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Abstract: Febrile seizures during early childhood may result in central nervous system developmental
disorders. However, the specific mechanisms behind the impact of febrile seizures on the developing
brain are not well understood. To address this gap in knowledge, we employed a hyperthermic model
of febrile seizures in 10-day-old rats and tracked their development over two months. Our objective
was to determine the degree to which the properties of the hippocampal glutamatergic system are
modified. We analyzed whether pyramidal glutamatergic neurons in the hippocampus die after
febrile seizures. Our findings indicate that there is a reduction in the number of neurons in various
regions of the hippocampus in the first two days after seizures. The CA1 field showed the greatest
susceptibility, and the reduction in the number of neurons in post-FS rats in this area appeared
to be long-lasting. Electrophysiological studies indicate that febrile seizures cause a reduction in
glutamatergic transmission, leading to decreased local field potential amplitude. This impairment
could be attributable to diminished glutamate release probability as evidenced by decreases in the
frequency of miniature excitatory postsynaptic currents and increases in the paired-pulse ratio of
synaptic responses. We also found higher threshold current causing hind limb extension in the
maximal electroshock seizure threshold test of rats 2 months after febrile seizures compared to the
control animals. Our research suggests that febrile seizures can impair glutamatergic transmission,
which may protect against future seizures.

Keywords: febrile seizures; hyperthermia; hippocampus; maximal electroshock seizure threshold
test; epilepsy; local field potential

1. Introduction

Febrile seizures are the most common type of seizures in childhood, with a prevalence
rate of 2–5% among children aged 6 months to 5 years [1–3]. Febrile seizures can be
classified as simple or complex, depending on the duration and recurrence of episodes.
Simple seizures typically last less than 15 min and occur no more than once a day. About
70% of all reported cases of childhood seizures are simple seizures. Complex seizures
are defined as seizures that last longer than 15 min or involve repeated episodes over a
24-h period. The most severe form of complex febrile seizures is febrile status epilepticus,
which involves seizures lasting more than 30 min [4]. The relationship between febrile
seizures and the development of temporal lobe epilepsy is uncertain. However, cohort
studies indicate that children with complex febrile seizures have a significantly higher risk
of developing temporal lobe epilepsy than those with simple febrile seizures [5–7].

To understand the mechanisms underlying potential epileptogenesis after febrile
seizures, animal models must replicate the basic features of such seizures in children,
including age and body temperature at onset. In this study, we utilized a well-established
model of febrile seizures [8] that enabled tight control over the seizure duration, thereby
facilitating accurate modeling of the complex form of febrile seizures.
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Several mechanisms are thought to cause epileptogenesis after complex febrile seizures.
In particular, limbic seizures in the mature brain can result in the loss of vulnerable cells in
the hippocampus, which may contribute to the development of epilepsy. Febrile seizures
primarily occur in early childhood when the nervous system is still developing. Whether
febrile seizures cause neuronal death remains a topic of debate. Clinical cases have de-
scribed hippocampal edema in children within 48 h of prolonged febrile seizures, which
resolves within 5 days [9]. Studies on animal models of febrile seizures indicate that there is
no significant death of hippocampal neurons, but they do indicate cell damage and mossy
fiber overgrowth [10,11]. As part of this study, we evaluated the incidence of neuronal
death in the rat hippocampus at varying intervals following prolonged febrile seizures to
examine the short- and long-term effects of these seizures on hippocampal morphology.

