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Abstract: Nanocarriers are widely used for efficient delivery of different cargo into mammalian cells;
however, delivery into plant cells remains a challenging issue due to physical and mechanical barriers
such as the cuticle and cell wall. Here, we discuss recent progress on biodegradable and biosafe
nanomaterials that were demonstrated to be applicable to the delivery of nucleic acids into plant
cells. This review covers studies the object of which is the plant cell and the cargo for the nanocarrier
is either DNA or RNA. The following nanoplatforms that could be potentially used for nucleic
acid foliar delivery via spraying are discussed: mesoporous silica nanoparticles, layered double
hydroxides (nanoclay), carbon-based materials (carbon dots and single-walled nanotubes), chitosan
and, finally, cell-penetrating peptides (CPPs). Hybrid nanomaterials, for example, chitosan- or CPP-
functionalized carbon nanotubes, are taken into account. The selected nanocarriers are analyzed
according to the following aspects: biosafety, adjustability for the particular cargo and task (e.g.,
organelle targeting), penetration efficiency and ability to protect nucleic acid from environmental and
cellular factors (pH, UV, nucleases, etc.) and to mediate the gradual and timely release of cargo. In
addition, we discuss the method of application, experimental system and approaches that are used to
assess the efficiency of the tested formulation in the overviewed studies. This review presents recent
progress in developing the most promising nanoparticle-based materials that are applicable to both
laboratory experiments and field applications.

Keywords: nanocarrier; RNA interference; topical dsRNA delivery; spray-induced silencing

1. Introduction

Recent progress in nanomaterials research has paved the way to the utilization of
nanocarriers for intracellular delivery of different cargo. This ground-breaking biotech-
nological approach could be used both for solving fundamental scientific problems and
development of techniques for sustainable agriculture. Nanocarriers are systems that load
cargo incorporated into organic or inorganic matrixes and have a size between 10 and
1000 nm. Nanocarriers have been extensively studied and successfully applied to animal
cells (reviewed, for example, in [1–3]) while plant cells are much more complicated objects
for intracellular delivery due to the presence of additional physico-chemical and mechani-
cal barriers (cuticle, cell wall, acidic environment, etc.) to penetration compared to animal
cells [4]. Nevertheless, the number of studies demonstrating efficient nanoparticle-based
delivery of various cargo into plant cells is growing, which opens up a perspective for
the development of new-generation technologies for sustainable agriculture, allowing the
improvement of the productivity and disease resistance of crops without modification of
their genomes and in an environment-friendly way [5].

Plant treatment using dsRNA/siRNA allows inducing transient changes in the pheno-
type and activating specific defense responses against particular pathogens. This approach
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is based on RNA interference (RNAi), a common mechanism for plant and animal cells
aimed to suppress foreign or regulate endogenous gene expression at the RNA level [6–10].
RNAi is widely used both for fundamental science and for biotechnological tasks [11]. The
induction of RNAi using plant foliar treatment with a solution of naked dsRNA/siRNA
is an appealing tool that could be used for protection against viruses, fungi and pests
(reviewed in [11–15]). However, the efficiency of RNA penetration into plant cells is ques-
tionable because (1) naked dsRNA/siRNA molecules are rather unstable in the environment
and are subjected to nuclease digestion, and (2) the intracellular uptake of RNA sprayed
onto the leaf surface is rather low due to multiple physical and chemical barriers (Figure 1).
Naked nucleic acid applied to the leaf surface suffers from the impact of environmental
factors: UV radiation, heat, rain and enzymatic and chemical damage [16]. Another chal-
lenge is nucleic acid’s penetration into plant cells. The major mechanical barriers are the
cuticle and cell wall. The aerial parts of the plant are covered with a lipophilic coating, the
cuticle, that consists mainly of cutin and wax and protects the plant from water losses and
environmental stresses. Its permeability depends on the charge and size of the penetrating
molecules, as well as temperature and humidity [17,18]. The cell wall represents another
significant barrier for intracellular cargo delivery. It contains a pectin matrix, cellulose and
hemicellulose fibrils and a protein component [19]. The cell wall thickness varies from
several hundred nanometers to several microns [20]; its permeability depends on the cell
wall pore size [21]. From the apoplast, cargo internalization occurs via endocytosis or in an
endocytosis-independent way (Figure 1).
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Figure 1. Mechanical barriers and other hurdles to the foliar uptake and delivery of the cargo into
plant cell. Multiple environmental factors such as UV radiation, high temperature, rain, mechanical
damage, pests, etc. could decrease the efficiency of nucleic acid foliar uptake, affecting its stability
and integrity. Leaves are covered with a wax protective layer: cuticle (1). The second barrier is a rigid
and viscose cell wall (2). The third barrier is a plasma membrane (3), which could be penetrated via
endocytosis (4) or in an endocytosis-independent way (4a). Endocytic vesicles deliver their cargo to
the early endosome, ending up in the vacuole; thus, the problem of endosomal escape (5) has to be
overcome. Timely cargo release (6) from the complex with nanoplatforms should also be taken into
account. If cargo is to be delivered to a particular cellular compartment, it should be targeted there
using a special signal (7) that is contained in the nanocarrier or in the cargo itself.

Nucleic acid penetration across two main mechanical barriers, the lipophilic cuticle and
rigid cell wall, is extremely difficult without additional aid, for example, leaf surface abra-
sion, high-pressure bombardment, infiltration or treatment using special chemicals [4,9,10].
Two main traditional approaches to nucleic delivery into plant cells are Agrobacterium-
mediated transformation and the biolistic method [5,22]. But both approaches have sig-
nificant limitations. The Agrobacterium-based technique is not suitable for most plant
species, while biolistic delivery requires special equipment and results in plant tissue dam-
age. Nanocarrier-mediated delivery represents an approach lacking the abovementioned
limitations, being more universal and allowing precise intracellular targeting. Moreover,
nanomaterials are able to provide protection of the nucleic acid from environmental fac-
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tors [23,24], which is very important, especially in the case of RNA, and to increase the
efficiency of its penetration into the cell.

Various experimental systems are used to assess the suitability of particular nanocar-
riers (Figure 2, Table 1). Protoplasts, similar to animal cell culture, lack cell wall [25] and
represent a convenient experimental system for the initial tests that could be performed
during the preliminary evaluation and screening of novel nanocarriers. For example, the
ability of nanocarriers to cross the plasma membrane or the toxicity of the nanomaterial
could be assessed. Another model system suitable for screening is a suspension culture of
plant cells (in particular, Nicotiana tabacum BY-2 cells) possessing cell wall, thus allowing
the assessment of nanoparticles’ ability to cross one of the main barriers: the cell wall.
However, the results obtained in these two systems should be then confirmed for the whole
plant or at least for its parts. At this stage, biotoxicity and biocompatibility issues arise
more acutely, as well as the complex effect on the plant in general. Initial studies of each
nanocarrier in laboratory conditions often include such plant treatments as leaf abrasion or
leaf infiltration, abaxial stomata flooding, root soaking or infiltration and petiole adsorption
(Figure 2, Table 1). These methods load nanoparticles into the intercellular space or vascular
system, followed by intracellular cargo delivery [9,10]. But the final aim is to develop a
formulation for foliar topical spraying to make it suitable for agricultural applications.
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Figure 2. Schematic representation summarizing data on selected nanoplatforms obtained in different
plant experimental systems and with various cargo.

Cargo internalization could be confirmed using fluorescent microscopy; however,
additional markers should be used to distinguish apoplast delivery from cytoplasmic
localization [26]. Of note, the most convincing evidence of successful delivery is func-
tional tests based on (1) reporter gene expression in case of pDNA or PCR product deliv-
ery [27]; (2) visible phenotypic changes induced by the silencing of endogenous plant genes
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(e.g., magnesium chelates, phytoene desaturase) by the delivered dsRNA/siRNA [28,29];
(3) silencing of transgenes in a stably transformed plant expressing genes of fluorescent
proteins [26]; (4) activation of RNAi resulting in resistance to fungal or viral pathogens [23].

Despite the desirable molecule usually being RNA (dsRNA/siRNA), many studies
use a pDNA or PCR product to confirm the applicability of the studied formulation
because DNA is more stable, easier to manipulate and more convenient for conducting
functional tests compared to RNA. Moreover, the detection of encoded by pDNA reporter
gene expression unambiguously indicates efficient pDNA intracellular uptake. Moreover,
pDNA could be used not only as a “model molecule” for nanocarrier-mediated delivery
but a valuable tool per se as it allows (1) the transient expression of resistance genes
operating against various pathogens [30] or artificial micro RNA against viruses [31], and
(2) transformation of non-model plants that are not susceptible to Agrobacterium-mediated
gene transfer. Efficient pDNA intracellular delivery has great potential as a laboratory
approach to studies in functional genomics as it represents an alternative to Agrobacterium
and chemical plant transformation, which is per se a stress factor for a plant.

