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Abstract: Gestational diabetes (GDM) is the carbohydrate intolerance occurring during pregnancy.
The risk factors of GDM include obesity, advanced maternal age, polycystic ovary syndrome, multi-
gravidity, a sedentary lifestyle, and pre-existing hypertension. Additionally, complex genetic and
epigenetic processes are also believed to play a crucial role in the development of GDM. In this
narrative review, we discuss the role of genetic and epigenetic factors in gestational diabetes mellitus
pathogenesis.
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1. Introduction

Diabetes mellitus (DM) is a heterogeneous group of endocrine diseases that share
hyperglycemia as a common characteristic [1]. Gestational diabetes mellitus (GDM) is a
DM subtype manifesting during pregnancy. It may affect between 2 and 7% of pregnan-
cies [2]. The prevalence of GDM has increased over the last two decades. Its diagnostic
criteria differ between countries or even between different scientific organizations [3].
Example diagnostic criteria from the American Diabetes Association (ADA) are fasting
glucose level ≥ 5.1 mmol/l or glucose concentration ≥ 10 mmol/l in the 60th minute
of OGTT or ≥ 8.5 mmol/l in the 120th minute of OGTT [1]. A fasting glucose level of
≥ 7.0 mmol/l or glycemia ≥ 11.1 mmol/l in the 120th minute of OGTT is diagnostic of DM
during pregnancy rather than GDM [4]. Screening for GDM may occur during the first
visit to a gynecologist during pregnancy. If undiagnosed or untreated, GDM can lead to
pre-eclampsia, macrosomia, and polyhydramnios [5]. Moreover, individuals previously
diagnosed with GDM are prone to a diagnosis of DM type 2 after delivery [6].

While multiple risk factors for GDM (i.e., body mass index (BMI) ≥ 27 kg/m2, ad-
vanced maternal age, polycystic ovary syndrome, multigravidity, a sedentary lifestyle, and
pre-existing hypertension; Figure 1) have already been identified, complex genetic and epi-
genetic processes are also believed to play a crucial role in the development of GDM [7–9].
It is considered to be the most common metabolic complication of pregnancy [10]. Different
epigenetic changes like DNA methylation, histone modifications, or microRNA (miRNA;
miR) gene silencing have already been confirmed in GDM patients (Figure 2) [11]. Increased
concentration of hormones antagonistic to insulin is one of the suggested mechanisms
in GDM development [2]. Some individuals might be genetically predisposed due to
impairment of pancreatic islet β-cell function [12,13].
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2. MODY

Maturity-onset diabetes in the young (MODY) is a type of hereditary DM responsible
for 5% of all diabetes cases [14]. A monogenic mutation disrupts the physiological response
to changes in glucose levels, with subsequent metabolic changes typical of diabetes. It
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usually manifests before 25 years of age and is primarily caused by pancreatic β-cell dys-
function. Many studies have investigated contributory genetic factors. To date, 14 MODY
mutations have been found (Table 1). Their prevalence varies widely depending on many
factors, but the most common MODY types and gene mutations are the following:

• MODY 3: hepatocyte nuclear factor 1 alpha (HNF1A)
• MODY 1: hepatocyte nuclear factor 4 alpha (HNF4A)
• MODY 2: glucokinase (GCK)
• MODY 5: hepatocyte nuclear factor 1 beta (HNF1B)

Table 1. Mutations of MODY and GDM. GDM—gestational diabetes mellitus; MODY—maturity-
onset diabetes in the young.

MODY Type Gene Full Name Mutation Influence on Pathophysiology

Most common mutations accounting for 70–90% of MODY cases

MODY 3 HNF1A Hepatocyte nuclear factor-1 alpha Gradual beta-cell dysfunction, reduced insulin
production, and progressive hyperglycemia

MODY 1 HNF4A Hepatocyte nuclear factor-4 alpha Progressive beta-cell dysfunction, fetal macrosomia, and
hyperinsulinemic hypoglycemia

MODY 2 GCK Glucokinase Disrupted glucose sensing and hyperglycemia

MODY 5 HNF1B Hepatocyte nuclear factor 1B Dysfunctional pancreatic development, suppressed
cytokine signaling, and formation of kidney cyst

MODY mutations of lower prevalence

MODY 4 IPFI/PDX1 Insulin promoter factor/pancreatic
duodenal homeobox

Pancreatic agenesis, beta-cell development, and defective
insulin secretion

MODY 13 KCNJII Inward-rectifier potassium channel,
subfamily J, member 11 Congenital hyperinsulinism

MODY 12 ABCC8 ATP binding cassette subfamily C
member 8

Congenital hyperinsulinism, disrupted biogenesis, and
insulin trafficking of KATP channels

Other GDM mutations

CAPN10 Calpain-10 Dysfunction of cell metabolism and signal transduction
and elevated fasting glucose levels

