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Abstract: Plant diseases and insect pest damage cause tremendous losses in forestry and fruit tree
production. Even though chemical pesticides have been effective in the control of plant diseases and
insect pests for several decades, they are increasingly becoming undesirable due to their toxic residues
that affect human life, animals, and the environment, as well as the growing challenge of pesticide
resistance. In this study, we review the potential of hydrolytic enzymes from Bacillus species such as
chitinases, β-1,3-glucanases, proteases, lipases, amylases, and cellulases in the biological control of
phytopathogens and insect pests, which could be a more sustainable alternative to chemical pesticides.
This study highlights the application potential of the hydrolytic enzymes from different Bacillus sp.
as effective biocontrol alternatives against phytopathogens/insect pests through the degradation
of cell wall/insect cuticles, which are mainly composed of structural polysaccharides like chitins,
β-glucans, glycoproteins, and lipids. This study demonstrates the prospects for applying hydrolytic
enzymes from Bacillus sp. as effective biopesticides in forest and fruit tree production, their mode
of biocidal activity and dual antimicrobial/insecticidal potential, which indicates a great prospect
for the simultaneous biocontrol of pests/diseases. Further research should focus on optimizing
the production of hydrolytic enzymes, and the antimicrobial/insecticidal synergism of different
Bacillus sp. which could facilitate the simultaneous biocontrol of pests and diseases in forest and fruit
tree production.

Keywords: fungal/oomycete cell wall; insect cuticle; antifungal and insecticidal activity; cell wall
lysis; cuticle degradation; plant pest and disease

1. Introduction

Plant diseases and insect pest damage cause tremendous losses in forest plantations
and fruit tree production worldwide, by lowering the yield and quality of wood and fruit
products, which hurts the livelihood of farmers by reducing the economic returns and
impedes the afforestation efforts by lowering the survival of seedlings [1,2]. The use of
chemical pesticides, especially synthetic fungicides and insecticides, has been the main
strategy for controlling plant fungal diseases and insect pests in nurseries, orchards, and
forest plantations for decades [3–5]. Most commercial farmers have adopted a routine
pesticide application program to combat losses from different diseases and insect pests in
nurseries, orchards, forest plantations, and post-harvest [6–9]. However, the continuous
use of chemical pesticides not only poses health and environmental risks, but the sub-lethal
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exposure of these chemicals has also led to an increasing challenge of pesticide resistance in
various insect pests and phytopathogens of economic importance [10–12]. The increasing
awareness of such previously underestimated health and environmental risks caused by
the continuous application of pesticides has stimulated a strong consumer-based demand
for eco-friendly and safer alternatives to chemical pesticides [13–15].

The use of biological control agents (BCAs) as an alternative to the detrimental use
of chemical pesticides has attracted tremendous scientific interest as an environmentally
friendly strategy of controlling plant diseases and insect pest damage in agriculture, forestry,
and fruit tree production [16–18]. Most chemical pesticides often cause environmental con-
tamination and affect non-target organisms [19,20]. Other biological pesticide and disease
management strategies such as the use of fungal BCAs could also pose some level of biologi-
cal risks because they have been proved to spread, stabilize, and alter the soil microbiota [21].
Interestingly, bacterial BCAs have been proved to be both non-toxic and can quickly drop
back to natural (environmental) levels shortly after application because of the limited nutrient
supply [22], and the biological buffering of the environment [23]. Thus, bacterial BCAs are
increasingly becoming favorable alternatives to chemical pesticides [16,24–26]. Consequently,
various bacterial species including Bacillus sp., Pseudomonas sp., Streptomyces sp., Lysobacter sp.,
and Seratia sp. have been studied for antimicrobial and entomopathogenic potential against
various plant diseases and insect pests [16,27–31]. Especially, Bacillus sp. have been demon-
strated to produce metabolites that facilitate their survival, competition, niche colonization,
phytopathogenic antagonism and entomopathogenic effects [28,32,33]. Various Bacillus sp.
have been reported to produce a wide range of lipopeptides [34–36], polyketides [37–39],
bacterial volatile compounds, and other environmental signaling compounds [40–42]. Some
Bacillus sp., especially B. thuringiensis (Bt) have also been widely reported and reviewed
to produce protein toxins, which are the most widely commercialized biocontrol products
worldwide [43–49]. Except for Bt toxins, the application of most other bacterial control agents
has been limited to special high-value crops and greenhouse production, largely due to the
high costs of production [50]. Since most antimicrobial peptides from bacterial control agents
are often secreted in lower concentrations during the fermentation process, their successful
commercialization would require the use of complex extraction, purification, formulation,
and packaging techniques for their effective applications at high concentrations [27,50,51].
These expensive processes, along with the high cost of commercial fermentation media still
render the application of these antimicrobial peptides practically less feasible, especially in
small farms with limited capital investments [27]. Moreover, even the application of Bt is
currently less effective since many insect pests have developed a resistance to these protein
toxins, including resistance against some Bt-transgenic plants [47]. Interestingly, several
other Bacillus sp. have also been reported to demonstrate phytopathogenic antagonism and
entomopathogenic effects against various insect pests through their prolific production of hy-
drolytic enzymes [40,52–55]. Unlike antimicrobial peptides, hydrolytic enzymes from Bacillus
sp. are produced in high concentration during the fermentation process, are highly effective
against both phytopathogens and insect pests, and the production of spores can be achieved
using locally formulated, cost-effective media and require minimal processing [27,56–59].
Moreover, Bacillus species have unique ecological adaptability for survival under a wide
range of environmental conditions, which include the production spores (resistant to a wide
range of temperature and pH), prolific reproduction, effective colonization and competition
that makes them more favorable for field application than other BCAs [28]. The production
of spores by Bacillus sp. is also a highly desirable attribute that facilitates the processing,
handling, and distribution of the biocontrol products in spore form, which can easily ger-
minate, reproduce, and secrete the hydrolytic enzymes upon inoculation [55,60]. However,
despite the increasing research attention about the role of hydrolytic enzymes from Bacillus
sp. in crop protection, there is still limited and unconsolidated knowledge of their potential
applications in the field of forestry and fruit tree production.

The purpose of this review is to explore the potential application of hydrolytic enzymes
from Bacillus species in the biological control of phytopathogenic fungi, insect pests and
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plant parasitic nematodes in forest and fruit trees, from nursery seedlings production to
field application. This review provides insights into the prospect for the simultaneous
biocontrol of plant diseases/insect pest through the application of hydrolytic enzymes
produced by Bacillus sp. through the degradation of phytopathogenic cell wall/insect
cuticles and provide insights for future research advancements for their optimization
and utilization.

2. Hydrolytic Enzymes in Biological Control
2.1. The Bio-Fungicide Role of Hydrolytic Enzymes

The cell walls of fungal/oomycete phytopathogens are composed of a strong dy-
namic but flexible matrix of diverse components of embedded and linked polysaccharides
(Figure 1), such as amino polysaccharides, glucans (α- and β-glucans), proteins, lipids,
and cellulose (in the case of oomycetes), and other important but less prominent com-
ponents such as melanins, hydrophobins, sporopollenin, and uronic acids [61–64]. The
fungal cell wall composition has structural and functional properties that facilitate fungal
interaction with the environment. For instance, fibrous and gel-like carbohydrate polymers
(mainly α-chitins (cellulose in oomycetes) which are covalently attached to branched β-(1,3)
glucans) form the core (building blocks) of the cell wall and provide tensile strength (to
overcome internal hydrostatic pressure) and protection from stress and external aggres-
sion [61,62,64,65]. While the diverse interlinking protein polymers (mainly glycoproteins
and manmans) and other components, like melanin, glycerol (especially in appressoria)
and lipids (such as ergosterol), link to the carbohydrate core to modify the cell wall to
facilitate flexibility, selective permeability, surface attachment, spore germination, germ
tube and appressoria formation, sporulation, and specialized protection by disguising the
cells from phagocytes [61,62,65].
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Despite their complexity and the disguised nature of their biosynthetic pathways, nu-
merous research studies have recently revealed that these cell wall components are suitable
targets for antifungal agents, especially biofungicide products for the eco-friendly manage-
ment of phytopathogenic fungi/oomycetes [51,54,55,62,66–70]. Hence, hydrolytic enzymes
such as chitinase, β-glucanase, protease, lipase, chitosanases, and cellulase from Bacillus
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sp., have potential applications in the biological control of phytopathogens and insect pests
in forestry and fruit tree production [51,53,54,60,71–73]. These enzymes hydrolyze specific
cell wall components (by breaking the glycosidic linkages that bind the cell wall structural
polymers), which then causes the disintegration of cell wall matrices, consequently leading
to the loss of protective and functional properties such as selective permeability, tensile
strength and turgor-driven cell expansion for growth and host infection [25,74,75].