Nucleic acid delivery into plant cells could be applied to searching for host resis-
tance [32–35] or susceptibility factors [36–38]. Solving fundamental problems in the field of
plant–pathogen interactions paves the way to the transfer of the developed technologies
to the applied biotechnology for crop defense and improvement, especially using such
instruments as RNAi [12].

Advances in the development and utilization of various nanocarriers are reflected in
numerous emerging studies on successful RNA or pDNA delivery into plant cells (Table 1).
Nanocarriers partially solve the problems connected with nucleic acid (especially RNA)
stability and delivery into plant cells. Nucleic acid being adsorbed on a nanoparticle or
incorporated into it becomes less susceptible to environmental factors and crosses plant
cell barriers toward the cytoplasm more efficiently. Moreover, nanocarriers could mediate
gradual release and cargo penetration through the cuticle and cell wall into the cytoplasm.
In this review, we are focusing on those nanoplatforms that were demonstrated to be
successfully used for nucleic acid delivery into plant cells and even into different compart-
ments of the cell. We paid special attention to the experimental systems (from protoplasts
and suspension cultures to whole plants), application methods (infiltration, incubation,
spraying, etc.) and, finally, approaches used for delivery confirmation (microscopy, gene
expression assays and functional tests). We consider recent progress in nanocarriers’ appli-
cation to the intracellular delivery of nucleic acids and summarize the data on the most
prospective nanoplatforms with major potential for practical applications.
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Table 1. Nanoplatforms and their application to plant experimental systems.

Nanoplatform Cargo or Label Object (Cells, Plants, etc.) Application Method Analysis Technique, Functional Tests Reference

Mesoporous silica nanoparticles (MSN)

FITC- or RITC-doped MSNs
functionalized with APTMS,
TMAPS, THPMP

pDNA N. tabacum protoplasts, A.
thaliana roots

Root incubation in 1/2
MS media supplemented
with MSN for 24 h or with
MSN/DNA complex for
48 h

FITC- or RITC-labeled MSN intracellular uptake was
confirmed using fluorescent microscopy; MSN/DNA complex
internalization shown using confocal microscopy (fluorescence)
and transmission electron micriscopy (TEM) (immunogold) of
mCherry expressed from the delivered DNA

[39]

FITC- or β-oestradiol-doped
MSNs, gold-capped MSNs pDNA N. tabacum protoplasts, Zea

mays embryos

Protoplast incubation
with MSNs; tissue
bombardment

MSN/DNA complex penetration confirmed using fluorescent
microscopy (FITC monitoring or GFP detection) or TEM (for
gold-capped MSN)

[40]

~40 nm APTES-functionalized
MSNs pDNA S. lycopersicum leaves

Spraying the abaxial
surface of leaves; injection
into the shoot or leaves

Intracellular delivery of pDNA confirmed using RT-PCR and
detection of β-glucuronidase (GUS) activity in leaves or
protection against Tuta absoluta when cry1-encoding pDNA
was delivered. Injection of the shoots is not effective. Leaf
injection was demonstrated to be more efficient than spraying

[41]

FITC- or RITC-doped MSNs No cargo
A. thaliana protoplasts, Z.
mays, Triticum aestivum and
Lupinus sp. roots

Root incubation in the
MSN solution

Penetration of the FITC- or RITC-labeled MSNs into the cell
wall and vasculature confirmed using TEM and fluorescent
microscopy

[42]

MSN–APTES–FITC No cargo A. thaliana, T. aestivum
seeds, Lupinus sp.

Vacuum infiltration of A.
thaliana seedlings, lupin
root incubation, wheat
seed germination in
growth medium
supplemented with MSNs

Root uptake, presence in the intercellular space after vacuum
infiltration and cellular uptake were confirmed using
fluorescent microscopy

[43]

APTES-functionalized MSNs pDNA S. lycopersicum fruits at
early ripening stage Injection into fruits

The successful delivery of pDNA in a APTES-MSN/DNA
complex into seeds of ripening fruits was confirmed by
obtaining stably transformed plants after the germination of
these seeds

[44]

Layered double hydroxides (LDHs)

LDH-lactate nanosheets
FITC-, TRITC-
conjugated LDH,
ssDNA–FITC

BY-2 cells, A. thaliana
seedling roots Co-incubation

Microscopy
Fluorescent dyes penetrated cells even in the presence of
endocytosis inhibitors

[45]
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Table 1. Cont.

Nanoplatform Cargo or Label Object (Cells, Plants, etc.) Application Method Analysis Technique, Functional Tests Reference

50 nm LDH nanoparticles

FITC-labeled
LDH,
dsRNA–Cy3,
dsRNA

S. lycopersicum developing
pollen Co-incubation Microscopy of FITC-labeled LDH, dsRNA–Cy3, functional

testing, transgene (GUS) silencing [46]

40 nm LDH nanoparticles

siRNA,
Cy5-labeled
21-bp DNA,
siRNA

N. benthamiana, A. thaliana,
T. aestivum leaves Infiltration

Confirmed leaf cell penetration, apoplast and vasculature
distribution, microscopy and functional tests, silencing of the
transgene (16C line)

[47]

BioClay (LDH sheets) dsRNA N. tabacum, Vigna
unguiculata leaves

Topical application,
spraying

Prolonged effect: dsRNA detected on the leaf surface for up to
30 days; microscopy of Cy3-labeled dsRNA and functional
tests confirmed antiviral (CMV, PMMoV) effect

[23]

Colloidal
LDH nanosheets dsRNA S. lycopersicum leaves, roots,

fruit; Fusarium oxysporum

Spraying on plant leaves,
leaf petioles adsorption,
dipping the plant roots;
in vitro solution
application on F.
oxysporum micelium

In vitro antifungal activity of the LDH–dsRNA on mycelial
growth and virulence; silencing of essential F. oxysporum genes
using LDH–dsRNA; topical spraying provided protection from
Fusarium crown and root rot for up to 60 days

[48]

LDH nanosheets

YOYO-labeled
pDNA, pDNA
encoding
artificial
microRNA

S. lycopersicum, N.
benthamiana leaves, Allium
cepa epidermis

Spraying plant leaves
with an atomizer

Confirmed delivery of pDNA labeled with YOYO-1 dye into
onion epidermis and N. benthamiana leaf cells using
microscopy; systemic transport of pDNA-YOYO was observed
up to 35 days after treatment in N. benthamiana and S.
lycopersicum. Tomato yellow leaf curl virus (TYLCV) challenge
was performed on plants pre-treated with pDNA–LDH:
increased resistance of pre-treated plants was observed during
35 days

[31]

Carbon dots (CDs) and single-walled carbon nanotubes (SWNT)

PEI-functionalized CDs pDNA
O. sativa, T. aestivum,
Phaseolus radiatus leaves
and O. sativa roots

Wheat leaf topical
application (twice a day),
rice seedling root soaking,
vacuum infiltration of rice
calli

Expression of the pDNA-encoding genes (hygromycin
resistance, GUS enzymatic assay, eGFP and mCherry
fluorescence microscopy)

[49]
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Table 1. Cont.

Nanoplatform Cargo or Label Object (Cells, Plants, etc.) Application Method Analysis Technique, Functional Tests Reference

PEI-functionalized CDs
dsRNA,
FITC-labeled
dsRNA

Cucumis sativus seedlings Spraying under pressure
of 2.5 bar Fluorescent microscopy of FITC-labeled dsRNA; qRT-PCR [50]

PEI-functionalized CDs siRNA (22-mer)

N. benthamiana 16C line
leaves; wild-type N.
benthamiana; transgenic
GFP-expressing S.
lycopersicum

Topical application via
spraying in presence of
0.4% nonionic surfactant

Systemic silencing of (i) GFP in 16C N. benthamiana or
transgenic S. lycopersicum plants and (ii) endogenous CHLH
and CHLI genes encoding the H and I subunits of magnesium
chelatase. Confirmed using visualization and qRT-PCR

[29]

PEI/PEG-functionalized CDs

dsRNA,
FITC-labeled
chitosan and
Cy3-labeled
dsRNA

N. benthamiana
Leaf infiltration
and spraying, root
soaking

Confocal microscopy of labeled dsRNA and nanoparticles;
functional tests confirming antiviral effect against PVY
(qRT-PCR and Western blotting); miRNA sequencing
confirming RNA interference induction

[51]

SWNTs,
SWNT/FITC

ssDNA,
FITC-labeled
DNA

N. tabacum BY-2 cells Co-incubation Fluorescent microscopy of SWNT/FITC and
SWNT/DNA–FITC complexes [52]

PEI-SWNTs pDNA O. sativa leaves and
embryos Infiltration qRT-PCR analysis, GFP and YFP confocal imaging, GUS

histochemical test, PDS knock-out phenotype observation [28]

PEI-SWNTs Cy3-tagged
pDNA, pDNA

Wild-type and transgenic
mGFP5 N. benthamiana,
Eruca sativa, T. aestivum and
Gossypium hirsutum leaves,
E. sativa protoplasts

Leaf infiltration,
protoplasts co-incubation

Transmission electron microscopy and direct near-infrared
imaging, confocal microscopy, qRT-PCR analysis of pDNA
expression, droplet digital PCR

[53,54]

SWNT-PM-CytKH9,
SWNT-PM-KH9

SWNT-PM
conjugated with
CytKH9 peptide
labeled with
DyLight488
fluorescent dye,
pDNA

Seven-day-old A. thaliana
seedlings, roots

Vacuum/pressure
infiltration

Confocal laser scanning microscopy, confocal Raman
microscopy, Western blotting, luciferase activity assay [55]
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Table 1. Cont.