Neuroinflammation may accompany febrile seizure development and epileptogenesis.
Studies have revealed increased levels of pro-inflammatory cytokines in the serum of chil-
dren who experienced febrile seizures [12,13] and in animal models of febrile seizures [14].
This can result in chronic hyperexcitability of the neuronal circuits and epilepsy develop-
ment [15]. However, it remains unclear whether there is an increase in neuronal excitability
after febrile seizures. One study shows a reduction in the amplitude of population spikes
in CA1 field neurons when the Schaffer collaterals are stimulated, as a result of enhanced
inhibitory postsynaptic currents in the rat hippocampus one week after febrile seizures [16].
However, when the Schaffer collaterals are stimulated with a series of stimuli, epileptiform
activity develops only in slices obtained from animals after febrile seizures compared to
controls, indicating the increased excitability of the hippocampal neuronal circuits [17]. Our
study focused on examining excitatory synaptic transmission in the hippocampus of ani-
mals at different time points after febrile seizures to assess the acute and long-term changes.
In this study, we selected three age points to examine. The first point pertains to the acute
brain response to febrile seizures. The second point (P20) corresponds to early childhood
in humans, while the third point (P60) corresponds to adulthood [18,19]. In addition, we
assessed the seizure threshold of the animals in vivo two months post-febrile-seizure.

2. Results
2.1. Febrile Seizures Provoke Neuronal Loss in the CA1 Region of the Rat Hippocampus

Whether febrile seizures induce the loss of hippocampal neurons remains a topic of
controversy, with conflicting data from clinical studies and animal experiments [10,11,20,21].
To assess the effect of prolonged febrile seizures at P10 on neuronal damage in rats, we
used Nissl staining on brain slices and determined the number of neurons in different areas
of the hippocampus, including the CA1, CA3, hilus, and dentate gyrus regions, at different
ages (P12, P21, and P55) (Figures 1 and 2).

A two-way ANOVA revealed the significant effect of febrile seizures, age and their
interaction on neuron number only in the hippocampal CA1 region (Figure 2A; F(FS)1,41 =
101.7; p < 0.0001; F(Age)2,41 = 110.8; p < 0.0001; F(FS×Age)2,41 = 4.8; p < 0.01). Tukey’s post
hoc tests revealed significant differences in the number of neurons both between control
animals and animals after febrile seizures (post-FS rats) at different ages, and a decrease in
neurons during development (P12: control: 62.1 ± 1.1 neurons per 100 µm, post-FS: 52.1 ± 1.0;
P21: control: 51.2 ± 1.0, post-FS: 46.8 ± 1.0; P55: control: 47.6 ± 0.4, post-FS: 40.1 ± 0.6).

In the hippocampal CA3 region and hilus, a two-way ANOVA revealed signifi-
cant effects of age and febrile seizures, but there was no interaction between the factors
(Figure 2B: CA3 region: F(FS)1,41 = 6.7; p < 0.05; F(Age)2,41 = 75.5; p < 0.0001; F(FS×Age)2,41
= 0.5; p = 0.60. Figure 2C: Hilus: F(FS)1,41 = 21.9; p < 0.0001; F(Age)2,41 = 26.6; p < 0.0001;
F(FS×Age)2,41=0.5; p = 0.64). In the CA3 area, Tukey’s post hoc tests revealed a de-
crease in the number of neurons with increasing age in both the control and experimental
groups (P12: control: 36.2 ± 0.9 neurons per 100 µm, post-FS: 33.9 ± 0.5; P21: control:
30.4 ± 0.9, post-FS: 29.1 ± 0.9; P55: control: 26.9 ± 0.4, post-FS: 26.2 ± 0.4). In the hilus, in
addition to age-related changes, there is a decrease in the number of neurons in animals
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after febrile seizures at P12 (P12: control: 49.9 ± 2.1 neurons per 100 µm, post-FS: 43.8 ± 0.7;
P21: control: 40.9 ± 1.1, post-FS: 36.6 ± 1.1; P55: control: 41.1 ± 1.4, post-FS: 37.2 ± 0.5).

In the dentate gyrus, only the effect of febrile seizures was revealed (Figure 2D;
F(FS)1,41 = 10.9; p < 0.01; F(Age)2,41 = 1.4; p = 0.25; F(FS×Age)2,41 = 1.5; p = 0.23). Tukey’s
post hoc tests revealed a reduction in the number of neurons in animals after febrile seizures
compared to the control group only at P12 (P12: control: 68.1 ± 1.5 neurons per 100 µm,
post-FS: 62.9 ± 0.9; P21: control: 68.6 ± 1.1, post-FS: 66.1 ± 1.4; P55: control: 67.4 ± 0.7,
post-FS: 66.1 ± 1.1).