2.2. The Entomopathogenic Role of Hydrolytic Enzymes

Just like the cell walls of phytopathogenic fungi and oomycetes, the cuticles (epicu-
ticle, exocuticle, and endocuticles) in the exoskeleton and the peritrophic membrane of
the hindgut in insect pests are majorly composed of fibrous chitin, with β-1,4 links that
transform it into a straight, ribbon-like layer of highly crystalline structure (Figure 2). These
chitin fibrils contain sugar residues that are heavily H-bonded, making stiff and chemically
stable structures [76]. The fibrous chitin layers are interlinked with diverse glycoproteins
through H-bonds which are hardened/sclerotized during growth via the addition of metals
and minerals, and deposits of lipid polymers and other components like catechol that
are secreted by the epidermal cells [76,77]. The exoskeleton cuticle is often covered by
cement and wax deposits to provide another protective layer against desiccation, infection,
predation, and provides communication signals [77–81]. The other cuticle components
in the appendages and internal organs (hindgut, foregut, and tracheae) strike a balance
between mechanical strength (stiffness) and flexibility to facilitate life processes such as
respiration, locomotion and flight, and internal protection [77–81]. Thus, the degradation of
cuticular chitin nanofibers, protein, and lipid polymers in the cuticle matrix by hydrolytic
enzymes from entomopathogens causes devastating effects on insect health, including loss
of ecological fitness and mortality, which ultimately reduces the herbivorous activity of
insect pests on crops and trees [30,60,72,73,82,83].
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Figure 2. The schematic illustration of insect cuticle with layers of lipid, chitin and structural proteins
and other components.

3. The Major Lytic Enzymes and Their Antimicrobial and Insecticidal Activity
3.1. The Prospect of Chitinases as Antifungal and Insecticidal Agents

Chitinases hydrolyze the β-(1,4)-glycosidic linkage of the chitin polymer in the fun-
gal cell walls and insect cuticles (mainly endo- and exo-cuticles) to release N-acetyl-d-
glucosamine (GlcNAc) and chitooligosaccharides units [84]. The mechanism of chitinolytic
activity is achieved by endo-chitinases which cleave chitin polymers into the respective
oligomers, exo-chitinase which catalyzes the breakdown of β-1,4-glycosidic bonds between
the 2-GIcNAc and 3-GIcNAc residues to release chitobiose, and N-acetylglucosaminidase
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(NAGase) which cleaves the β-1,4-glycosidic bond at the end of the chitin chain to release
GlcNAc [85–87]. Sometimes, these enzymes overlap with the activity of chitosanases which
hydrolyze both chitosan (GlcN-GlcN linkages) and β-1,3- and β-1,4-glucans [85–87]. Thus,
the degradation of cuticular chitin by chitinases from Bacillus sp. causes lethal effects
(Figure 3), and loss of ecological fitness in surviving organisms. For instance, chitinase
from B. thuringiensis strain NM101-19 and B. licheniformis strain NM120-17 demonstrated
a potential to degrade the cell wall of various soyabean fungal phytopathogens includ-
ing Aspergillus sp., F. oxysporum, P. chrysogenum, Pythium sp., R. solanacearum, Verticillium
sp., Rhizoctonia sp., Rhizopus sp., and Trichoderma sp., which consequently improved seed
germination [70]. The chitinase (31 kDa) from B. subtilis strain NPU 001 and chitinase
(48 kDa) from B. cereus strain YQ308 grown on shrimp and crab shell powder (as car-
bon source) caused effective inhibition against the mycelial growth of F. oxysporum and
P. ultimum, respectively, at a concentration of 2 mg/mL [57,58]. Similarly, chitinase from
B. thuringiensis var israelensis grown on shrimp waste effectively inhibited the growth
of S. rolfsii, (that causes southern blight in soybean) and other phytopathogens such as
Rhizopus sp., Fusarium sp., and Aspergillus sp. (in vitro), and consequently increased soy-
bean seed germination in a dose-dependent manner, from 0.2 to 0.8 units of chitinase/mg
of protein [88]. Numerous other examples of the potential role of chitinases have been
demonstrated in various studies. For stance, ChiCW and ChiCH from B. cereus strain
28-9 inhibited the conidial germination of B. elliptica that causes botrytis leaf blight of lily
by 84% and reduced the disease severity on detached leaves [89]. Antifungal chitinase
ChiIO8 from Bacillus cereus IO8 and ChiS and ChiL from B. pumilus strain SG2 effectively
inhibited the mycelial growth of several phytopathogenic fungi including Botrytis cinerea,
R. solani (blight diseases), Verticillium sp., (Verticillium wilt), and Stemphylium botryosum
(Stemphylium blight), but did not inhibit the oomycete pathogens P. citricola and P. capsici
since their cell walls are composed of cellulose instead of chitin polymers [90,91]. Extracel-
lular chitinase (55 kDa) produced by B. licheniformis strain MY75 in the presence of chitin
substrate demonstrated complete in vitro inhibition of spore germination and subsequent
mycelial growth of Gibberella saubinetii (known as the perfect stage of F. graminearum that
causes head blight in cereals) and A. niger (black mold in fruits) [92]. A thermotolerant
(50 ◦C) chitinase (30 kDa) from B. subtilis strain SL-13 showed effective mycelial growth
inhibition of R. solani by causing severe hyphae disintegration (lysis) and protoplast leakage
within 48 h, and consequently reduced tomato wilt disease, increased seed germination and
seedling growth under greenhouse conditions [93]. Chitinases FI (24 kDa) and FII (16 kDa)
from the B. amyloliquefaciens strain V656 showed specific chitinase (and the corresponding
EC50 against F. oxysporum) activity of 0.34 (and 4.69) and 0.11 (and 3.16) units/mg, respec-
tively [56]. Extracellular chitinase (43.7 kDa) from B. cereus strain NK91 demonstrated
a dose-dependent response and inhibited the mycelial growth of F. oxysporum (66.7%),
R. solani (64.6%), and C. gloeosporioides (63%) [94], while chitinase from B. licheniformis strain
J24 inhibited the growth of F. pseudograminearum and reduced the severity of Fusarium rot
on corn seeds [95]. Chitinase from B. subtilis strain TV-125, B. subtilis, Bacillus sp. strain
739, and B. pumilus RST25 inhibited F. culmorum (root rot in vegetables) [96], Aspergillus sp.
and P. chrysogenum [97], Fusarium sp. and Helminthosporium sativum [98], and F. solani and
A. niger in Triticum aestivum [99], respectively. The chitinase from B. chitinolyticus (SGE2,
SGE4, and SSL3), and B. ehimensis (MG1) also exhibited antifungal activity against A. nidu-
lans, B. cinerea, F. culmorum, S. sclerotiorum and Guignardia bidwellii [100], and chitinase from
B. licheniformis strain TCCC10016 was effective against F. oxysporum [101], while chitinase
from B. pumilus strain CCIBP-C5 antagonized Pseudocercospora fijiensis Morelet that causes
black sigatoka disease in banana [102]. Exochitinase, ChiA (49 kDa) and endochitinase
and exochitinase, ChiB (80 kDa) inhibited the growth and conidial germination of F. ver-
ticillioides, a major cause of rot and wilt diseases in maize [103]. Chitinase (65 kDa) from
B. licheniformis strain ATCC 14580 antagonized several phytopathogens including Phoma
medicaginis that causes damping-off disease in Medicago truncatula and effectively reduced
the diseases symptoms [104], while chitinase from B. licheniformis strain PR2 caused hyphal
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alterations and inhibited the growth of B. cinerea and C. gloeosporioides and consequently
reduced fruit rot diseases in jujube [105].
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Moreover, several studies have also reported the synergism of chitinase with other
enzymes such as protease and β-l,3-glucanase to exert stronger antimicrobial activity. For
example, B. velezensis strain CE 100 has been reported to produce chitinase along with
protease and β-l,3-glucanase, which together inhibited the growth and spore germination
of C. gloeosporioides and controlled walnut anthracnose disease at the same rate as chemical
fungicide [51]. Chitinase, β-l,3-glucanase, and protease from B. velezensis strain CE 100 were
reported to control Pestalotiopsis maculans (leaf blight disease in Quercus acutissima Curruth)
and substantially increased the survival of seedling [53], and Macrophomina phaseolina
and F. oxysporum f. sp. fragariae (charcoal rot and fusarium wilt diseases in strawberry,
respectively) [55]. Chitinase and β-1,3-glucanase from the B. licheniformis strain MH48 also
controlled F. oxysporum (Fusarium root rot in coastal pine seedlings in forest nurseries) [106],
and B. cinerea, Glomerella cingulata, Pestalotia diospyri, and P. karstenii (foliar fungal diseases
of Camellia oleifera seedling), and improved the seedling quality [107].