Nanoplatform Cargo or Label Object (Cells, Plants, etc.) Application Method Analysis Technique, Functional Tests Reference

Chitosan–SWNT
pDNA,
Cy3-labeled
DNA

E. sativa, Nasturtium
officinale, N. tabacum,
Spinacia oleracea plants and
A. thaliana protoplasts

Co-incubation with
protoplasts; whole plant
leaf infiltration

Confocal microscopy, detection of near-infrared fluorescence of
SWNT and YFP expressed from pDNA [56]

Chitosan

TPP crosslinked chitosan

FITC-labeled
BSA and
Cy3-labeled
tRNA

N. benthamiana leaves Syringe leaf infiltration Confocal microscopy [57]

TPP crosslinked chitosan

Cas9
endonuclease in
complex with
guide RNA

S. tuberosum apical
meristem Vacuum infiltration Gene (coilin or phytoene desaturase) editing confirmed by

sequencing and RT-PCR [58–60]

N-2-hydroxypropyl trimethyl
ammonium chloride chitosan
(HACC)

pDNA,
FITC-labeled
HACC

N. benthamiana leaves Syringe leaf infiltration Confocal microscopy, functional tests on antiviral resistance [61]

HACC

dsRNA,
FITC-labeled
chitosan and
Cy3-labeled
dsRNA

Laboratory experiments: A.
thaliana protoplasts, N.
benthamiana plants
Field experiments: N.
tabacum, S. lycopersicum,
Capsicum annuum

Leaf infiltration
and spraying, root
soaking

Confocal microscopy of labeled dsRNA and nanoparticles;
functional tests confirming antiviral effect against PVY
(qRT-PCR and western-blot); miRNA sequencing

[51]

HACC
dsRNA, FITC-
and Cy3-labeled
dsRNA

A. thaliana protoplasts, N.
tabacum plants and pollen

Leaf infiltration
and spraying, pollen
co-incubation, root
soaking

Confocal microscopy of labeled dsRNA and nanoparticles;
functional tests confirming antiviral effect against TMV
(qRT-PCR and western-blot); siRNA sequencing confirming
RNA interference induction

[62]

Cell-penetrating peptides (CPPs)

CPP from capsid proteins of
plant viruses: BMV, BYDV,
TCSV, BeYDV

FlAsH dye, BMV
RNA, dsRNA

A. thaliana protoplasts and
seedlings; Hordeum vulgare
protoplasts, roots and
mesophyll

Protoplast incubation,
seedling and root soaking

Protoplast and root uptake was confirmed by microscopy,
Western- and Northern-blot, qRT-PCR [63]
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Table 1. Cont.

Nanoplatform Cargo or Label Object (Cells, Plants, etc.) Application Method Analysis Technique, Functional Tests Reference

Tat and its doubled variant
Tat2, transportan, pVEC CF-labeled CPPs

Triticale mesophyll
protoplasts, A. cepa
epidermal cells, leaf bases
and root tips of seven-day
old triticale seedlings

Protoplast incubation,
root soaking

Protoplast and root uptake was confirmed by microscopy and
fluorimetric analysis [64,65]

Tat and its doubled variant
Tat2, transportan, pVEC GUS, pDNA T. aestivum immature

embryos

Embryos were
permeabilized with
toluene ⁄ ethanol and
incubated CPP or
CPP/cargo complexes
solution

Fluorescent microscopy, GUS histochemical tests [66]

Arginine-rich peptides (R9,
R12)

Cy3-labeled
pDNA, R9-GFP
fusion protein,
FITC-labeled
dsRNA (0.9 or
0.4 kb)

V. radiata and Glycine max
roots; A. cepa and S.
lycopersicum roots; N.
tabacum suspension culture

Roots incubation in the
solution of R9-GFP or
R9/pDNA-Cy3 complex;
suspension culture
incubation with
R12/dsRNA complexes

Fluorescent label internalization was confirmed by microscopy;
R9/pDNA and R12/dsRNA complex formation confirmed by
gel retardation assay; dsRNA internalization induced silencing
of transgene in suspension culture

[67–69]

55 CPP library TAMRA-labeled
CPP

BY-2 cells, leaves of N.
benthamiana, A. thaliana, S.
lycopersicum, poplar, and O.
sativa callus

Incubation with BY-2 cells,
leaves infiltration, rice
callus was treated with
CPP solution

TAMRA-CPP cellular uptake confirmed by confocal
microscopy [70]

Synthetic CPPs combining
either amphipathic BP100
peptide or Tat peptide with
polycationic peptide
(Lys/Arg/His in different
combinations)

pDNA,
Cy3-labeled
pDNA

N. benthamiana and A.
thaliana leaves Infiltration

Registration of protein products synthesized from plasmid
pDNA–luciferase and GFP; microscopy of Cy3-labeled pDNA
intracellular distribution

[27]

BP100CH7 (with -S-S- bonds)
pDNA,
Cy3-labeled
pDNA

A. thaliana leaves Infiltration Fluorescent microscopy, luciferase activity assay [71]

BP100(KH)9, BP100CH7 (with
-S-S- bonds)

Citrine yellow
fluorescent
protein

O. sativa callus Vacuum infiltration Fluorescent microscopy, western-blot [72]
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Table 1. Cont.

Nanoplatform Cargo or Label Object (Cells, Plants, etc.) Application Method Analysis Technique, Functional Tests Reference

(KH)9-BP100 Cy3-lableled
dsRNA A. thaliana leaves Infiltration Fluorescent microscopy, local silencing of YFP-encoding

transgene [26]

MAL-TEG-based micelles
decorated with CPP (Tat, BP100
or KAibA peptide) and EDPs

pDNA,
Cy3-labeled
pDNA

A. thaliana seedlings Vacuum infiltration Fluorescent microscopy: Cy3-pDNA or GFP produced from
pDNA; luciferase activity assay [73,74]

BP100 conjugated with cationic
peptides; CPPs with
chloroplast-targeting signal

Cy3-labeled
pDNA, dsRNA,
siRNA

A. thaliana, G. max, S.
lycopersicum, N. tabacum
leaves

Topical application via
spray

Fluorescent microscopy: Cy3-labeled DNA internalization,
transgene (GFP, YFP) silencing by siRNA or dsRNA; GUS
histochemical tests (expression from the plasmid); in
chloroplasts-luciferase activity assay (expression from the
plasmid), chloroplast transgene (GFP in transplastomic
tobacco) silencing by siRNA

[75]

CPPs with
chloroplast-targeting signal
(AtOEP34)/mixture of CPP and
CTP peptides

pDNA, siRNA,

N. tabacum, O. sativa, A.
thaliana and N. benthamiana
leaves, tomato fruit and
roots; S. tuberosum tubers

Topical application via
spray, leaf and tomato
fruit infiltration, tomato
roots and potato tubers
vacuum infiltration

Fluorescent microscopy, luciferase assay, western-blot;
chloroplast genome integration via homologous recombination
confirmed by Southern-blot and reporter gene expression

[76–79]

CPPs with
mitochondria-targeting signal pDNA

A. thaliana leaves and
seedlings; N. tabacum
seedlings

Infiltration, vacuum
infiltration

Fluorescent microscopy, detection of reporter genes expression:
luciferase assay, western-blot; mitochondrial genome
integration via homologous recombination confirmed by
Southern-blot and reporter gene expression

[76,80]

FITC—Fluorescein isothiocyanate; RITC—Rhodamine B isothiocyanate; APTMS—3-aminopropyltrimethoxysilane; TMAPS—N-trimethoxysilylpropyl N,N,N-trimethylammonium
chloride; THPMP—(3-Trihydroxysilyl)propylmethylphosphonate; pDNA—Plasmid DNA; TEM—transmission electron microscopy; GUS—β-glucuronidase; APTES—Aminopropyl
triethoxysilane; TRITC—Tetramethylrhodamine isothiocyanate; CMV—Cucumber mosaic virus; PMMoV—pepper mild mottle virus; TYLCV—Tomato yellow leaf curl virus; PEI—
Polyethylenimine; PEG—Polyethylene glycol; PVY—Potato virus Y; PDS—Phytoene desaturase; TPP—Tripolyphosphate; HACC—N-2-hydroxypropyl trimethyl ammonium chloride
chitosan; TMV—Tobacco mosaic virus; BMV—Brome mosaic virus; BYDV—Barley yellow dwarf virus; TCSV—Tobacco curly shoot virus; BeYDV—Bean yellow dwarf virus;
Tat—HIV-1 Tat basic domain peptide (RKKRRQRRR); pVEC—18-amino-acid peptide derived from the murine vascular endothelial cadherin protein; CF—Carboxyfluorescein;
TAMRA—tetramethylrhodamine; KAibA—Synthetic CPP with a lysine/α-aminoisobutyric acid/alanine repeat; EDP—Endosome-disrupting peptide.
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2. Mesoporous Silica Nanoparticles

Mesoporous silica nanoparticles (MSNs) have great potential as a nanomaterial
for drug delivery in medicine due to their large surface area, tunable pore size and
biosafety [81,82]. One of the main challenges for MSN utilization for nucleic acid delivery
used to be the negative charge in hydrophilic conditions. But this obstacle can be
successfully overcome because MSNs are rather stable, allowing different chemical
modifications for their functionalization [83], e.g., decoration with cationic polymers
such as polylysine, polyarginine, polyethyleneimine, etc. (reviewed in [84]). Nucleic acid
binds via electrostatic interactions with charged nanoparticles’ surface but the advantage
of mesopores per se is not used. Li et al. [85] developed an approach that allows siRNA
packaging within the mesopores, thus protecting the nucleic acid, providing its gradual
release and delivery into cells. Later, more MSN design variants for “hiding” nucleic
acid molecules inside the mesopores were developed (reviewed in [86]).