We have shown that febrile seizures lead to a reduction in the number of neurons
in different areas of the hippocampus. However, the CA1 field displayed the greatest
susceptibility, with a decrease in the number of neurons in post-FS animals across all three
age groups. A decrease in the number of neurons was only observed at P12 in the hilus
and dentate gyrus. There were no changes related to febrile seizures in the CA3 region.
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Figure 1. Representative images (50× magnification) show Nissl-stained, 20 µm thick frontal sections
of the hippocampus in control (CTRL) and experimental post-FS (FS) rats of varying ages. The black
boxes highlight the regions where neuron quantification was conducted, including CA1, CA3, hilus
(H), and dentate gyrus (DG).
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Figure 2. Nissl staining of neurons in hippocampal areas CA1 (A), CA3 (B), hilus (C), and dentate 
gyrus (D) in control (CTRL) and experimental post-FS (FS) rats. Diagrams showing the number of 
Nissl-stained neurons per 100 µm cell layer. The circles show the individual values for each rat. 
Asterisks indicate significant differences between groups according to Tukey’s post hoc test: * p < 
0.05, ** p < 0.01, *** p < 0.001. Between-group differences are shown in red. 

Figure 2. Nissl staining of neurons in hippocampal areas CA1 (A), CA3 (B), hilus (C), and dentate
gyrus (D) in control (CTRL) and experimental post-FS (FS) rats. Diagrams showing the number
of Nissl-stained neurons per 100 µm cell layer. The circles show the individual values for each
rat. Asterisks indicate significant differences between groups according to Tukey’s post hoc test:
* p < 0.05, ** p < 0.01, *** p < 0.001. Between-group differences are shown in red.
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2.2. Synaptic Neurotransmission in the Hippocampus Changed after Febrile Seizures

To evaluate the basic synaptic neurotransmission at the CA3-CA1 pyramidal neuron
synapses in hippocampal slices, afferent fibers underwent electrical stimulation at different
current intensities (25–300 mA). The synaptic neurotransmission was evaluated in both post-
FS animals and control animals across different ages (P12, P21-23, P51-55; Figure 3). The
fiber volley (FV) amplitude, reflecting the number of CA3 axons that evoke action potentials,
and the fEPSPs amplitude, reflecting the sum of excitatory postsynaptic responses occurring
in the dendrites of the CA1 pyramidal neurons in response to afferent fiber stimulation,
were both recorded in each slice.
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Figure 3. Synaptic neurotransmission in the hippocampus changed after febrile seizures. (A) Repre-
sentative examples of fEPSPs recorded at different strengths of extracellular stimulation in the control
(CTRL) and after-febrile-seizure animals (FS) of different ages (P12, P21, P55). Stimulation–response
relationships for presynaptic fiber volley (FV) amplitude (B) and fEPSP amplitudes (C) recorded from
the hippocampal CA1 region. Data shown as means ± standard errors of the means.

At P12 in post-FS animals, the fEPSP amplitude was reduced compared to the con-
trol (F11,396 = 2.83; p < 0.01, control: n = 21 slices; N = 10 rats; post-FS: n = 17 slices;
N = 10 rats), while no changes in the FV amplitude were observed (F11,396 = 0.32;
p = 0.98). Conversely, at P21, an increase in the amplitudes of both FV (F11,451 = 3.06;
p < 0.001, control: n = 16 slices; N = 10 rats; post-FS: n = 27 slices; N = 12 rats) and fEPSP
(F11,451 = 1.81; p < 0.05) was observed in post-FS animals. At the age of 51–55 days, no
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statistically significant differences in these parameters were found between the control
animals and post-FS animals (amplitudes of FV: F11,440 = 1.31; p = 0.21, control: n = 16
slices; N = 11 rats; post-FS: n = 24 slices; N = 10 rats and amplitudes of fEPSP: F11,440 = 0.63;
p = 0.80).