Similarly, the chitinases have been widely reported to hydrolyze the chitin fibrils in
insect cuticle exoskeletons and gut lining to cause toxicity and subsequent insect mortality
to protect plants from herbivorous activity of these phytophagous insects (Figure 4). For
example, chitinase from B. cereus strain 1.21 isolated from soil rhizosphere was reported to
degrade chitin polymers in the exoskeleton cuticle of Bemisia tabaci Genn. (Hemiptera: Aley-
rodidae), a notorious sap-sacking insect pest of numerous crops such as chili pepper [108].
Chitinase from B. licheniformis strain USMW10IK, an endosymbiont from Globitermes sul-
phureus worker termite, demonstrated an effective termiticidal activity within 24 h when in
contact with termite exoskeleton of the same termite species (topical application), but higher
concentrations would be required to cause termite mortality in the soil environment [109].
Recently, the combined activity of crude fractions of chitinase and protease from B. velezensis
strain CE 100 [72], and B. licheniformis strain PR2 [60] demonstrated an effective termiticidal
activity against subterranean termite, Reticulitermes speratus kyushuensis Morimoto (Isoptera:
Rhinotermitidae), through the degradation of exoskeleton cuticle. Both studies provided
insights into the prospect of using these Bacillus sp. as entomopathogens in protecting
precious wooden architectural buildings of cultural heritage worldwide, as well as high
value susceptible trees such as Pinus densiflora Siebold and Zucc. (Pinales: Pinaceae) against
termite damage [60,72]. In a separate study, chitinase and protease from entomopathogenic
B. velezensis strain CE 100 demonstrated effective degradation of the exoskeleton cuticle
of Dasineura jujubifolia Jiao and Bu, sp. Nov. (Diptera: Cecidomyiidae) larvae (jujube gall
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midges), and suppressed pest infestation/leaf damage in the jujube orchard [73]. Chitinase
and proteases from B. licheniformis PR2 have also been reported to degrade the cuticular
polymers in the exoskeleton of Hyphantria cunea Drury (Lepidoptera: Erebidae) larvae that
causes massive defoliation of high-value bioenergy forest trees of Populus × canadensis
Moench [71]. Based on histological examination, treatment with chitinase and protease
enzymes causes a wide range of effects from partial lacerations on the epicuticle, dam-
age/deformations of the peripheral organs such as bristles, sensilla and sockets, to severe
disintegration of the cuticle [60,71–73]. Chitinase (25 kDa) from B. cereus strain C-13 when
treated on the leaves at a concentration of 0.048 U/mL caused 78% mortality against adult
Helopeltis theivora Waterhouse (Hemiptera: Miridae), the sap-sacking tea mosquito bugs that
cause tremendous damage in C. sinensis (L.) O. Kuntze plantations in India [110]. Based
on the mode of application, the chitinase from B. cerus strain C-13 could have affected the
cuticular chitin in the gut of H. theivora since the treated leaves were air-dried for 30 min
before introducing the insects.
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Chitinases from Bacillus species have also demonstrated direct insecticidal activity or
enhanced the insecticidal activity of already known insecticidal toxins in model insects that
are not necessarily phytophagous but could provide the basis for evaluating the chitinolytic
potential of these bacterial strains. For example, exochitinase (66 kDa) from B. thuringiensis
subsp. pakistani caused a toxicity of up to 70.0% mortality against Aedes aegypti larvae at
64 mU/mL [111]. The chitinolytic enzyme B. atrophaeus strain A7 inhibited the development
of Drosophila melanogaster larvae into adults (LD50 = 17.3 ± 1.4 mU/mL), which further
demonstrates the insecticidal potential of chitinases from Bacillus species [112]. Even
though A. aegypti and D. melanogaster are not phytophagous insects, the biocontrol activity
of chitinases against these insects indicates the potential to control some of the notorious
sap-sacking insects pests, either as the direct cause of insecticidal activity or as a factor that
weakens the gut cuticle layer to facilitate the pathogenicity of other toxins.

Chitinases have been demonstrated to alter the physiological and metabolic processes
of insect pests, thus indirectly exerting insecticidal activity. For example, the two extracel-
lular chitinases (CS1 and CS2) produced by B. subtilis demonstrated insecticidal activity
against Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae by degrading the gut cuti-
cle in the peritrophic membrane and epithelial cells (based on histological analysis) and
by decreasing the larvae gut enzymes lactate dehydrogenase, acid phosphatase, alkaline
phosphatase, and adenosine triphosphatase which are vital for normal insect metabolic
activities [113,114]. Moreover, Chandrasekaran et al. (2012) also demonstrated that besides
causing insect mortality, the larvae that were fed on leaves contaminated with chitinase had
a substantially lower rate of growth and reduced body weight, which could indicate a loss
of ecological fitness in surviving insects that may survive the direct lethal effect of chitinase.
In another study, the chitinolytic activities of exochitinases from B. thuringiensis subsp.
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israelensis strain IPS78 and B. thuringiensis subsp. aizawai strain HD133 were also reported
to play a role in the bacterial pathogenesis against the host insects: Culicoides nubeculosus
(Diptera: Ceratopogonidae) larvae (midges) and Spodoptera littoralis (Lepidoptera: Noctu-
idae), the caterpillars of cotton leafworm, respectively [115]. Since these B. thuringiensis
strains are well known to possess highly specific insecticidal toxins, it is most probable
that the role of these chitinases was to degrade or weaken the peritrophic membranes
to pave way for the attachment of other toxins and the inhibition of these exochitinases
(using 100 µM allosamidin) caused a considerable drop in the insecticidal activity of both
entomopathogens [115,116]. Similarly, a recombinant chitinase (36 kDa) from B. thuringien-
sis strain HD-1 also demonstrated the potential to enhance the insecticidal effect of the
vegetative insecticidal protein (Vip) against neonate larvae of S. litura, potentially via the
weakening of the gut cuticle to increase the attachment of Vips [117]. Thus, the role of
chitinases in enhancing the pathogenesis of insecticidal toxins from B. thuringiensis and
baculovirus was detailed, where they cause hydrolysis of cuticle polymers in the gut to facil-
itate toxin penetrations or act as adjuvants, and thereby increase the efficacy of insecticidal
activity as evidenced by the reduced lethal time ad higher mortality rate [118,119]. When
the chitinase gene was transferred from B. subtilis, a chitinolytic entomopathogen with high
toxicity against Aphis gossypii (Hemiptera: Aphididae), into several strains of B. thuringien-
sis that were more effective against Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), the
two of the recombinants Tr5 and Tr10 showed a strong chitinolytic activity, exerting a
stronger insecticidal effect than their parental strains [120]. This demonstrates that the
chitinolytic activity of Bacillus strains has a synergic potential on the pathogenicity of insec-
ticidal toxins secreted by antipathogenic B. thuringiensis strains. Thus, besides targeting
cuticle exoskeleton degradation, purified chitinases from Bacillus sp., or the bacterial filtrate
or crude enzyme fraction containing chitinase could enhance the insecticidal activity of
other toxins from well-known entomopathogens such as Bt. The synergy of chitinase and
such insecticidal toxins should be further studied and optimized to achieve the highest
entomopathogenic effect under field conditions against susceptible insect pests.