As for plant cells, MSN-based nanoplatforms have attracted the attention of plant
biologists and biotechnologists, but at the moment, there are only few studies (Table 1)
demonstrating the successful utilization of MSNs for the delivery of plasmid DNA into
plant cells [39–41].

Plant cells, as was mentioned earlier, are more challenging objects due to the presence
of several mechanical and chemical barriers on the way to the plasma membrane such as the
cuticle, cell wall and apoplast. To avoid the most significant plant cell mechanical barrier,
the cell wall, researchers often demonstrate the successful penetration of a cargo–carrier
complex or cargo into protoplasts [39,40,42]. However, there are several studies demon-
strating effective MSN-mediated cargo delivery into intact cells [39,41,42,87,88]. Chang
et al. [39] showed in protoplasts and then in A. thaliana roots that MSNs functionalized with
different organic molecules (3-aminopropyltrimethoxysilane, N-trimethoxysilylpropyl-
N,N,N-trimethylammonium chloride, (3-Trihydroxysilyl)propylmethylphosphonate) could
be internalized by plant cells and provide intracellular release of pDNA cargo, as was
confirmed by monitoring the expression of the encoded fluorescent protein. Moreover,
Sun et al. [42] demonstrated that root uptake of ~20 nm MSNs results in their detection in
the vascular system and aerial parts of the plants. Thus, there is a great potential for the
systemic (throughout the plant) delivery of different cargo using RNA- or DNA-loaded
MSNs. MSN/DNA complexes are suggested to penetrate not only the cell but the nucleus,
where pDNA release occurs [39]. However, the mechanism underlying these events is
unknown and requires further elucidation.

MSNs look like promising nanomaterials for various cargo delivery into plant cells
due to their biosafety, biocompatibility and stability. MSNs were shown to be non-toxic
in protoplasts in concentrations up to 100 mg/L [40]. However, assessment of their effect
on seed germination varies with a low MSN concentration (up to 2 mg/L) and did not
affect the germination of lupin, wheat and maize seeds, while higher concentrations (up
to 20 mg/L) led to significantly reduced germination [42,43]; on the other hand, Nair et al.
(2011) reported that a 50 mg/L MSN concentration did not induce negative effects on rice
seed germination [89]. Such a difference could be either species-specific or a consequence
of different experimental setups.

Furthermore, MSNs were shown to be applicable to different plant species (N. tabacum,
S. lycopersicum, A. thaliana, Zea mays) (Table 1) and parts of the plant (protoplasts, suspension
culture BY-2, leaves, roots). Despite this potential and the successful application of MSN-
based delivery of biologically active cargo, including nucleic acids, to mammalian cells, only
a handful of studies demonstrate the application of these tools to plants. Mainly, MSNs
are regarded as carriers for the biolistic transformation or direct injection for transient
expression and the obtainment of stably transformed plants [40,44,90–92]. Biolistic MSN-
mediated cargo delivery was utilized not only for plasmid DNA but for biologically active
proteins as well: Martin-Ortigosa et al. [91] made a successful attempt to use gold-plated
MSNs for Cre recombinase delivery into Zea mays cells harboring loxP sites flanking a
selection gene and a reporter gene. The calli obtained from the treated material contained
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cells with the edited genome, confirming that Cre–MSN particles were correctly delivered
and functionally active Cre released from the complex. Thus, this application of MSNs
could also be regarded as a very prospective tool for active enzyme delivery into plant cells,
especially if an alternative approach to the biolistic method were developed.

Silica is a natural compound that is in contact with plants; moreover, it is biodegradable
and is believed to be non-toxic. MSN/DNA complexes could be used as an alternative for
biolistic transformation or protoplast transfection for obtaining transgenic plants (for those
species that cannot be transformed using Agrobacterium). However, the final intracellular
destination of the cargo should be taken into account because MSNs were reported to be
detected mainly in the chloroplasts [40,42] or in the nucleus [44] of treated cells. Despite the
lack of studies on MSN-mediated RNA delivery in plants, the potential for this nanocarrier
utilization for RNA packaging has been demonstrated [85]. Finally, additional biosafety
and toxicity analysis of each particular MSN’s variant preparation and functionalization
should be performed, as well as research on the intraplant distribution and long-term
effects, before this technology could be transferred to the field for agricultural purposes.

3. Layered Double Hydroxides

Layered double hydroxides (LDHs), or so-called anionic nanoclays or hydrotalcite-like
systems, are based on the initially discovered natural magnesium–aluminum hydroxyl
carbonate–hydrotalcite: [Mg6Al2(OH)16](CO3)·4(H2O). They are characterized by good
biocompatibility and high chemical stability [93] and are gaining popularity as platforms
for the delivery of different compounds into living cells. Due to positive charge, they
successfully bind nucleic acid, protecting it from different environmental challenges such
as UV light, rain and enzymatic and chemical damage [31,47,48]. LDH sheets are stable at
a pH higher than 6, while at an acidic pH, characteristic of plant cells and apoplasts, the
release of cargo is observed [31]. dsRNA incorporated into LDH sheets could be detected
on the sprayed leaf surface up to 20 days after application [23], allowing a gradual and
controlled dsRNA release rate, followed by penetration into the leaf tissues and providing
a prolonged silencing effect. In another study, Solanum lycopersicum plants were treated
with dsRNA for genes essential for Fusarium oxysporum effective plant colonization. The
LDH/dsRNA complexes of 30–90 nm were applied to the tomato plants in three ways:
foliar spraying, petiole adsorption and dipping the roots into solution. It was demonstrated
that all three approaches were efficient: they provided increased resistance to F. oxysporum
and prevented the development of severe symptoms such as crown and root rot for up to
60 days on the monitored plants [48]. Likely, LDH/dsRNA complexes do not enter the plant
cells, remaining in the apoplastic space and xylem and not being processed into siRNA
in planta, when applied via petiole adsorption. However, the most prominent protective
effect was obtained when LDH/dsRNA-containing solution was sprayed onto the leaves.
These results allow authors to suggest that in the case of foliar spraying, dsRNA enters the
plant cells where it is processed in addition to the dsRNA that remained in the apoplast,
thus inducing the silencing of the essential F. oxysporum genes both by fungus- and plant-
generated siRNAs. These results indicate that LDH/dsRNA tomato plant pre-treatment
efficiently protected them from F. oxysporum infection via RNAi.

Besides dsRNA delivery using LDHs as a carrier, another approach was developed for
fighting tomato yellow leaf curl virus (TYLCV) infection: a mixture of pDNA encoding three
artificial microRNA against TYLCV was loaded into LDH and applied to S. lycopersicum
or N. benthamiana plants via spraying. It was shown that pre-treatment with pDNA/LDH
made plants more resistant to TYLCV infection [31].

LDH internalization was under question for a long time. It was considered that LDHs
were likely not to be internalized into plant tissues; they would stay on the surface and
provide dsRNA protection together with gradual release and further internalization of
dsRNA. But the question of whether LDH nanoparticles could enter the plant cells and the
apoplast, followed by distribution via the vasculature, was answered only recently. Earlier,
it was demonstrated that delaminated LDH-lactate nanosheets (30 nm in diameter and 0.5
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to 2 nm thick, monolayer or bilayer) were able to enter BY-2 tobacco cells and Arabidopsis
thaliana roots. Additionally, it was shown that LDH-lactate/nucleic acid nanosheets enter
the cell via a non-endocytic pathway because the typical inhibitors of endocytosis do not
interfere with this process [45]. Further, Prof. Xu’s group showed that the size threshold of
particle size penetration is about 50 nm, so studied 50 nm LDH/dsRNA nanoparticles could
enter cells of the developing S. lycopesicum pollen [46]. To reveal whether such nanoparticles
could enter leaf cells, the same research group analyzed a 40 nm LDH/dsRNA nanoparticle
distribution after the infiltration of N. benthamiana leaves. They showed that LDH/cargo
complexes entered the apoplast, were internalized by the cells delivering their cargo and
could be detected in the vasculature of the plant [47]. Moreover, it was demonstrated
that LDH-incorporated cargo (siRNA, Cy5-labeled DNA) entered the chloroplasts due to
the LDH’s positive charge and the electronegative nature of the inner surface of the plant
membranes. This difference in charge likely facilitates the penetration of LDH-protected
cargo into the cells and cellular compartments. Notably, even negatively charged cargo
could be delivered into cells in a complex with LDH as the carrier isolates the cargo from the
environment. This was confirmed using pH-sensitive FITC dye, which almost completely
lost the ability to fluoresce inside the apoplast and cytoplasm of the plant cell, where the pH
is about 5–6. But, incorporated into LDH, it remains fluorescent after cellular uptake [47].