2.3. Short-Term Synaptic Plasticity of Hippocampal Neurons Changes in Rats Two Days after
Febrile Seizures

The decrease in fEPSP apmlitude without a change in FV amplitude in rats two days
after febrile seizures may be related to changes in the probability of glutamate release in
the Schaffer collaterals. To assess possible changes in the probability of mediator release
after febrile seizures, we assessed the short-term synaptic plasticity (STP) in rats of different
ages [22]. To this end, we used a paired-pulse stimulation with an interstimulus interval of
10 to 500 ms and compared the paired-pulse ratio (PPR) at different intervals in control
animals (P12: n = 8 slices; N = 6 rats; P21: n = 12 slices; N = 7 rats; P55: n = 9 slices;
N = 6 rats) and post-FS animals (P12: n = 8 slices; N = 5 rats; P21: n = 15 slices;
N = 8 rats; P55: n = 9 slices; N = 6 rats). Repeated-measure ANOVA revealed significant
changes in the PPR only in animals two days after febrile seizures, whereas no differences
for the control group were found in animals at P21 and P55 (P12: F14,196 = 3.22; p < 0.001;
P21: F14,336 = 0.26; p = 0.99; P55: F14,224 = 0.12; p = 0.99; Figure 4).
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Figure 4. Paired-pulse facilitation altered in hippocampal slices 2 days after febrile seizures.
(A) Representative examples of paired-pulse responses from the hippocampus in control rats (CTRL)
and rats after febrile seizures (FS) at P12 using interstimulus intervals of 40 ms. (B–D) Diagrams
of paired-pulse facilitation in rat hippocampal slices at P12 (B), P21-23 (C), and P51-55 (D) days at
different interstimulus intervals. Asterisks indicate significant differences according to Tukey’s post
hoc test: * p < 0.05.
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This experiment shows a decrease in the probability of mediator release in the hip-
pocampal CA3-CA1 synapses two days after febrile seizures. Later, however, these changes
are no longer observed.

2.4. Frequency of Miniature Excitatory Postsynaptic Current Is Reduced Two Days after
Febrile Seizures

Since we observed significant changes in synaptic transmission in rats 2 days after
experiencing febrile seizures, we analyzed the properties of the miniature excitatory post-
synaptic currents (mEPSCs) in the CA1 neurons, including their amplitudes, kinetics, and
frequency, in the control and post-FS groups, recorded at –80 mV.

Our findings indicate that the frequency of the mEPSCs decreased by 47% (Control:
0.67 ± 0.06 Hz; n = 20 neurons; N = 3 rats, post-FS: 0.42 ± 0.02 Hz; n = 21 neurons;
N = 4 rats, p < 0.001). Meanwhile, the other mEPSC parameters, including amplitude
(control: 18.4 ± 1.1 pA, n = 17, post-FS: 17.7 ± 1.2 pA, n = 22, p = 0.66), rise time (control:
1.52 ± 0.19 ms, n = 20, post-FS: 1.37 ± 0.11 ms, n = 24, p = 0.46), and decay time constant
(control: 5.32 ± 0.39 ms, n = 19, post-FS: 4.42 ± 0.32 ms, n = 21, p = 0.14), remained unaltered
(Figure 5).
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Figure 5. Frequency of miniature excitatory postsynaptic current (mEPSC) is reduced two days after
experiencing febrile seizures. (A) Representative current responses from CA1 pyramidal neurons
recorded at −80 mV and (B) examples of averaged mEPSCs in control (CTRL) and post-FS (FS)
animals. The asterisks indicate individual mEPSCs. The frequency (C), amplitude (D), rise time (E),
and decay time constant (F) of mEPSC in the control and post-FS groups are presented. Asterisks
indicate significant differences between groups according to Student’s test: * p < 0.05, *** p < 0.001.

This suggests that presynaptic mechanisms likely trigger changes in synaptic strength
in the CA1 neurons. Consequently, our research shows that febrile seizures can result in
impaired glutamatergic transmission during the first few days following a seizure, which
might serve as a protective factor in reducing the possibility of future seizures.