ADRB3 β3-adrenergic receptor Decreased insulin excretion, disrupted thermogenesis,
and lipolysis

INSR Insulin receptor Disrupted metabolism of β-cell and elevated glucose
levels

IRS1 Insulin receptor substrate 1 Dysfunction of intracellular signaling and increased
insulin resistance

GLUT4/SCLA4
Insulin-sensitive glucose transporter

protein 4/solute carrier family 2,
member 4

Progressively increasing insulin resistance

PC-1 Plasma cell membrane glycoprotein 1 Increased insulin resistance

These four genes account for around 70 to 90% of all MODY types, depending on
the sample size and region of study [14–18]. However, there are more mutations also
associated with MODY, responsible for many metabolic actions, such as ATP binding
cassette subfamily C member 8 (ABCC8), B-lymphocyte kinase (BLK), carboxyl ester lipase
(CEL), neurogenic differentiation 1 (NEURO1), paired box 4 (PAX4), pancreatic duodenal
homeobox (PDX), and others. MODY can be first diagnosed during pregnancy and it is
speculated that it may account for 5% of all GDM cases detected by routine screening [17].
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2.1. MODY 1

HNF4A regulates the transcription of HNF1A. Patients with MODY1 are at a higher
risk of macrosomia and high birth weight, with the mean birth weight being 790 g higher
than that of healthy babies [19]. Also, infants with MODY1 born to MODY1-affected
mothers have a higher risk of macrosomia than those with affected fathers. As a result,
rigorous ultrasound monitoring during the third trimester is recommended [20,21]. Also,
after the birth, the infant should be monitored for at least 48 h for possible hypoglycemia.
As for the therapeutics, no treatments have been shown to improve fetal outcomes. For
women, it is recommended to start insulin before conception. Another possibility is to use
sulfonylureas (SU) under tight maternal glycemic control and then change to insulin in the
second trimester. However, SU can cross the placental barrier and, as such, its use during
the first trimester is often debated [19].

2.2. MODY 2

GCK is an enzyme crucial for glucose metabolism and energy production within
tissues [22]. Mutations in the GCK gene are associated with MODY 2, which accounts
for 0.4 to 1% of GDM cases [23]. The highest rate of GCK expression is observed in the
heart, placenta, brain, and liver tissue. During pregnancy, GCK concentration and activity
rise in maternal pancreatic β-cells as part of the adaptation process to decrease insulin
sensitivity [24]. GCK functions as a glucose sensor for the β-cell, and mutations in GCK
increase the threshold for insulin release [19]. MODY 2 clinically results in raised fasting
glucose levels from birth [25]. The investigations conducted so far indicate that changes
in the methylation of the GCK gene are a risk factor for type 2 diabetes [26,27]. Chen
et al. describe a pathway involving insufficient demethylation of the GCK gene, by which
maternal glucose intolerance can be inherited by their offspring [28]. Stride et al. reported
that the use of oral hypoglycemic agents or insulin did not significantly change overall
glycemic control [29]. It is recommended that MODY 2 mothers strictly monitor their
glucose levels during pregnancy and insulin should be administered if needed [19].

2.3. MODY 3

HNF1A is a protein crucial to developing β-cells in the pancreas. HNF1A gene
mutation can decrease insulin production, resulting in higher glucose levels. MODY
3 is the most common form of MODY [30], with several single nucleotide polymorphisms
(SNPs) identified [17]. Bellanné-Chantelot et al. screened a group of patients for an
association between SNP mutations and the age of onset of DM. They found that 83% of
mutations in the HNF1A gene were located in exons 1 to 6, affecting three studied gene
isoforms [30]. Missense mutations were found in 74% of patients with MODY 3, and 64%
had truncated mutations of the HNF1A gene. The number of missense mutations affecting
HFN1A isoforms was inversely proportional to the age of onset [30]. During pregnancy,
MODY 3 is sometimes related to neonatal hyperinsulinemic hypoglycemia and a lower
threshold for renal excretion of glucose. Stride et al. showed that combined screening for
β-cell deficiency and renal dysfunction could be used to screen children as the presence of
a glycosuria post-glucose load occurs in all mutation carriers with MODY 3 with a peak
glucose level during OGTT of over 8.4 mmol/L [31]. MODY 3 is relatively well controlled
with SU. However, during pregnancy, it should be treated with insulin. Regarding fetal
monitoring, MODY 3 should be treated as pre-existing diabetes [19]. Fetal inheritance of
MODY 3 is not related to increased birth weight or incidence of hypoglycemia. Recent
recommendations focus on balancing considerations of uncontrolled hypoglycemia with
the risk of fetal macrosomia [19].