Thus, LDH-based materials were confirmed to be very promising nanocarriers
for DNA and RNA delivery into plant cells, and are characterized by biosafety, being
environment-friendly. Atmospheric CO2 and water can slowly break down LDHs into
biocompatible components. One of the main advantages of this nanoplatform is the
efficient protection of such a vulnerable cargo as DNA and RNA, keeping them safe on
the leaf surface. Also, it mediates gradual cargo release, providing a prolonged effect.
LDH-based nanomaterials were tested on several species. But studies on the assessment
of interspecies leaf surface differences’ impact on the protection efficiency have not been
performed yet; thus, it can be only suggested that LDHs are universal for various plant
species. Moreover, as for most of the nanomaterials, the mechanism of the cargo and
nanoparticle internalization and intraplant distribution is still understudied and should
be elucidated.

4. Carbon-Based Nanoplatforms

There is a great variety of nanomaterials based on carbon. Carbon nanomaterials could
be classified into several categories such as nanotubes, fullerenes, nanoparticles, nanohorns,
nanobeads, dots, nanofibers and nanodiamonds [94]. Here, we discuss the advantages and
limitations of only two groups—carbon dots (CDs) and single-walled carbon nanotubes
(SWNTs)—as the most perspective carbon-based nanoplatforms for the delivery of nucleic
acids into plant cells.

4.1. Carbon Dots

Carbon dots (CDs) are carbon-based nanomaterials that are characterized by excellent
biocompatibility, stability, low toxicity, water solubility and small size below 20 nm, which
contributes to rather effective cellular uptake, as was shown in studies on animal [95,96]
and plant cells [97–99]. Moreover, now, they are regarded as a non-toxic alternative
to heavy-metal-based quantum dots, the cellular uptake of which has been studied in
plants [100]. CDs can be obtained either from graphene as a precursor or from biomass
and different organic compounds such as amino acids, sugars, etc. [101]. In addition to the
abovementioned advantages of CDs, they possess the ability to emit fluorescence with a
high quantum yield and resistance to photobleaching as their intrinsic properties [102–104].
CDs can be passivated with different molecules, for example, polyethylenimine (PEI), to
acquire a positive charge for further DNA or RNA cargo binding. However, this leads
to an increase in toxicity [105] and should be taken into account when working with
living systems. Studies on the uptake of water-soluble CDs in wheat show that CDs are
absorbed by plants and such treatment leads to an increase in root and shoot growth. Thus,
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authors claim that CDs are not toxic and suggest that they could be used as a booster to
increase crop productivity [97]. Results demonstrating a positive effect on plant growth and
metabolism have also been obtained for mung beans [106,107], and lettuce [108]. Tobacco
plants’ treatment with CDs led to increased efficiency in photosynthesis [109]. On the other
hand, a study by Chen et al. [98] demonstrated the dose-dependent phytotoxicity of CDs
applied to maize seedlings and plants: the authors observed membrane damage, oxidative
stress and the activation of antioxidant enzymes in response to a high concentration of CDs.
Thus, the effects of carbon-based nanomaterials, including CDs, on plants is far from well
studied and is still to be elucidated [94]. However, CDs were demonstrated to be efficiently
internalized by plant cells and transferred via vascular systems throughout the plant in
different species. Therefore, CDs could be regarded as nanoplatforms for the delivery
of biologically active cargo into plant cells. At present, there are only few successful
examples of using CDs as carriers for the delivery of nucleic acids (Table 1) [29,49,50] as this
nanomaterial only recently started to be regarded as a tool for this application despite there
being numerous studies on plant and animal cells [110]. Schwartz et al. [29] demonstrated
the suitability of PEI-functionalized CDs for the efficient delivery of siRNAs into the cells
of N. benthamiana and S. lycopersicum leaves via spraying. Moreover, systemic silencing was
observed both of the transgenes (GFP) and of endogenous magnesium-chelatase-encoding
genes. In addition, PEI–CDs were demonstrated to be applicable to nucleic acids delivery
in other dicot and monocot species—O. sativa, T. aestivum, Phaseolus radiates—as was shown
by Wang et al. for pDNA [49] and by Delgado-Martín et al. for dsRNA delivery in Cucumis
sativus seedlings [50].

To summarize, functionalized CDs prove to be promising nanocarriers with additional
beneficial properties (e.g., the ability to stimulate photosynthesis, root and shoot growth
and plant productivity in general). They are suitable for species from different taxonomic
groups. However, one of the main limitations of CDs utilization is their dose-dependent
toxicity, which should be thoroughly investigated. Moreover, the biosafety issues and
potential long-term effects of CDs accumulation in plant materials, soil and water are to be
the subject of further studies.

4.2. Carbon Nanotubes

Single-walled carbon nanotubes (SWNTs) are low-dimensional cylindrical tubule
structures made from graphite. This nanomaterial possesses unique physical and chem-
ical properties that allow using it to shuttle inside living cells various molecular cargos,
including drugs, proteins, peptides and nucleic acids [111,112]. SWNTs have a needle-like
structure with a diameter 1–3 nm and a length of about few micrometers; they can be
functionalized with different additional groups [54,113]. SWNTs feature a unique combina-
tion of rigidity, strength and elasticity compared with other fibrous materials. Moreover,
SWNTs are fluorescent in a near-infrared wavelength, allowing their imaging and tracking
in biological systems [114]. Another beneficial feature of SWNTs is their antifungal and
antibacterial effect [113]. The nanotubes are relatively biocompatible but their cytotoxicity
depends on the linked functional groups and concentration, as shown in mammalian cell
cultures [115–119]. As for plant cytotoxicity studies, leaf infiltration with pristine SWNTs
leads to a mild stress response similar to the reaction induced by mock infiltration; however,
PEI-decorated SWNTs in comparison with pristine SWNT treatment result in more signifi-
cant transcriptional reprogramming that affects the stress response; high concentrations of
SWNTs could suppress photosynthesis and cause cell death [120,121]. The cytotoxicity of
carbon nanotubes could be modified via their surface functionalization, e.g., SWNT conju-
gation with arginine [116] or the utilization of different PEI variants (low-molecular-weight
linear PEI, hydrophobically modified branched PEI and high-molecular-weight branched
PEI, etc.) [120,122], leading to a reduction in their cytotoxicity. On the other hand, different
types of carbon nanotubes in concentrations 10-100 µg/L with the optimum ~40 µg/L
were shown to have beneficial effects on plant water uptake and seed germination. Such
growth stimulation in the presence of carbon nanotubes was attributed to the increase in
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nutrient uptake due to improved water delivery. However, higher concentrations led to
the contrary effect, reflecting the concentration-dependent cytotoxicity of this material. For
example, exposure of A. thaliana and rice protoplasts to SWCNTs led to oxidative stress
and programmed cell death [123]. All these observations underline the importance of the
correct dosage to be used for plant treatments (reviewed in [94,113]).

SWNTs could efficiently protect nucleic acids from extra- and intracellular degra-
dation and enzymatic cleavage and prevent their interaction with nucleic acid binding
proteins [53,124,125]. Due to these features, SWNTs have successfully been used as a
nanocarrier for nucleic acid delivery in plant cells across the cell wall and membrane
(Table 1) [28,52,53,55,56,126]. There are several approaches to obtaining SWNT complexes
with nucleic acids: (i) SWNT functionalization using PEI or another polycationic sub-
stance (e.g., chitosan, arginine-enriched peptide) to gain a positive charge and to bind
DNA electrostatically [28,52,56,126]; (ii) SWNTs are initially coated with sodium dodecyl
sulfate that desorbs from the SWNTs’ surface during dialysis and is replaced with DNA,
that adsorbs onto the surface of the SWNTs via π–π stacking interactions [54].