2.5. Rats after Febrile Seizures Have an Increased Threshold for Maximal Electroshock Seizure

Since prolonged febrile seizures in early childhood may increase the risk of developing
epilepsy, it was hypothesized that the threshold for seizure onset would be reduced in post-
FS rats. To evaluate this hypothesis, the maximal electroshock seizure threshold (MEST)
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test was conducted on rats 2 months after febrile seizures (n = 14) and on control animals
of the same age (n = 17). The results showed that the post-FS rats had a significantly higher
threshold for tonic hind limb extension (U17,14 = 27, p < 0.001, Figure 6).
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Thus, our experimental model of febrile seizures revealed a surprising outcome: early
childhood febrile seizures may actually raise the threshold for tonic seizure generation
rather than lower it, as previously believed.

3. Discussion

Febrile seizures are the most common type of seizure in young children [4,23,24].
However, the association of febrile seizures with subsequent hippocampal damage and the
development of temporal lobe epilepsy remains undetermined. A retrospective analysis of
patients with temporal lobe epilepsy shows a high prevalence of febrile seizures in their
history, which may suggest the etiological role of these seizures in the development of
temporal lobe epilepsy [25,26]. However, according to population-based and prospective
epidemiological studies, febrile seizures do not progress to temporal lobe epilepsy [27].
Most research indicates that boys are more prone to febrile seizures than girls [28–30].
Interestingly, some experimental studies have shown that there is a difference in sex-related
susceptibility to febrile seizures [31], other seizures in early childhood [32], and neonatal
hypoxia ischemia [33]. Males seem to exhibit more severe cognitive and behavioral deficits
compared to females with matched conditions [31–33]. To exclude possible sex differences
from the analysis, we used only male rats in this study, so it should be kept in mind that
any conclusions drawn are specific to the male sex; it cannot be excluded that the effects of
febrile seizures may be somewhat different in female rats.

In this study, we aimed to investigate whether hippocampal neuronal death and
changes in hippocampal excitability occur at different developmental ages after prolonged
febrile seizures in early life.

We found that the CA1 region of the hippocampus showed the most significant
loss of neurons. Furthermore, two days post-seizure, there was impaired glutamatergic
transmission, with a lower probability of mediator release and a decline in baseline synaptic
transmission at the CA3–CA1 synapses. Interestingly, the baseline neurotransmission in
rats increases at 3 weeks of age, 11 days after seizures. However, there were no alterations in
baseline synaptic transmission found 40–45 days after seizures. Despite this, the threshold
for developing tonic convulsions in animals was observed to have increased two months
after febrile seizures in comparison to the control group.

In this study, we confirmed the widely held belief that seizures in the developing brain
do not cause a large loss of neurons. Prior research has indicated that there is minimal
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neuronal death in the hippocampus 20 h after febrile seizures [10], whereas there is no
neuronal death in adult animals that have experienced febrile seizures during their early
stages of life [10,11]. Our findings generally support these previous observations.

Four hippocampal regions were compared in this study across three animal age
groups. After febrile seizures, the number of neurons decreased in the CA1 region, hilus,
and dentate gyrus within two days, the earliest point of the study. Conversely, there was
no loss of neurons in the CA3 region of the hippocampus. Nevertheless, after 10 days and
1.5 months, only the CA1 region displayed observable differences between the post-FS
and control groups. These findings are consistent with data from other immature animal
seizure models (lithium–pilocarpine model of status epilepticus and kainic acid model
of temporal lobe epilepsy), where the hippocampal CA1 neurons have been shown to
be more vulnerable than other hippocampal regions [34–36]. One possible explanation
for why the CA1 neurons in the hippocampus are more prone to febrile seizures at P10
is the delayed development of synaptic inhibition in the CA1 compared to CA3 region
during early postnatal ontogeny [37]. It is worth mentioning that neurogenesis persists
in the dentate gyrus during the postnatal period, potentially accounting for the absence
of differences at later stages. Nonetheless, the dentate gyrus cells generated after febrile
seizures exhibit augmented spontaneous excitatory input [38].