3.2. The Prospect of Proteases from Bacillus sp. as Antifungal and Insecticidal/Nematocidal Agents

The fungal cell wall is composed of a glycoprotein outer layer while the epicuticle and
exocuticle are interlinked with other structural polymers (Figure 1). These structural protein
components are a suitable target for the hydrolytic activity of proteases into small peptides,
which lead cell lysis and cellular leakage [51,53,54]. The antimicrobial activity of proteases
against phytopathogens has been widely reported over the years and is mainly premised
on the wide distribution of structural and functional proteins (such as membrane proteins)
of the target pathogen such as the mannoproteins, glycoproteins in the hyphal cell walls,
and their role in conidial germination, cell attachment and appressorial formation and
environmental interactions [63,65,121]. Thus, the degradation of the fungal cell proteins
has been reported to play a vital role in fungicidal and fungistatic activities, specifically
in the bacterial (Bacillus sp.) antagonism of phytopathogenic fungi. For instance, the
serine proteases (44.3 kDa) from B. licheniformis strain W10 and B. licheniformis strain TG116
demonstrated antifungal activity against B. cinerea [122], and against P. capsica, R. solani,
Fusarium sp., and B. cinerea [123], respectively. The protease from B. subtilis strain 21
was effective against F. verticillioides and R. solani in strawberry plants under greenhouse
conditions [124], while the protease (31 kDa) from B. licheniformis strain BS-3 was effective
against A. niger, M. oryzae, R. solani, and F. oxysporum strains [125]. The combined effect
of protease, chitinase, and β-1,3-glucanase from B. velezensis inhibited spore germination,
germ tube elongation and mycelial growth of C. gloeosporioides (anthracnose disease in
walnut) [51] and controlled the mycelial growth of Phytophthora sp. (Phytophthora root
rot/wilt) [54].

Similarly, proteases are a major component of the endocuticle, and the membranous
layers of the insect exoskeleton contain a substantial composition of structural proteins,
interlinked with other structural polymers such as chitin (Figure 2), making it a suitable
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target for the proteolytic activity. The proteolysis of cuticular proteins to peptides causes cu-
ticle degradation and exposure of internal tissue to environmental aggression [30,60,71–73].
The insecticidal role of proteases, mainly cysteine proteases, insect-toxic metalloproteases
and serine proteases from Bacillus sp. have been reported to control insect pests and plant
parasitic and free-living nematodes of potential economic importance in forestry and fruit
tree production [126]. For example, B. velezensis strain CE 100 and B. licheniformis strain
PR2 produced a combination of protease and chitinase that degraded the exoskeleton
cuticles of several insect pests including D. jujubifolia [73], H. cunea [71] and R. speratus
kyushuensis [60,72]. The proteolytic degradation of insect exoskeleton and gut cuticles is
due to the fact the cuticle matrix is mainly composed of glycoproteins and proteoglycans
(cuticular protein polymers) which can be hydrolyzed by proteases into simple peptides
and amino acids, leading to disruption and loss of structural and function properties of the
cuticles [60,71–73]. Even though most earlier studies had focused on the proteolytic activity
of fungal entomopathogens [83,127], more recent studies have demonstrated a similar pro-
tease activity from entomopathogenic bacteria [128–130]. The major consensus about the
mode of insecticidal activity in both the bacterial and fungal entomopathogens is that the
proteolytic activity substantially enhances the chitinolytic degradation of the cuticle since
the hydrolysis of the cuticular proteins (that shield/ embeds the chitin fibers) exposes the
cuticular chitin fibrils, which increases the surface area for chitinase activity [73,83]. More-
over, proteases have been demonstrated to perforate the basement membranes through the
hydrolysis of cuticular protein, which then facilitates the pathogenesis of other insecticidal
protein toxins as demonstrated by Autographa californica nucleopolyhedrovirus (AcMNPV)
against Heliothis virescens [131]. Proteases from entomopathogenic Bacillus sp. have also
been identified as pathogenic factors for the nematocidal proteins, where they hydrolyze
the host cuticle to facilitate the pathogenesis of other toxins or cause direct mortality by
disrupting the cuticle to cause lethal physiological alterations [132]. For example, Bacillus sp.
RH219 produced cuticle-degrading protease Apr219 (33 kDa at 930 U/mL) which degraded
the cuticle of Panagrellus redivivus nematodes and caused 97% mortality within 48 h while a
neutral protease Npr219 (41 kDa, at 870 U/mL) from the same strain only caused 20% mor-
tality [132]. The combination of both protease enzymes increased the nematocidal activity
of protease Apr219 by 9%, indicating some level of synergism [132]. Extracellular alkaline
protease BLG4 gene was demonstrated to produce the major nematocidal protein of the
entomopathogenic bacterium, Brevibacillus laterosporus strain G4 and effectively destroyed
the cuticle of P. redivivus and by adding another neutral protease NPE-4 from B. subtilis, the
nematocidal activity of B. laterosporus strain G4 was further enhanced, demonstrating the
insecticidal synergism of the various proteases [128]. A neutral protease Bae16 (40 kDa)
from B. nematocida strain B16 degraded the cuticular gelatin and collagen of P. redivivus and
Bursaphelenchus xylophilus (pine wood nematode) and caused nematode mortality after 2 h,
with LC50 of 1.69 µg/mL and 2.26 µg/mL, respectively [133]. When combined with serine
protease, the LC50 was improved to 0.99 and 1.40 for P. redivivus and B. xylophilus nema-
todes, respectively [133]. Serine protease (28 kDa) from Bacillus sp. strain B16 demonstrated
nematocidal activity against P. redivivus by hydrolyzing native proteinaceous substrates
in the nematode cuticle and caused 90% nematode mortality within 24 h [130]. Alkaline
serine protease Bace16 and a neutral protease Bae16 from B. nematocida strain B16 were
independently identified as key virulence factors against P. redivius and B. xylophilus nema-
todes, and a genetically overexpressed recombinant strain Bace16 increased the proteolytic
and nematocidal activities by 62% and 80%, respectively [134]. Alkaline protease (28 kDa)
from endophytic B. cereus strain NJSZ-13 isolated from healthy Pinus elliottii trunk caused
severe cuticle degradation of B. xylophilus nematodes and caused complete mortality within
72 h, demonstrating a symbiotic relationship of the bacteria and pine tree [135]. Moreover,
based on the simple structure of nematode eggshells (containing chitinous and lipid lay-
ers), entomopathogens with the potential to produce both proteases, chitinase and lipase
could effectively degrade nematode cells and suppress the density of nematode juveniles
and plant infestation [16,136]. This represents one of the most promising strategies for
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controlling plant nematodes in forest and fruit tree production that could be utilized for
the effective and environmentally friendly control of nematode infestation.