Liu et al. showed that an SWNT complex with single-stranded (ss) DNA can penetrate
the cell wall: SWNT/ssDNA–FITC conjugates were quickly delivered into the intracellular
space of N. tabacum BY-2 cells and observed using fluorescence microscopy [52]. The
efficiency of delivery was high: intracellular fluorescence was observed for more than 80%
of the cells that were incubated with the SWNT/ssDNA complex. Of note, the control
SWNT/FITC complexes were localized to the vacuoles, while the SWNT/ssDNA–FITC
fluorescence was distributed in the cytoplasm [52]. SWNT-mediated pDNA delivery in
the cells of N. benthamiana, Eruca sativa (arugula), Triticum aestivum (wheat) and Gossypium
hirsutum (cotton) leaves and arugula protoplasts was demonstrated by Demirer et al. [53,54].
To obtain SWNT/pDNA complexes, carboxylated SWNTs were covalently modified with
polycationic PEI to gain a positive charge for the electrostatic binding of negatively charged
pDNA. PEI–SWNT/pDNA nanoparticles infiltrated into the leaves of the abovementioned
plants and internalization of the pDNA was confirmed by the detection of the encoded
gene expression either using fluorescence microscopy or qRT-PCR [54]. Dunbar et al.
performed the delivery of different pDNA into O. sativa leaves and embryos using PEI–
SWNT as a carrier. After infiltration of the rice leaves and seeds with PEI–SWNT/pDNA,
transient expression of either GFP, YFP or GUS was detected [28]. Another variant of SWNT
functionalization was performed by Golestanipour et al. [126]: they used SWNTs conjugated
with arginine to obtain a positively charged nanocarrier. SWNT functionalization with
Arg reduces cytotoxicity, as was demonstrated earlier [116]. Arg–SWNT could successfully
deliver GFP-expressing plasmids into tobacco root cells as was confirmed using fluorescence
microscopy and Western blot analysis [126].

A SWNT-based approach is applicable to the efficient delivery of siRNA into plant
cells for RNAi induction, as was shown in N. benthamiana plants containing the GFP trans-
gene [124]. Silencing was induced within 6 h after infiltration. Cy3-labeled siRNA/SWNT
complexes were observed inside the leaf cells and in the extracellular space. GFP silencing
was prolonged by the reinfiltration of another siRNA/SWNT dose 5 days after the first in-
filtration. Adsorption on the SWNTs provides protection of the siRNA cargo from nuclease
degradation for up to 24 h, whereas free siRNA is degraded in a few hours. Of note, in
this experimental setup, two types of RNA/SWNT complexes were mixed: each contained
one RNA strand—either sense or antisense. The sense and antisense strands of siRNA
were noncovalently adsorbed on the SWNTs via π–π stacking of the RNA nitrogen bases
with the π bonds of sp2-hybridized carbon in the SWNTs. The resulting double-stranded
siRNA formed inside the cells. This approach appeared to be effective for the silencing of
endogenous gene ROQ1 [124]. Demirer et al. [127] also developed a detailed protocol of
siRNA molecule delivery into plant cells using SWNTs.

SWNT-based complexes allow the delivery of nucleic acids (pDNA) not only into
plant cells but into particular organelles: chloroplasts [56] and mitochondria [55]. Kwak
et al. [56] developed a nanocarrier based on SWNTs decorated with deacetylated chitosan.
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This nanoplatform was used to deliver pDNA into the chloroplasts of different plant species
including E. sativa, Nasturtium officinale, N. tabacum and Spinacia oleracea. But, first, this
approach was shown to be effective for A. thaliana isolated mesophyll protoplasts. Several
types of chitosan–SWNT conjugates were tested: non-covalent SWNTs wrapped with
chitosan or PEGylated chitosan and SWNTs with covalently bound chitosan. Plasmid DNA
was complexed with a positively charged chitosan–SWNT carrier via electrostatic interac-
tions. The chitosan–SWNT/pDNA nanoparticles were shown to efficiently penetrate the A.
thaliana protoplasts and enter the chloroplasts. pDNA was released from the complexes due
to the pH shift from slightly acidic, characteristic of the cytoplasm, to basic inside the chloro-
plast stroma. Moreover, no nuclear targeting and pDNA expression were observed; thus, a
chloroplast-specific release was confirmed. Along with chloroplast targeting, Law et al. [55]
developed an approach to SWNT-based pDNA delivery into mitochondria. SWNTs coated
with a cross-linked polymethacrylate maleimide polymer network (SWNT–PM) were deco-
rated additionally with Cyt peptide (MLSLRQSIRFFKC), mediating mitochondria targeting,
and KH9 peptide for cell penetration (KHKHKHKHKHKHKHKHKHC). This combina-
tion of two different nanoplatforms (SWNT and CPP) allowed the researchers to obtain
a near 30-fold increase in reporter gene delivery and expression without toxicity effects
compared to nanoparticles based on the same CPPs only tested in previous studies [80].
The SWNT/peptide hybrid nanocarrier (SWNT–PM–CytKH9) was shown to successfully
mediate pDNA delivery into the mitochondria of A. thaliana seedlings and roots via vacuum
infiltration. The luciferase and GFP expression from the delivered pDNA was detected in
the cytoplasm and mitochondria of the treated seedlings. Of note, no significant expression
was detected when SWNT–PM–KH9/pDNA complexes were applied despite the SWNT–
PM–KH9 carrier having the highest pDNA binding capability in the binding assays. The
authors explain this with the too tight interaction between the KH9 and pDNA leading to
the inefficient release of nucleic acid from the complex in the mitochondria. Therefore, the
optimal variant of the nanocarrier based on CPPs and SWNTs for the delivery of pDNA
into the mitochondria was SWNT–PM–CytKH9, which provided efficient penetration and
targeting [55].

Despite limited data on SWNTs as a carrier for nucleic acid delivery into plant cells,
the “proof-of-concept” studies demonstrating successful pDNA and siRNA delivery open
up a perspective on the utilization of SWNT-based nanoparticles for the induction of
RNA interference by treating plants with dsRNA/SWNT or siRNA/SWNT complexes
for crop protection from viral infection and the modulation of internal gene expression.
However, the limitations for SWNTs utilization are similar to those for CDs: toxicity and
lack of information on their long-term effects. The fate of SWNTs within plants and in the
environment is an important issue to be addressed in future studies.

5. Chitosan-Based Nanocarriers

Chitosan is a linear β-1,4-d-glucosamin polymer which is obtained in several steps
from natural or synthetic chitin via deacetylation [128]. Industrially made chitosan is
not a homogenic substance: it consists of polymers of different lengths and molecular
weights with various degree of acetylation. Thus, for the preparation of nanoparticles
to utilize them for cargo delivery into living cells, it should be taken into account that
chitosan’s physical and chemical properties such as solubility, viscosity, etc. depend on
its molecular weight and homogeneity [129,130]. Chitosan, due to its relatively low price,
availability, biocompatibility and biosafety, has numerous applications, including in the
biomedical [131,132], agricultural [130,133] and food industries [134], and others [129].

Chitosan -NH2 groups could be protonated into -NH3
+ in slightly acidic conditions,

giving the whole molecule positive charge. This feature allows it use as a nanocarrier
for nucleic acid delivery. In addition to studies on mammalian cells [135–137], there is
evidence of the successful use of chitosan/dsRNA complexes to induce the silencing of
different genes in insects [138,139], including plant-feeding pests [140–142]. Chitosan-based
nanoparticles protect dsRNA (or DNA) from degradation and unfavorable environments.
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As far as plants are concerned, only a few examples of chitosan-based formulations for
nucleic acid delivery into plant cells have been described (Table 1). The majority of studies
on plants is devoted to chitosan’s application as a substance against pathogenic bacteria,
fungi or pests, as well as a growth stimulator. Chitosan-based nanoparticles could provide
gradual and controlled release of cargo as was demonstrated for various nutrients, fertiliz-
ers, pesticides and other compounds used in agriculture [143–145]. Foliar applications of
chitosan and chitosan-based nanoparticles were demonstrated to have antibacterial [146],
antifungal [147,148] and antiviral [149,150] activity. Moreover, chitosan increases plant
productivity due to the activation of enhanced stress resistance and metabolic stimulation
(as reviewed in [24,130]). In addition to the numerous beneficial properties of chitosan, it
was demonstrated on armyworm that it helps dsRNA to escape endosomes, which leads to
more efficient RNAi [140]. Endosomal escape is realized via the so-called “proton sponge
effect”: chitosan’s amino groups are protonated in the endosome’s acidic conditions, which
leads to the sequestering of water and chloride ions from the endoplasm, resulting in
endosome disruption. But for plant cells, no similar studies have been performed yet.
However, as the general route of endocytosis is similar throughout eukaryotes, these results
could potentially be extrapolated to plant cells.

Despite the numerous beneficial properties of chitosan and a great number of studies
on chitosan applications, only a few examples of chitosan-mediated delivery of nucleic
acids into plant cells have been described currently [51,57,59–62].