We observed an age-related decrease in the number of neurons in the CA1 and CA3
regions, as well as in the hilus, both in the control group and in animals after febrile seizures.
The number of neurons in the hilus does not differ from the control group by 21 days of
age due to this process. However, differences persist in the CA1 region because neuronal
death in this area is more pronounced in the early days after seizures.

Concurrently with examining morphological changes, we investigated the excitatory
synaptic transmission in the CA3–CA1 neurons of the hippocampus. The most signifi-
cant changes were observed two days after febrile seizures, with a reduction in synaptic
transmission efficacy, changes in short-term plasticity, and a decrease in the frequency of
miniature excitatory synaptic currents. Overall, the findings indicate a decrease in the
probability of mediator release in the hippocampal CA3–CA1 synapses. These changes
in the probability of glutamate release may shift the balance of excitation and inhibition
toward inhibition and reduce the risk of seizure activity in hippocampal neuronal networks.

Opposite changes can occur in various models of seizures and epilepsy. For instance,
in the 4-aminopyridine in vitro model, no changes were noticed in the frequency of the
mEPSCs and the paired amplitude ratio of the evoked responses, one hour after epilep-
tiform activity. However, potentiation of the synaptic transmission was observed due to
postsynaptic changes [39]. Similarly, one hour after neonatal hypoxic seizures, researchers
observed an increase in synaptic transmission attributed to an increased mEPSC ampli-
tude mediated by AMPA receptors [40]. Moreover, the authors of this study found that
hypoxia-induced seizures resulted in an increased mEPSC frequency, indicating a combined
presynaptic and postsynaptic potentiation [40]. The amplitude, but not the frequency, of the
mEPSCs recorded from the CA1 pyramidal neurons was found to be increased in the slices
taken from animals with pilocarpine-induced status epilepticus [41]. In another study using
a lithium–pilocarpine model, the evoked EPSC amplitudes were increased 20–60 days after
the pilocarpine seizures, and then decreased further into the chronic phase of the epilepsy
model [42]. In the repeated low-dose kainate model of epilepsy, 1 week after the induction
of seizures, an increased mEPSC frequency was observed, although the amplitudes were
similar to the control [43].

In many models of seizures and epilepsy, synaptic potentiation results from the
NMDA-dependent incorporation of AMPA receptors, which includes an increase in the
proportion of calcium-permeable AMPA receptors [40,41,44–46]. Neuroinflammation can
increase the proportion of calcium-permeable AMPA receptors. Specifically, administering
bacterial lipopolysaccharide in experimental studies showed elevated GluA1 expression
following lipopolysaccharide treatment in two-week-old [47] and two-month-old rats [48].
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Conversely, febrile seizures cause a rapid decrease in the proportion of calcium-permeable
AMPA receptors in the synapses of pyramidal neurons [49].

The difference may be due to the febrile seizure model used in our experiments, which
does not lead to the development of chronic epilepsy in rats. Therefore, the synaptic
changes rapidly disappear after the seizures since no epileptogenesis occurs. Nonetheless,
in a comparable febrile seizure model, it was revealed that the glutamate release probability
increased two months following the seizure [38]. It should be noted, however, that these
modifications were identified in the dentate granule cells instead of the CA1 region.

Unexpectedly, we found a higher current threshold for the development of tonic
seizures in in vivo experiments. However, previous studies have shown an increased
susceptibility to seizures in adult rats at least three months after febrile seizures [17] and
electroencephalographically recorded epileptiform discharges in the limbic system [50]. In
contrast, a previous study found that young animals exhibited reduced susceptibility to
pentylenetetrazole-induced seizures 20 days after experiencing febrile seizures [51]. These
results are consistent with our own findings in animals observed 2 months after seizures. It
is possible that the discrepancies in results are due to differences in the age of the animals
evaluated for seizure susceptibility. It is possible that after febrile seizures, neural circuit
excitability may be reduced in animals as a compensatory measures to reduce the risk of
developing recurrent seizures. Nevertheless, further research is necessary to support this
hypothesis.