3.3. The Prospect of β-Glucanases from Bacillus sp. in Biological Control

The β-glucans form a major structural component of the fungal cell wall, linking up
the mannoproteins/glycoproteins to chitin fibrils. They are vital for the structural strength
and shape of the cells and withstanding turgor pressure in the hyphal and appressorial
cells. The mechanism of antifungal/anti-oomycete activity of β-1,3-glucanasese and β-
1,6-glucanasese is based on the hydrolysis of the glucosidic linkages of β-1,3-glucans and
β-1,6-glucans in the fungal/oomycete cell to produce glucose monomers, leading to the
degradation of vital structural components of the fungal cell wall [53–55]. The hydrol-
ysis of β-glucans by β-glucanasese from Bacillus sp. has been proposed as an effective
fungicidal strategy [63,65,66,74]. For instance, β-1,3-glucanase from B. velezensis strain
CE 100, along with chitinase and protease, causes an antagonistic effect against several
phytopathogens such as C. gloeosporioides (walnut anthracnose) [51], P. maculans (leaf blight
in oak seedlings) [53], M. phaseolina and F. oxysporum f. sp. fragariae (charcoal rot and
Fusarium wilt in strawberry) [55], and against Phytophthora sp. (root diseases in Japanese
cypress seedlings) [54]. The β-1,3-glucanase from B. licheniformis strain MH48 antago-
nized F. oxysporum (Fusarium wilt coastal pine seedlings) [106], and B. cinerea, G. cingulata,
P. diospyri, and P. karstenii (foliar diseases in C. oleifera seedling) [107]. The β-1,3- and
-1,4-glucanase (27.3 kDa at 1706 U/mL) from the B. velezensis strain ZJ20 caused cell wall
lysis of the mycelia against Cryphonectria parasitica, Helicobasidium purpureum, and Cylindro-
cladium quinqueseptatum [137], while the β-glucanase (10 kDa) from B. subtilis strain CW14
inhibited the mycelial growth and spore germination of A. ochraceus, and its recombinant
reduced fungal infection in soybean by 96% [138]. The β-1,3-glucanase (40 kDa) from
B. amyloliquefaciens strain MET0908 inhibited C. lagenarium (watermelon anthracnose) [139],
and β-1,3-glucanase from B. subtilis strain NSRS 89-24 inhibited Pyricularia grisea (rice
blast) and R. solani (rice sheath blight) [140]. Based on the molecular and biochemical
studies, β-1,3-glucanase from Bacillus sp. mainly enhances the antifungal activity of other
hydrolytic enzymes such as chitinases which are often produced in higher concentrations
by most biocontrol strains [51,106], or they could even supplement the role other antimicro-
bial lipopeptides like fengycin, surfactins and iturin [141]. This is because β-glucans are
structurally embedded between proteins and chitin polymers; thus, their degradation by
contact antifungal molecules such as hydrolytic enzymes is expected to be relatively lower
compared to chitin and protein hydrolysis. Their hydrolysis could be enhanced by the
combined effect of protease or/and chitinase, which hydrolyzes the embedded structural
polymers to increase the surface area for β-glucanase activity [53–55].

3.4. The Role of Lipases from Bacillus sp. in Biological Control

Lipids are quite minor components of the fungal cell wall, and their specific composi-
tion and abundance could have a different distribution depending on species and phase of
growth, and are important components in the vegetative and reproductive phases, such as
the sporidismolides [61]. Their specific role has not yet been well studied but could include
the protection of spores from bacterial invasion and preventing desiccation [61]. Lipases
are members of a hydrolase enzyme category that is abundantly distributed in nature, com-
posed of GX1SX2G active site, where G, S, X1, and X2 represent glycine, serine, histidine,
and aspartate or glutamate residues, respectively [142]. They catalyze the hydrolysis of
lipoids (including fats, waxes, sterols, glycerides, carboxylic acid esters, etc.), usually at the
interface of aqueous/organic phase of various structural components [142].

There are some examples where the different forms of lipases have been reported
for antimicrobial activity against some important phytopathogens, such as the mycolytic
activity of Bacillus sp. strain 739 against Bipolaris sorokiniana (cereal root-rot), but the activity
of lipase was mainly supplemental to the hydrolytic activity of chitinases, proteases, and
β-1,3-glucanases [143]. Lipase (62 kDa) from Bacillus sp. strain X-b, along with other hy-
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drolytic enzymes (chitinases, and chitosanase) was enhanced in the presence of fungal cell
substrate (0.5%), which indicates its antifungal potential [144], while lipase from B. subtilis
strains AI01 and AI03 showed antifungal properties against several phytopathogenic fungi,
especially F. solani (Fusarium wilt disease in egg plants) [145]. However, the structure
of most fungal pathogens is more complex, and the singular activity of lipases could be
insufficient to control fungal pathogens. Nonetheless, lipases could substantially increase
the efficacy of other hydrolytic enzymes such as proteases, chitinases and β-1,3-glucanase
by hydrolyzing the surface lipids to increase the surface contact of other enzymes to their
specific structural substrates in the fungal cell wall.

Similarly, lipases can hydrolyze the lipoproteins, waxes and fats present in the insect
integuments and compromise cuticle protection in insect pests and consequently expose
the cuticular chitin and proteins to further degradation by chitinase and proteases, which
causes insect mortality by desiccation due to the removal of the waterproof wax layer and
exposure of internal organs to external aggressions [26]. For instance, lipases from B. subtilis
strain Ehrenberg hydrolyzed the wax layer in the cuticle of Planococcus citri (Hemiptera:
Pseudococcidae), causing lethal effect and significantly reducing female longevity, fecun-
dity, and adult formation in the surviving citrus mealybugs [146]. Lipase activity from
B. subtilis, along with other hydrolytic enzymes, was reported to degrade the wax and other
structural polymers of Maconellicoccus hirsutus (Hemiptera: Pseudococcidae), which caused
pink mealybug mortality and substantially reduced the ecological fitness of surviving in-
sects by lowering the longevity, fecundity, and body weight, and reducing the wax, sugars,
and proteins in the secreted honeydew [147]. The consortium of biocontrol bacteria includ-
ing B. altitudinis that produces lipase (along with protease) effectively degraded the lipid
microfibril framework of Alitropus typus (lsopoda: Aegidae), a notorious parasite of Ore-
ochromis niloticus fish, which demonstrates the prospects of lipase from Bacillus sp. against
parasitic fruit pests which have a similar mode of life [148]. Moreover, other Bacillus strains
such as B. cereus strain WPD are known entomopathogens of important arthropods such
as Litopenaeus vannamei (shrimp) where they cause white patch disease (WPD), and their
lipolytic activity is among the most important virulence factors [149]. Given the similarities
in the cuticle composition of most arthropods, the study of Velmurugan et al. (2015) demon-
strates the entomopathogenic prospects of lipase-producing Bacillus sp. in the biological
control of insect pests of economic importance in forestry and fruit tree production.

3.5. The Role of Amylases from Bacillus sp. in Biological Control

Amylases are important enzymes that are required to hydrolyze polysaccharides (starch)
mainly in the fungal cell walls into simple sugar unites, which contributes to overall cell wall
degrading activity by Bacillus sp. in biological control fungal (and bacterial) phytopathogens.
For example, the amylase produced by Bacillus sp. strain KD7 inhibited the growth of A. flavus
and consequently suppressed aflatoxin production [150]. The amylolytic activity of B. subtilis
strains GM2 and GM5 were also among the antifungal factors responsible for the inhibition
of mycelial growth and spore germination of Fusarium sp., which improved the survival
rate of wheat seedlings [151]. The amylolytic activity of B. velezensis strains HY-3479 has
been reported to be among the antifungal mechanisms for the antagonistic effect against the
growth of several phytopathogenic, including C. acutatum, Cylindrocarpon destructans, R. solani,
and S. sclerotiorum [152]. Similarly, the amylolytic activity of B. licheniformis was among the
antagonist factors against V. dahlia, F. oxysporum, Phytophthora sp., C. acutatum, B. cinerea,
and Aspergillus sp. [153]. Amylase production by other Bacillus species such as Bacillus sp.
strain HE613660 has also been reported to contribute to their antibacterial effect against
other common pathogens like Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae,
Streptococcus agalactiae, and Proteus mirabilis, and pathogenic yeast, Candida albicans, which
demonstrates the prospect of controlling bacterial phytopathogens in forest and fruit tree
production [154]. Further research should be dedicated to the explication of the bactericidal
potential of amylase-producing Bacillus sp., especially in the biocontrol of post-harvest
bacterial fruit rot diseases, to explore their efficacy and applicability.
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3.6. The Role of Cellulases from Bacillus sp. in Biological Control