Nanoparticles from tripolyphosphate (TPP)-crosslinked chitosan were demonstrated
by Makhotenko et al. [57] to serve as a carrier for the delivery of a protein (bovine serum al-
bumin) and a small RNA (tRNA) into N. benthamiana cells via syringe infiltration. Moreover,
the same TPP–chitosan nanoparticles were demonstrated to efficiently deliver a ribonu-
cleoprotein complex containing Cas9 endonuclease and guide RNA into the cells of the
potato apical meristem via vacuum infiltration, which was confirmed via the sequencing
of edited coilin [60] and phytoene desaturase (PDS) [59] genes in regenerated cell lines.
Zhang et al. [61] used chitosan quaternary ammonium salt to obtain nanoparticles with
incorporated pDNA. The chitosan/pDNA nanocomplexes were infiltrated into N. ben-
thamiana leaves. The pDNA-encoded gene NbMLP28 that was earlier shown to increase
resistance to potato virus Y (PVY) [30] was used to assess the efficiency of delivery. Its
expression was detected either using fluorescence of its fusion with RFP or in a functional
test, in which increased resistance to phytoviruses was demonstrated in plants treated
with chitosan/pDNA complexes. However, in the abovementioned studies, nanoparticle
application was performed via infiltration. The ability of chitosan-based complexes to
penetrate into plant cells after topical application was recently demonstrated by Xu et al.
who used different approaches, including leaf spraying and root soaking for the delivery
of dsRNA into the cells of Solanaceae plants (tobacco, pepper, tomato), resulting in the
induction of antiviral protection against PVY [51] and tobacco mosaic virus (TMV) [62].
In the described experimental setup, chitosan/dsRNA nanoparticles were applied to N.
benthamiana plants followed by PVY inoculation. The efficiency of infection was assessed by
measuring the level of PVY RNA in the non-treated new leaves 3 weeks after inoculation.
The most powerful PVY suppression effect was observed at the 21st day post inoculation
in plants pre-treated with chitosan/dsRNA via root soaking or leaf spraying in contrast
to infiltration [51]. Moreover, field experiments on tobacco, pepper and tomato were per-
formed using spraying application of chitosan/dsRNA. It was shown that the treatment
of plants with chitosan/dsRNA complexes was safe and effectively lowered the disease
index [51]. Another study from the same research group describes the anti-TMV effect
of dsRNA (against the replicase gene) delivered into tobacco plants in a complex with
chitosan [62]. The focus of that research was on the prevention of TMV seed-mediated
transmission. The chitosan/dsRNA complexes were applied via leaf infiltration or spray-
ing, root soaking and pollen incubation. The latter was the most effective route of dsRNA
delivery for the prevention of seed contamination with TMV. As for foliar application,
infiltration was shown to be more efficient than spraying [62] in contrast to the results
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obtained for PVY [51]. Nevertheless, the best antiviral effect both in the leaves and in
pollen (and seeds) was obtained after root soaking, which allowed systemic distribution of
dsRNA throughout the plant. According to the authors’ assumptions, the chitosan/dsRNA
nanoparticles adhered to the cell wall of the root cells and were internalized by the cell due
to the concentration difference; then, through the vascular tissues, they were delivered to
the upper leaves. Induction of RNA interference was also confirmed via the sequencing of
the small RNA: siRNA corresponding to the TMV replicase gene was detected, indicating
the efficient activation of an antiviral response [62].

However, there are some limitations in relation to chitosan nanoparticle utilization.
Mostly, they are connected with the nanoparticle preparation and the quality of the initial
material: the properties of chitosan-based nanoparticles are highly dependent on the homo-
geneity of the initial polymer and its acetylation degree. Each preparation of nanoparticles
should pass quality control and be thoroughly characterized. Moreover, the mobility and
distribution of chitosan-based nanocarriers throughout the plant is not yet fully under-
stood, so potential adverse effects cannot be excluded, as the main data on biosafety and
biocompatibility have been obtained in animal systems. Nevertheless, despite only a few
studies in plants being available at present, chitosan-based nanoparticles have proved to
be applicable as a carrier for nucleic acid delivery into plant cells. They allow penetration
through mechanical barriers (cuticle and cell wall) and mediate endosomal escape. Taking
into account the other beneficial properties of chitosan, such as its antifungal, antibacterial
and antiviral activity as well as plant growth stimulation, this material has great potential
as a nanocarrier for dsRNA and DNA delivery and obtaining multiple protective effects on
crop plants.

6. Cell-Penetrating Peptides

The first discovered cell-penetrating peptides were of viral origin: a domain of human
immunodeficiency virus (HIV) trans-activator of transcription (Tat) protein was shown to
be responsible for cellular uptake and penetrating the membrane [151–153]. The Tat protein
transduction domain contains a positively charged amino acid sequence YGRKKRRQRRR
that could mediate cell entrance of the target protein [154]. Later, based on this sequence,
numerous CPPs were found in natural sources or were developed artificially. The CPPsite
2.0 database (https://webs.iiitd.edu.in/raghava/cppsite/index.html, accessed on 15 May
2023) of experimentally validated CPPs [155] contains at the moment about 1700 unique
peptides of different natures. Their common features are a length less than or about
30 amino acid residues and a positive charge. Also, some peptides have amphipathic
properties. Usually, such peptides are rich in arginine, lysine and histidine residues and
could have additional functional parts [156]. CPPs could facilitate penetration through
the plasma membrane; thus, they have been successfully exploited for different cargo
delivery into animal cells [157,158]. However, their utilization for plant cells is much
more challenging because of additional mechanical barriers. A nanocarrier/cargo complex
should be stable in an extracellular environment, be able to penetrate the cuticle and
cell wall, translocate through the membrane and, finally, have the ability to escape the
endosome and release the cargo into the desired cellular compartment. CPPs possess the
majority of these required features, allowing cell penetration and endosomal escape.

There are several examples of natural-protein-originating CPPs tested in plant systems.
In addition to the Tat-derived peptide [64], an 18-aa pVEC peptide from the murine
vascular endothelial cadherin protein [159] was shown to penetrate into wheat mesophyll
protoplasts and other plant tissues [65,66]. Also, a 27-aa synthetic peptide transportan [160]
that contains a fragment of the natural neuropeptide galanin and hydrophobic toxin
mastoparan was tested in the same experimental system, showing similar results [65,66].
However, in these studies, no cargo was complexed with the peptides, and their cellular
uptake was confirmed via the microscopy of fluorescent dye linked to them.

As was mentioned above, the first discovered CPP was of viral origin. Later, several
more sequences that have properties of CPPs were detected in the proteins of other animal
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viruses [161–163]. As for plant viruses, there is an example of a viral protein showing the
features of CPPs [63]. Brome mosaic virus (BMV) capsid protein contains an N-terminal
arginine-rich sequence that has the ability to bind RNA. BMV particles were demonstrated
to enter barley protoplasts. Moreover, it was demonstrated that capsid protein N-terminal
residues 9–22 are responsible for this internalization, as they were able to mediate GFP
entrance into protoplasts as well. Labeled with fluorescent dye, the BMV CPP was taken
up by Arabidopsis and barley roots and passed through the barley mesophyll cell wall and
plasma membrane, entering the mesophyll cells. Additionally, it was shown that the BMV
CPP, possessing an RNA-binding capacity, could mediate the intracellular delivery of both
BMV RNA and in vitro-synthesized dsRNA into barley protoplasts. Capsid proteins from
other viruses from different taxonomic groups—barley yellow dwarf virus (BYDV), tobacco
curly shoot virus (TCSV) and bean yellow dwarf virus (BeYDV)—were demonstrated to
contain similar CPP sequences that were able to enter Arabidopsis and barley roots and
barley leaf mesophyll cells [63]. Thus, such natural CPPs of viral origin could be regarded
as potential instruments for dsRNA delivery into plant cells.

However, the most successful results on the utilization of CPPs as carriers for nucleic
acids were obtained with different positively charged synthetic peptides or CPPs decorated
with additional organic groups. During the last decade, numerous studies demonstrating
the great potential of CPPs and their ability to deliver various cargo—plasmid DNA [27],
siRNA and dsRNA [26,75] and protein [72,164]—into plant cells were performed by Dr.
Numata’s research group (Table 1). Screening of a 55 CPP library containing amphipathic,
hydrophobic and cationic peptides allowed the authors to identify those that were efficiently
internalized into BY-2 cells or the cells of N. benthamiana, A. thaliana, S. lycopersicum, poplar
leaves, and Oryza sativa callus. Ultimately, 8 of the 55 CPPs were chosen as the most effective
for all tested plants [70]. Among those selected peptides were transportan, arginine-rich
peptide R12, three amphipathic peptides and one hydrophobic peptide. In other studies,
peptides consisting of a BP100 CPP (KKLFKKILKYL) [165] and lysine/histidine copolymer
(KH)9 were demonstrated to be effective for mediating pDNA, dsRNA or protein delivery
into plant cells [26,27,72,75]. First, these peptides were tested using an infiltration approach
and the treatment of BY-2 cells. Further, a very important upgrade was performed when
topical application via the spraying technique was shown to be also effective for the delivery
of either dsRNA or pDNA in a complex with CPPs [75].