However, reducing the excitatory transmission in the immature brain could potentially
delay its further development. This is because the maturation of and morphological
changes in astrocytes rely on neuronal activity, and astrocytes regulate synaptogenesis
in the immature brain [52,53]. This could hamper the maturation of synaptic plasticity
processes, leading to potential cognitive impairment, as previously demonstrated [54].

4. Materials and Methods
4.1. Animals

Male Wistar rats were utilized in this study. Animals were housed in standard condi-
tions with unrestricted access to food and water. The Ethics Committee of the Sechenov
Institute of Evolutionary Physiology and Biochemistry approved all experiments and en-
sured compliance with local guidelines for laboratory animal welfare. These conditions
fully comply with international regulations for animal experimentation. The sequence of
experiments performed is shown in the scheme (Figure 7).
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4.2. Febrile Seizure Model

Febrile seizures were induced on postnatal day 10 as described previously [8,54].
Briefly, the P10 pups were placed at the bottom of a glass chamber for 30 min and exposed
to a regulated stream of heated air, keeping the chamber temperature at 46 ◦C. Most animals
had their body temperature rise to 39 ◦C within the first 10 min under these conditions, and
often showed facial automatisms, sometimes accompanied by unilateral body flexion. This
was followed by myoclonic twitching of the hind limbs, followed by clonic convulsions.
Rectal body temperature was measured every two minutes and maintained below 41 ◦C
during episodes of convulsions. The study included a total of 63 animals with FS durations
of at least 15 min. After hyperthermia, the pups were placed on a cold surface until their
core temperature was normalized, and then returned to their nest. The littermates utilized
as controls were removed from the nest for the same duration but were kept at room
temperature (N = 65).

4.3. Histology

At P12, P21–23, and P51–55, the rats were anesthetized with a mixture of Zoletil
(3 mg per 100 g) and xylazine (50 µL per 100 g) diluted in saline. Afterward, the rats were
perfused transcardially with phosphate-buffered saline (PBS, pH 7.4, 0.01 M), followed by
4% paraformaldehyde (PFA) in PBS. Subsequently, the animals were decapitated, and the
brain removed and fixed in 4% PFA at 4 ◦C for at least 2 days. After fixation, the brains
were cryoprotected in 30% sucrose. The brains were frozen in cooled (<−50 ◦C) isopentane
(78-78-4, Isopentane Solution, Sigma-Aldrich, St. Louis, MO, USA) and stored at −80 ◦C.

Serial 20 µm thick frontal sections were cut on a Bright OTF5000 cryostat (Bright
Instrument Co., Ltd., Huntingdon, UK) at −2.6 to −3.6 mm bregma, placed on Super
Frost Plus-coated slides (J1800AMNZ, Fisher Scientific UK Ltd., Loughborough, UK), and
air-dried for 1 day. Nissl staining was performed as previously described in detail [55]. The
Nissl-stained sections were analyzed using a Leica AF7000 microscope (Leica Microsystems,
Wetzlar, Germany) at ×400 magnification. Neuronal counts were conducted on every fifth
section, resulting in a yield of 6–8 sections from a single rat hippocampus. The analyzed
sections were spaced 100 µm apart. The ImageJ 1.52a software (U.S. National Institutes of
Health, Bethesda, MD, USA) was used to calculate the number of neurons per 100 µm in
the CA1, CA3, hilus, and dentate gyrus cell layers from digital micrographs.

4.4. Brain Slice Preparation

At P12, P21-23, and P51-55, the rats were decapitated and their brains were quickly
removed. Using an HM 650 V vibratome (Microm, Walldorf, Germany), horizontal brain
slices (400 µm) were cut in chilled artificial cerebrospinal fluid (ACSF) at a temperature
of 0 ◦C. The ACSF contained 126 mM NaCl, 24 mM NaHCO3, 2.5 mM KCl, 2 mM CaCl2,
1.25 mM NaH2PO4, 1 mM MgSO4, and 10 mM glucose and was aerated with carbogen
(95% O2 and 5% CO2). Afterward, the slices were allowed to recover for 1 h at 35 ◦C in
oxygenated ACSF.