Cellulose is a polysaccharide of β-(1,4)-linked D-glucose units ([C6H10O5]n, where n is
at least 3000 units) that make up the cell wall structure of oomycetes, algae and plants, and
is an important target in the biocontrol of phytopathogenic oomycetes based on the concept
of cell wall degradation. The mechanism of cellulase in the degradation of the oomycete
cell wall, which is mainly composed of cellulose, is based on the hydrolysis of cellulose
structural polymers into simple monomers such as pentose and hexose, leading to cell lysis,
cell deformation and the leakage of cellular contents [155–158]. This results in the inhibition
of mycelial growth and zoospore germination, which ultimately suppresses the virulence
of the phytopathogen [54,156,157]. For instance, B. subtilis strain B71 produced cellulase
enzymes and effectively antagonized the growth of plant-pathogenic oomycete, P. spino-
sium in a concentration-dependent manner [155]. The cellulase from B. subtilis strain EG21
(along with extracellular pectinase and chitinase) inhibited the growth of P. infestans (phy-
tophthora blight disease in potato) and consequently lowered zoospore germination and
infection [156]. The cellulolytic activity of B. amyloliquefaciens strain UQ154 and B. velezensis
strain UQ156 inhibited the growth of Phytophthora sp. by antagonizing hyphal growth
and consequently reduced phytopathogenic load and disease severity in infected pepper
plants [157]. The cellulase from B. velezensis strain 6-5 inhibited P. infestans (potato blight
disease) by more than 90% [158], while cellulase (along with protease and mannanase)
from 13 B. pumilus strains inhibited phytopathogenic oomycetes such as P. ultimum and
Aphanomyces cochleoides and inhibited phytopathogenic fungal and bacterial pathogens,
depending on the type of growth media [159]. The cellulolytic activity of B. licheniformis
strain BL06 inhibited the mycelial and sporangial development of P. capsici (Phytophthora
blight of peppers) [160], and cellulase from B. velezensis strain SN337 inhibited P. sojae
(root rot disease in soybean) [161]. However, despite the seemingly obvious mechanism
based on the degradation of the cellulose-containing hyphae cell wall of oomycetes, there
is need for further research to demonstrate the anti-oomycete role of purified cellulase and
their detailed mode of action. The role of cellulase could be further enhance by dual or
multiple application with other hydrolytic enzymes such as protease since the cellulose
in the oomycete cell wall are interlinked and embedded in the matrix of other structural
polymers such glycoproteins. The summary of hydrolytic enzymes from Bacillus strains that
have been reported for antifungal and insecticidal activity in various plants is presented
(Table 1).

Table 1. The role hydrolytic enzymes from Bacillus sp. in the biocontrol of phytopathogens/insect
pests of potential economic significance.

Bacillus Species Enzyme (s) Pathogen/Insect Pest
(Disease/Damage) Host Plant Reference

B. velezensis CE100

Chitinase, protease,
β-1,3-glucanase

Colletotrichum gloeosporioides
(anthracnose) Juglans regia L. [51]

Chitinase,
β-1,3-glucanase

Macrophomina phaseolina, Fusarium
oxysporum f. sp. fragariae (charcoal
rot, wilt)

Fragaria × ananassa [55]

Chitinase, protease,
β-1,3-glucanase

Pestalotiopsis maculans (Pestalotiopsis
blight) Quercus acutissima [53]

Protease,
β-1,3-glucanase

Phytophthora species (Phytophthora
wilt) Chamaecyparis obtusa [54]

Chitinase, protease Dasineura jujubifolia larvae (leaf roll
damage) Ziziphus jujuba [73]

Chitinase, protease Reticulitermes speratus kyushuensis
(wood tunneling) Pinus densiflora [72]
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Table 1. Cont.

Bacillus Species Enzyme (s) Pathogen/Insect Pest
(Disease/Damage) Host Plant Reference

B. licheniformis MH48
Chitinase, β-1,3-glucanase F. oxysporum (root rot) Pinus thunbergii [106]

Chitinase, β-1,3-glucanase B. cinerea, Glomerella cingulata, P. diospyri,
and P. karstenii (foliar diseases) Camellia oleifera [107]

B. licheniformis PR2

Chitinase B. cinerea, C.gloeosporioides, Phytophthora
nicotianae (fruit rot) Zizyphus jujua [105]

Chitinase, protease R. speratus kyushuensis (wood tunneling) P. densiflora [60]

Chitinase, proteases H. cunea larvae (defoliation) Populus × canadensis [71]

Bacillus subtilis Glucanase, proteases Rosellinia necatri, F. oxysporum f.sp.
radicis-lycopersici (root rot)

Persea americana, Solanum
lycopersicum [141]

B. cereus 108 Chitinase F. solani (wilt disease) S. lycopersicum [90]

B. pumilus SG2 Chitinases (ChiS, ChiL)
R. solani, Verticillium sp. and
Stemphyllium botryosum (blight and wilt
diseases)

Fruit trees [91]

B. licheniformis MY75 Chitinase
Gibberella saubinetii (perfect stage of F.
graminearum), A. niger (head blight, black
mold)

Cereals, fruits [92]

B. amyloliquefaciens AG1 Protease-like Aspergillus sp., B. cinerea, F. oxysporum, V.
dahlia (grape decay, wilt) Vitis vinifera [162]

B.licheniformis BS-3 Protease Aspergillus niger, M. oryzae, Rhizoctonia
solani NS [125]

Bacillus cereus 28-9 Chitinase B. elliptica NS [89]

B. thuringiensis NM101-19
B. licheniformis NM120-17 Chitinase Rhizoctonia sp., F. oxysporum, Penicillum

chrysogenum (wilt, mold, mycotoxins) Glycine max [70]

B. subtilis TV-125 Chitinase F. culmorum NS [96]

B. amyloliquefaciens V656 Chitinase F. oxysporum NS [56]

B. subtilis NPU 001 Chitinase F. oxysporum NS [58]

B. cereus YQ308 chitinase F. oxysporum and P. ultimum NS [57]

B. thuringiensis var
israelensis Chitinase S. rolfsii, Rhizopus sp., Fusarium sp.,

Aspergillus sp. (wilt) G. max [88]

B. cereus NK91 Chitinase F. oxysporum, R. solani, and C.
gloeosporioides NS [94]

B. licheniformis J24 Chitinase F. pseudograminearum (Fusarium rot) Zea mays seeds [95]

B. subtilis TV-125 Chitinase F. culmorum (root rot) Vegetables [96]

B. subtilis Chitinase A. niger, A. flavus, and P. chrysogenum NS [97]

Bacillus sp. 739 Chitinase Fusarium sp. and H. sativum NS [98]

B. velezensis RB.DS29 Protease, β-glucanase,
chitinase Phytophthora sp. (root rot disease) Piper nigrum [163]

B.cereus QQ308 Chitinase, chitosanase,
protease

F. oxysporum, F. solani, and P. ultimum
(root, head/soft rot disease) B. rapa [59]

B. subtilis SL-13 Chitinase R. solani (foot rot) S. lycopersicum [93]

B. pumilus RST25 Chitinase F. solani and A. niger (seed rot) Triticum aestivum [99]

B. chitinolyticus (SGE2, 4,
SSL3), B. ehimensis MG1 Chitinase A. nidulans, B. cinerea, F. culmorum, S.

sclerotiorum, Guignardia bidwellii NS [100]

B. licheniformis TCCC10016 Chitinase F. oxysporum NS [101]

B. pumilus CCIBP-C5 Chitinase Pseudocercospora fijiensis (black sigatoka) Musa sp. [102]

B. cereus sensu lato B25 Exochitinase A,
endochitinase B F. verticillioides (rot and wilt diseases) Z. mays [103]
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Table 1. Cont.