In addition to the efficient intracellular delivery of the cargo, another important aspect
should be taken into account: cargo endosomal escape inside the cell. Despite multiple
studies on the CPP/cargo internalization mechanisms having been performed, they have
still not been fully clarified. For some peptides, it was demonstrated that they enter the cell
endocytosis independently, but others are sensitive to the inhibitors of endocytosis [166].
Endocytic vesicle escape probably is achieved due to the pH-buffering properties of the
carrier peptide (for example, histidine residues). But the efficiency of this and its correlation
with the peptide composition is still to be elucidated. To overcome this obstacle and
suggest a reliable approach to bypassing the vacuolar degradation of the cargo, Miyamoto
et al. [73,74] developed a novel type of nanocarrier formulation: a poly-Lys or/and Lys–His
co-polymer conjugated with maleimide via tetra ethylene glycol was used as a platform
that formed micelles with pDNA via electrostatic interactions. Due to the maleimide groups
exposed on the surface, these micelles could be further decorated with additional functional
peptides: CPPs and organelle-targeting or endosome-disrupting peptides (EDPs). Several
combinations of CPPs and EDPs were tested and the approach was demonstrated to be
effective for the cellular and nuclear delivery of pDNA into plant cells using vacuum
infiltration [73]. EDPs were confirmed to significantly elevate the efficiency of this process,
allowing pDNA-containing micelles to escape from the endosome in A. thaliana seedling
tissues [74].

When all the chemical and mechanical barriers are overcome, another aspect arises:
the release of the cargo from the nanocarrier-containing complex if the whole nanoparti-
cle was internalized. For efficient and controlled intracellular cargo release, Chuagh and
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Numata [71] designed a stimulus-responsive peptide BPCH7 based on the BP100 CPP
conjugated with CH7 peptide (HHCRGHTVHSHHHCIR). CH7 peptide represents a re-
ducible pDNA-binding domain that, after cellular entrance, releases pDNA in the presence
of reduced glutathione (GSH). Because this peptide contains an internal disulfide bond,
its reduction by GSH leads to conformational changes. The cyclic properties of BPCH7
are likely another factor that allows the early endosome escape of the complex. The same
peptide was shown to efficiently deliver protein cargo (yellow fluorescent protein citrine)
in the cells of O. sativa callus [72] after infiltration.

One of the directions of CPP application is the organelle-specific delivery of cargo. As
was mentioned above, good results were obtained in transferring pDNA to the nucleus,
followed by the successful expression of the reporter gene. This type of cargo is easily
transferred to the nucleus because the utilized CPPs usually contain residues of Arg and
Lys, making the sequence similar to the nuclear localization signal that is recognized by the
eukaryotic cellular factors of nuclear import.

Utilization of chloroplast transit peptides [76–79] or mitochondria-targeting [76,80,167]
signal peptides in combination with CPPs was demonstrated to be an efficient tool for
the delivery of different cargo into the corresponding plant cell organelles. Two main
approaches are used: an organelle-targeting peptide is fused to a CPP [78,79] or a com-
plex is formed first of the cargo and organelle-targeting peptide, followed by the further
nanoparticle decoration with a CPP [77]. This approach could be used to obtain plants
with stably transformed chloroplasts without using such special equipment as a gene gun.
Odahara et al. have demonstrated effective peptide-based chloroplast transformation for
three species: tobacco, rice and kenaf [79]. As for mitochondria transformation, a pio-
neer successful study on a whole plant (A. thaliana) without using a gene gun or isolating
mitochondria was conducted by Dr. Chuah [80]. The authors obtained complexes of
pDNA with the originally designed peptide consisting of a mitochondria-targeting peptide
(MTP) fused with a Lys/His-rich CPP (KH)9 or BP100-(KH)9. Further, this approach was
applied to mitochondrial genome transformation via homologous recombination [76] and
demonstrated to be suitable not only for A. thaliana but for tobacco as well.

Summarizing the results obtained utilizing different types and combinations of pep-
tides, based on the CPPs, we could conclude that they are very powerful tools for the
delivery of various cargo into intact plant cells. The main advantages of this approach,
besides biocompatibility, low toxicity and other essential features, is applicability both to
standard model plants and to non-model plants, including important crops, among which
are dicot and monocot species. Moreover, such peptides represent a tool for mitochondrial
genome transformation as well as for the transformation of chloroplasts. The success was
achieved using different types of plant treatment: from co-incubation with the solution of
peptide/cargo complexes to infiltration and topical application via spraying, which looks a
very promising technique for scaling up and transferring this approach to the field. Future
studies should aim to increase the efficiency of CPP-mediated delivery, as this is the main
limitation of this nanocarrier.

7. Concluding Remarks

RNAi is a valuable tool in plant disease and pest management. dsRNA/siRNA topical
application for the induction of RNAi is undeniably a very prospective technology that
was demonstrated in laboratory studies to have great potential. Moreover, first attempts to
transfer this technology to field conditions have been made, showing the suitability of this
approach for sustainable agriculture. However, multiple hurdles are still to be overcome:
one of the most significant of them is the intracellular delivery of nucleic acids. Recent
progress in the development of nanomaterials has led to the enhanced efficiency of the
delivery. Moreover, besides its mere penetration into the cell, the problem of nucleic acid’s
protection from abiotic factors and the plant’s intercellular and intracellular environment
has been addressed. Such nanomaterials as nanoclays provide increased stability of the
RNA and its gradual release from the complex. The intracellular fate of the delivered nucleic
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acid also attracts researchers’ attention, as it is an important step at which the efficiency
of the whole process could be increased. Here, questions of the endosomal escape and
timely cargo release from the complex with the nanocarrier are raised (Figure 1). Chitosan,
for example, has an intrinsic property that allows it to escape from endosomes, while
other carriers could be supplemented with functional groups, as was tested with CPPs.
Moreover, nanoparticles that can deliver nucleic acids to different compartments have been
developed. However, the mechanisms of nanoparticles’ plant and cellular uptake are still
understudied, as well as the factors defining systemic RNAi spread and transitivity. Despite
numerous “proof-of-concept” studies where successful RNA delivery was confirmed and
RNAi induction demonstrated, the particular delivery technique and efficiency of this
process is questionable in terms of the scalability aspect. For example, leaf infiltration
or petiole absorption could hardly be regarded as approaches for in-field application.
Nevertheless, several nanoplatforms discussed here, are shown to be suitable for efficient
RNA delivery via foliar spraying without abrasion or pressure (Figure 2). The first success
with spray-induced gene silencing became a breakthrough that gives us an opportunity
to scale up plant treatment without obtaining transgenic plants or performing genome
editing, instead just spraying plants with a solution of nanocarrier/dsRNA complexes
to obtain local or even systemic silencing in the field. Foliar spraying is likely the only
type of treatment that could be scaled up. Another application method that could be
used in agriculture is root soaking; however, it is not suitable for plants grown in soil.
Nevertheless, for such closed systems as greenhouse hydroponic cultivation, it could be
advantageous. Root uptake of the naked dsRNA does not lead to RNAi induction because
such dsRNA cannot enter the cells, remaining in the apoplast. But nanocarriers facilitate
RNA penetration from the apoplast into the cell, followed by dsRNA processing and the
activation of RNAi.

To summarize, the utilization of nanocarriers for nucleic acid delivery into plant
cells greatly facilitates this process and significantly increases its efficiency. Moreover, it
offers an opportunity to target RNA/DNA to the desirable compartment. Further studies
should aim to understand the fate of the nanocarrier both inside the plant and in the
environment, and investigate the potential off-target action of dsRNA/siRNA because
one of the important aspects that separates us from transferring the technology to in-field
applications is biosafety issues.
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Abbreviations

APTES Aminopropyl triethoxysilane
APTMS 3-aminopropyltrimethoxysilane
BeYDV Bean yellow dwarf virus
BMV Brome mosaic virus
BYDV Barley yellow dwarf virus
CD Carbon dot
CF Carboxyfluorescein
CMV Cucumber mosaic virus
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CPP Cell-penetrating peptide
GUS β-glucuronidase
EDP Endosome-disrupting peptide
FITC Fluorescein isothiocyanate
HACC N-2-hydroxypropyl trimethyl ammonium chloride chitosan
KAibA synthetic CPP with a lysine/α-aminoisobutyric acid/alanine repeat
LDH Layered double hydroxide
MSN Mesoporous silica nanoparticles
MTP Mitochondria-targeting peptide
pDNA Plasmid DNA
PEI Polyethylenimine
PMMoV Pepper mild mottle virus
pVEC 18-amino-acid peptide derived from the murine vascular endothelial cadherin protein
PVY Potato virus Y
RITC Rhodamine B isothiocyanate
SWNT Single-walled carbon nanotube
TAMRA Tetramethylrhodamine
Tat HIV-1 Tat basic domain peptide (RKKRRQRRR)
TCSV Tobacco curly shoot virus
TEM Transmission electron microscopy
THPMP (3-trihydroxysilyl)propylmethylphosphonate
TMAPS N-trimethoxysilylpropyl N,N,N-trimethylammonium chloride
TMV Tobacco mosaic virus
TPP Tripolyphosphate
TRITC Tetramethylrhodamine isothiocyanate
TYLCV Tomato yellow leaf curl virus
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