for data analysis.

4.5. Cell Count

The areas of Rosenthal’s canal containing SGNs were outlined and measured using
ImageJ. TUBB3-positive cells showing a nuclear Hoechst signal in Rosenthal’s canals were
counted manually and expressed as the number per 104 µm2.

4.6. Statistical Analysis

ABR data are presented as mean ± standard deviation (SD) and were analyzed with a
two-tailed Student’s t-test using Microsoft Excel. Regarding the density of spiral ganglion
neurons, two-way ANOVA and post hoc Tukey tests were performed using GraphPad
Prism software version 9.5.0. Statistical significance was set at p < 0.05.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms242317092/s1.
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