Bacillus Species Enzyme (s) Pathogen/Insect Pest
(Disease/Damage) Host Plant Reference

B. licheniformis ATCC
14580 Chitinase Phoma medicaginis (damping-off) Medicago truncatula [104]

Bacillus sp. amylase, protease,
pectinase, cellulase F. equiseti (Fusarium wilt) Vicia faba [164]

Bacillus subtilis Glucanase,
protease

F. oxysporum f.sp. radicis-lycopersici (root,
crown rot) S. lycopersicum [141]

B. cereus 1.21 Chitinase Bemisia tabaci (sap sacking/leaf curling) C. annuum [108]

B. licheniformis
USMW10IK Chitinase Globitermes sulphureus (wood tunneling) Wood, trees [109]

B. cereus C-13 Chitinase H. theivora (sap-sacking) C. sinensis [110]

B. subtilis Chitinases (CS1, CS2) S. litura larvae (defoliation) Nicotiana tabacum [113,114]

B. thuringiensis subsp.
israelensis IPS78 Exochitinase C. nubeculosus larvae NS [115]

B. thuringiensis subsp.
aizawai HD133, HD-1 Exochitinase S. littoralis, S. litura (leaf damage) S. lycopersicum [115,117]

Bacillus sp. RH219 Proteases Apr219, Npr219 Panagrellus redivivus nematodes NS [132]

B. nematocida B16 Protease Bae16 P. redivivus, Bursaphelenchus xylophilus
(pine wilt) Pinus sp. [133]

Bacillus sp. B16 Serine protease P. redivivus NS [130]

B. cereus NJSZ-13 Alkaline protease B. xylophilus (wilt disease) P. elliottii [135]

B. licheniformis W10 Serine protease B. cinerea NS [122]

B. licheniformis TG116 Serine protease P. capsica, R. solani, F. graminearum, F.
oxysporum, B. cinerea NS [123]

B. subtilis 21 Protease F. verticillioides, R. solani (wilt, black root
rot) F. ananassa [124]

B. velezensis ZJ20 β-1, 3-1, 4-glucanases
Cryphonectria parasitica, Helicobasidium
purpureum, Cylindrocladium
quinqueseptatum

NS [137]

B. subtilis CW14 β-glucanase A. ochraceus (mold, ochratoxins) G. max [138]

B. amyloliquefaciens
MET0908 β-1,3-glucanase C. lagenarium (anthracnose) Citrullus lanatus [139]

B. subtilis NSRS 89-24 β-1,3-glucanase Pyricularia grisea, R. solani (rice blast,
sheath blight) Oryza sativa [140]

Bacillus sp. strain 739 Lipase, chitinase, protease,
β-1,3-glucanase Bipolaris sorokiniana (root rot) Cereal [143]

B. subtilis AI01, AI03 Lipase, protease F. solani (Fusarium wilt) Solanum melongena [145]

B. subtilis Ehrenberg Lipases Planococcus citri (sap sucking) Citrus [146]

B. subtilis Lipase Maconellicoccus hirsutus (sap-sucking) Gossypium sp., V. vinifera,
Z. jujuba. [147]

Bacillus sp. KD7 Amylase A. flavus (mold and mycotoxin) Cereals [150]

B. subtilis GM2, GM5 Amylase Fusarium sp. (wilt disease) Triticum sp. seedling [151]

B. velezensis HY-3479 Amylase C. acutatum, Cylindrocarpon destructans, R.
solani, S. sclerotiorum NS [152]

B. licheniformis Amylase V. dahlia, F. oxysporum, Phytophthora sp., C.
acutatum, B. cinerea, Aspergillus sp. NS [153]

B. subtilis B71 Cellulase P. spinosium NS [155]

B. subtilis EG21 Cellulase, pectinase,
chitinase P. infestans (blight disease) Solanum tuberosum [156]

B. amyloliquefaciens UQ154,
B. velezensis UQ156 Cellulase, protease Phytophthora sp. (Phytophthora blight) C. annuum [157]
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Table 1. Cont.

Bacillus Species Enzyme (s) Pathogen/Insect Pest
(Disease/Damage) Host Plant Reference

B. velezensis 6-5 Cellulase P. infestans (blight disease) S. tuberosum [158]

B. pumilus Cellulase, protease,
mannanase P. ultimum, Aphanomyces cochleoides NS [159]

B. licheniformis BL06 Cellulase P. capsica (Phytophthora blight) C. annuum [160]

B. velezensis SN337 Cellulase Phytophthora sojae (root rot) G. max [161]

NS indicates that the in vivo study was not conducted.

4. Prospects for the Practical Application of Lytic Enzymes from Bacillus sp. as
Alternatives to Chemical Pesticides in Forest and Fruit Tree Production
4.1. The Biocontrol Prospect of Hydrolytic Enzymes from Bacillus sp. against Fungal/Oomycete
Phytopathogens and Insect Pests

The main challenge in the application of biocontrol technologies includes the high cost
of production, which is mainly due to the high cost of fermentation media, the high initial
investment of installing expensive fermenters that minimize the risk of contamination with
other ubiquitous microbes, and the cost of purifying and concentrating the antimicrobial
products to their effective concentrations [27,50,51,165]. The use of cost-effective fermenta-
tion media mainly through studying the efficacy of locally available energy sources such as
crustacean shells has been previously reported to reduce the cost of producing Bacillus sp.
by at least 30-fold without compromising their biocontrol efficacy [165]. Singh et al. (2012),
studied the optimal conditions for chitinase (20 kDa) production from a rhizobacterium iso-
lated from chickpea (Lysinibacillus fusiformis strain B-CM18), in which a medium containing
about 6% chitin, 4.5% NaCl and 0.55% starch and yeast extract increased the production by
56.1-fold at 32.5 ◦C [166]. Lakshmi et al. (2014) also optimized the conditions for protease
production from B. licheniformis strain MTCC7075, in which the medium contain 3% rice
husk as C-source and various combinations of mineral salts, which increase protease pro-
duction from 98 U/mL to 184 U/mL [167]. Several other studies have reported optimized
conditions for amylase [150] and β-glucanase [168] production from different Bacillus sp.,
but there is limited knowledge about the optimal conditions for the holistic production of
the different hydrolytic enzyme combinations. Since these enzymes have demonstrated
antimicrobial/insecticidal synergism and the prospect for simultaneous biocontrol of phy-
topathogens and insect pests, there is a need to study the optimal conditions for the holistic
production of the hydrolytic enzyme combinations from Bacillus sp. and their effective
application rates to the maximum efficacy.

In addition, among the major advantages for the practical application of the hydrolytic
enzymes from Bacillus sp. in the biocontrol of fungal/oomycete pathogens and insect pests
include their prolific secretion compared to other antimicrobial metabolites such as volatile
organic compounds and lipopeptides, which are often produced in smaller concentrations
that would require complex purification processes for their effective usage [40,50–53]. The
high production of lytic enzymes from Bacillus sp. eliminates the need for costly purification
processes since they are produced in effective concentrations in the media which makes their
application more practicable [51,53–55]. Moreover, the thermophilic nature of Bacillus sp.
allows effective on-farm fermentation and field application (Figure 5), with minimum
risk of contamination since most ubiquitous bacteria cannot flourish under similar condi-
tions [169]. Unlike volatile compounds and antimicrobial peptides that are best applied in
closed environments such as greenhouses, lytic enzymes from Bacillus sp. do not require
complex application techniques, and several studies have demonstrated their effective
application against fungal/oomycete infections through seed-dressing [99], and by direct
foliar spray [51,53–55]. Moreover, several studies have demonstrated a great prospect of
producing effective concentrations of lytic enzymes through mass production of Bacillus sp.
on locally available medium, including the crustacean shells that have high chitin content
for enhancing the production of chitinase, and this enhances their practical production
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and application in large-scale tree nurseries and orchards [57,58,88]. Thus, the hydrolytic
enzymes from Bacillus sp. hold great prospects in the biological control and integrated
pest and plant disease management due to their ease of production, diverse applications
against both phytopathogens, insect pests and plant parasitic nematodes, and their high
efficacy through cell wall/ insect cuticle hydrolysis [16,25,51,71,73,136]. Moreover, the dual
antimicrobial and insecticidal efficacy of hydrolytic enzymes produced by some Bacillus sp.
demonstrates the prospect for the simultaneous biocontrol of phytopathogenic infections
and insect pests in both nursery and tree plantations. For instance, in our previous studies
we demonstrated the potential of B. velezensis CE100 [51,53–55,72,73] and B. licheniformis
PR2 [60,71,105] as effective biocontrol agents against fungal diseases and insect pests.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 17 of 27 
 

 

 

 
Figure 5. The illustration of field application of hydrolytic enzyme from Bacillus sp. in the control of 
insect pests in high-value biomass forests [30,105]. 