4.5. Field Potential Recordings

Field potentials were recorded in the CA1 stratum radiatum of the hippocampus
using glass microelectrodes (0.2–1.0 MΩ), following the procedures outlined in previous
studies [56]. Each slice was stimulated with increasing amplitude currents (25 to 300 µA,
25 µA increments) to measure the fEPSP and FV amplitudes. Paired pulses with varying
interstimulus intervals were administered every 20 s to ascertain the paired-pulse ratio
(PPR), calculated as the amplitude ratio between the first fEPSP and the second. The
intervals ranged from 10 to 500 ms.

4.6. Patch-Clamp Recordings

The recordings were performed at 30 ◦C. The neurons in the pyramidal layer of the CA1
hippocampus were visualized using a Zeiss Axioskop 2 microscope (Zeiss, Oberkochen,
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Germany) equipped with differential interference contrast optics and a video camera (Sanyo
VCB-3512P, Sanyo Electric, Osaka, Japan). Patch electrodes with a resistance of 2-4 MΩ were
fabricated from borosilicate glass capillaries (Sutter Instrument, Novato, CA, USA) using
a P-1000 micropipette puller (Sutter Instrument). For recording the miniature excitatory
synaptic currents (mEPSCs), we employed a solution based on potassium gluconate. The
solution’s composition in mM was as follows: 114 K-gluconate, 6 KCl, 0.2 EGTA, 10 HEPES,
4 ATP-Mg, and 0.3 GTP. The pH level was adjusted to 7.25 using KOH.

Signals were recorded using a MultiClamp 700B patch-clamp amplifier (Molecular
Devices, Sunnyvale, CA, USA), an InstruTECH LIH 8 + 8 ADC/DAC module (HEKA,
Stuttgart, Germany), and the WinWCP 5.2.7 software (University of Strathclyde, Glasgow,
UK). The data underwent 3 kHz filtering and 16.67 kHz sampling. The access resistance
was less than 20 MΩ for all whole-cell recordings included in the sample and remained
stable (≤20% increase) across the experiments. No series resistance compensation was
utilized during the experiment.

The mEPSC recordings were conducted at a membrane potential of −70 mV in the
presence of 0.5 µM TTX (Alomone Labs, Jerusalem, Israel). The mEPSCs were detected
offline using the Clampfit 10.0 software (Molecular Devices) and their characteristics were
analyzed utilizing software based on open-source SciPy and NumPy libraries for the Python
programming language (Python Software Foundation, Wilmington, DE, USA).

4.7. Maximal Electroshock Seizure Threshold (MEST)

To evaluate the susceptibility to seizures in animals, we measured the MEST two
months following febrile seizures. Current was applied via ear electrodes using an ECT
Unit 57800 pulse generator (Ugo Basile, Gemonio, Italy), using stimulation currents ranging
from 12 to 100 mA with log scale intervals of 0.1. The pulse frequency was set at 150 Hz,
pulse duration at 0.8 s, and pulse width at 0.9 ms. We determined the minimum current
necessary to observe tonic hind limb extension for each animal. On day one, the animal
received a current of 40 mA. If tonic hind limb extension was not observed, the current was
increased by 1 step. If tonic hind limb extension occurred at 40 milliamperes, the current
was decreased by 1 step. The tests were repeated every 2–3 days.

4.8. Statistical Analysis

Statistical analysis was conducted using the Statistica 8.0 (Systat Software, Inc., Palo
Alto, CA, USA) and GraphPad Prism 8 software (GraphPad Software, San Diego, CA, USA).
We identified outliers using Dixon’s Q-test and tested for normal distribution using the
Kolmogorov–Smirnov test. We used Student’s test, two-way ANOVA, or repeated-measure
ANOVA as appropriate to assess the statistical significance, followed by Tukey’s post hoc
test, as described in the text. Statistical analysis of the MEST test data was conducted using
the Mann–Whitney U test. Results were presented as mean ± standard error of the mean
for normal distribution or median and interquartile range for non-normal distribution. A
p-value less than 0.05 was considered statistically significant.
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