4.2. The Biocontrol Prospect of Hydrolytic Enzymes from Bacillus sp. against Viral Diseases and 
Virus-Transmitting Vectors 

Unlike the biocontrol of fungal/oomycete and bacterial diseases, there is relatively 
little research progress on the biocontrol prospect of viral infections in plants. Nonethe-
less, some studies have indicated the potential of biocontrol of Bacillus sp. against viral 
diseases, especially through induced systemic resistance (ISR) or systemic acquired re-
sistance (SAR) against plant viral infections and virus vectors [170–172]. For instance, B. 
amyloliquefaciens strain VB7 was reported to reduce the incidence (leaf lesions) of tobacco 
streak virus (TSV) from 25.28 lesions cm−2 area/leaf in the control to 2.22 lesions cm−2 
area/leaf and lowered the field incidence rate by 52% while simultaneously increasing cot-
ton yield by approximately 53% [173]. The elicitor compounds for ISR secreted by the Ba-
cillus sp. against viral infections have not been precisely established but there is evidence 
of increased pathogen-related proteins (PRPs) such as chitinases and glucanases mainly 
through the salicylic-dependent signaling pathway. This may involve, among other pro-
cesses, the manipulation of the cell wall composition and biosynthesis of phytoalexins to 
facilitate disease resistance in plants against a broad spectrum of phytopathogenic groups, 
including plant viruses [174,175]. The role of beneficial microbes such as Bacillus sp. in 
inducing defense responses in plants often proceed through microbe-associated molecu-

Figure 5. The illustration of field application of hydrolytic enzyme from Bacillus sp. in the control of
insect pests in high-value biomass forests [30,105].

4.2. The Biocontrol Prospect of Hydrolytic Enzymes from Bacillus sp. against Viral Diseases and
Virus-Transmitting Vectors

Unlike the biocontrol of fungal/oomycete and bacterial diseases, there is relatively little
research progress on the biocontrol prospect of viral infections in plants. Nonetheless, some
studies have indicated the potential of biocontrol of Bacillus sp. against viral diseases, espe-
cially through induced systemic resistance (ISR) or systemic acquired resistance (SAR) against
plant viral infections and virus vectors [170–172]. For instance, B. amyloliquefaciens strain
VB7 was reported to reduce the incidence (leaf lesions) of tobacco streak virus (TSV) from
25.28 lesions cm−2 area/leaf in the control to 2.22 lesions cm−2 area/leaf and lowered the
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field incidence rate by 52% while simultaneously increasing cotton yield by approximately
53% [173]. The elicitor compounds for ISR secreted by the Bacillus sp. against viral infections
have not been precisely established but there is evidence of increased pathogen-related
proteins (PRPs) such as chitinases and glucanases mainly through the salicylic-dependent sig-
naling pathway. This may involve, among other processes, the manipulation of the cell wall
composition and biosynthesis of phytoalexins to facilitate disease resistance in plants against
a broad spectrum of phytopathogenic groups, including plant viruses [174,175]. The role of
beneficial microbes such as Bacillus sp. in inducing defense responses in plants often proceed
through microbe-associated molecular patterns (MAMPs) including lipopolysaccharides,
where, unlike the pathogen-associated molecular patterns (PAMPs), the MAMPs stimulate
host immune mechanisms without causing cellular damage [175]. Abdelkhalek et al. [176]
reported that the inoculation of B. licheniformis strain POT1 in potato plants stimulated the
production of polyphenols, and the expression of the enzyme (F3H) genes responsible for the
biosynthesis of flavonoids in plants as well as the anthocyanin 2 transcription factor such as
anthocyanin, which are considered major antiviral defense factors. In their study, pyrrolo
[1,2-a]pyrazine-1,4-dione was suggested as a major elicitor for inducing SAR against alfalfa
mosaic virus (AMV) in potato. Guo et al. [177] also demonstrated that B. amyloliquefaciens
strain Ba13 induces plant systemic resistance against tomato yellow leaf curl virus (TYLCV)
through the activity of PRPs, as evidenced by the elevated expression of PR1, 2 and 3 genes,
the increased the activity of plant defense enzymes such as phenylalanine ammonia lyase
(PAL), polyphenol oxidase (PPO), peroxidase (POD), β-1,3 glucanase, and chitinase, which
are associated with both pathogenesis and herbivorous resistance in plants. Wang et al. [173]
demonstrated the role of Bacillus sp. in inducing defense response against tobacco mosaic
virus (TMV) through the jasmonate-mediated signaling pathway (Coi1 gene) and nonexpressor
of pathogenesis-related genes1 (NPR1), and pathogenesis-related -1a and -1b genes (PR-1a and -1b).
The insecticidal role of hydrolytic enzymes secreted by Bacillus sp. against plant virus vectors,
mainly hemipteran insect pests such as aphids and whiteflies through the degradation of
exoskeleton cuticles and peritrophic membrane has been described [108,110,120,146,147].
A detailed review of the role of Bacillus sp. in eliciting plant defense responses has been
reported [178,179]. However, future research should also focus on the direct role of hydrolytic
enzymes (especially glucanases and chitinases) on the potential to induce host resistance
against viral infections, since they have been demonstrated to play a vital role in induced
and acquired defense mechanisms.

5. Conclusions

Hydrolytic enzymes are produced by Bacillus sp. in high concentrations in the bacterial
culture and their dual antimicrobial and insecticidal efficacy has been demonstrated in
purified fractions, crude fractions, and in the bacterial culture, which makes their applica-
tion less complex and economically more viable compared to antimicrobial lipopeptides
that require complex purification process to attain effective concentrations. The major
antifungal/anti-oomycete mechanism by hydrolytic enzymes involves the lysis of the phy-
topathogenic cell walls in the spore or mycelial cells, which leads to the inhibition of spore
germination, suppression of mycelial growth and germ tube elongation and prevention
of pathogenic attachment and appressoria formation to control infections. Similarly, the
insecticidal activity of the lytic enzymes from Bacillus sp. is mainly based on the hydrolysis
of the lipid (wax coating), chitin fibrils and structural proteins (mainly glycoproteins),
leading to the degradation of the cuticle layer and cuticular appendages such as setae. This
causes desiccation and exposes internal organs to environmental aggressions (pressure,
infection, and toxins), which causes insect mortality or reduces the ecological fitness of
surviving insects, leading to reduced herbivore activity of insect pest/plant damage. The
dual insecticidal/fungicidal activity of hydrolytic enzymes from Bacillus sp., through cuti-
cle/cell wall degradation, could be further studied to develop biocontrol products for the
simultaneous control of insect pests and fungal diseases in forest and fruit tree production.
The hydrolytic enzymes from Bacillus have also demonstrated an indirect effect against
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plant viral infections by controlling virus vectors such as hemipteran insect pests and by
inducing plant defense responses that reduce the viral load, and ultimately suppress the
incidence and severity of viral symptoms. The production of hydrolytic enzymes from
Bacillus sp. using locally available (cost-effective) sources of energy (fermentation media),
such as crab shells and other chitin-containing substances as carbon sources, and their mass
cultivation using on-farm fermentation systems is a key component to their successful
application and their adoption as an eco-friendly strategy of pest and disease management
at various levels of production. Thus, future studies should aim at the optimization of the
fermentation media for Bacillus sp. (using cost-effective energy sources) to produce high
and stable concentrations of hydrolytic enzymes and investigating the prospect for the
simultaneous biocontrol of phytopathogens and insect pests (including plant parasitic ne-
matodes), which have not been fully explored in forestry and fruit tree production systems.
Besides the reports about novel isolations and their characterization, future research should
also investigate the potential synergism of co-inoculating different species or strains with
varying spectra of hydrolytic enzyme activity that could improve the utilization of Bacillus
sp. as biological control alternatives to chemical pesticides, especially for the simultaneous
control of fungal diseases and insect pests in nursery and field plantations.
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