2.4. MODY 4

PDX1, also known as insulin promoter factor 1 (IPF1), is a gene expressed predomi-
nantly in pancreatic β-cells [32]. Decreased PDX1 expression is associated with an increased
risk of the development of type 2 diabetes [32]. During pregnancy, PDX1 is vital to both
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the maternal pancreatic β-cells’ proliferation and embryonal pancreatic development [33].
Wang et al. demonstrated decreased PDX1 expression within the placentas of women
with GDM, although hypermethylation was not the leading epigenetic mechanism in that
population [34]. Kaimala et al. suggest that the PDX1 gene can be suppressed by the
deacetylation of the H4K8 and H4K16 histones, leading to GDM [35]. Studies in animal
models have found that exposure to bisphenol A (BPA) during pregnancy impacts the acety-
lation and methylation of histones, resulting in PDX1 downregulation and the development
of GDM [36].

2.5. MODY 5

HNF1B-MODY patients have lower insulin levels compared to healthy individu-
als. Therefore, MODY 5 typically requires insulin therapy for glycemic control, with
no recommendations for SU use, especially during pregnancy [37,38]. Individuals with
HNF1B-MODY born to HNF1B-MODY-affected mothers had higher birth weights, while
those with HNF1B-MODY and unaffected mothers had a 69% incidence of being small for
gestational age (SGA) [39].

2.6. MODY 12

ATP binding cassette subfamily C member 8 (ABCC8), also known as sulfonylurea
receptor 1 (SUR1), is a gene that encodes a subunit of the ATP-dependent potassium
channel within the pancreatic β-cells [40]. Studies in animal models have indicated that
ABCC8 hypermethylation is responsible for hereditary glucose intolerance [40,41]. A new
review by Zhu et al. summarizes the evidence of adverse chemical exposure altering the
individual predisposition to diabetes. They show that induced diabetic susceptibility can
also be transmitted to the next generations [41]. Activating mutations are responsible for
diabetes from the early neonatal stages, while inactivating mutations cause congenital
hyperinsulinism [42]. MODY 12 presents similarly to HNF1A and HNF4A MODY and,
therefore, reacts well to SU treatment [42]. Thus far, there have been no reports of epigenetic
modifications to ABCC8 that would increase the risk of GDM.

2.7. MODY 13

The potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) gene
encodes the Kir6.2 protein, a structural element of the ATP-dependent potassium channel
within pancreatic β-cells [43]. Mutations within this gene may lead to abnormalities in
insulin secretion and the development of diabetes, especially in neonates [44,45]. As of
yet, there is no indication that epigenetic mechanisms related to KCNJ11 play a role in
the development of GDM. Higher levels of methylation can mimic the suppression of the
KCNJ11 gene and are associated with an increased risk of metabolic syndrome [46,47].

3. Adiponectin S, Leptin, and Interleukins

Epigenetic alterations are thought to have a connection with obesity and other metabolic
diseases. Previous studies have reported that the methylation frequency of leptin (LEP)
and adiponectin (ADIPOQ) promoters may contribute to the development of metabolic
syndrome [48]. A review by Xu et al. shows the placental secretion of various hormones in
pregnant women. They disrupt maternal insulin resistance thresholds and lead to hyper-
glycemia. DNA methylation of those molecules and their pathway-related genes are also
related to the pathogenesis of GDM. Adiponectin is a hormone secreted by adipocytes, with
presumed insulin-sensitizing, anti-inflammatory, and anti-atherosclerotic functions [49].
Bouchard et al. have shown that lower levels of DNA methylation in the ADIPOQ promoter
on the fetal side of the placenta were associated with higher maternal glycemic levels dur-
ing the second trimester of pregnancy. Additionally, during the second and third trimesters
of pregnancy, lower DNA methylation levels on the maternal side of the placenta were
also connected with maternal insulin resistance [50]. DNA methylation of the ADIPOQ
gene locus was related to higher circulating maternal adiponectin levels during pregnancy
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and after delivery. Furthermore, it has been demonstrated that even intermediate glucose
intolerance is correlated with the ADIPOQ DNA methylation profile [50]. Overall, these
results suggest that epigenetic changes around ADIPOQ are possible mechanisms in the
fetal programming of metabolic disorders in adults.

Leptin is secreted in paracrine and endocrine manners into the blood by adipocytes.
Insulin triggers leptin secretion and activates the LEP gene. The significance of insulin in
regulating leptin levels and signaling shows the crucial role of leptin in obesity-induced
insulin resistance. Lesseur et al. determined that higher LEP gene methylation in the
placentas occurs in patients with GDM and pre-pregnancy obesity. Their research indicates
that the maternal metabolic state before and throughout pregnancy can influence the
placental DNA methylation profile at birth. Subsequently, it may contribute to the metabolic
programming of obesity and related diseases in children [51]. Bouchard et al. in their
research studied DNA methylation levels in the leptin gene in placentas exposed to IGT
during pregnancy compared to women with normal glucose tolerance (NGT). In the IGT
group, glucose levels were positively correlated with methylation on the maternal side. On
the contrary, the correlation was negative on the fetal side [52]. Leptin mRNA levels were
negatively correlated with LEP promoter methylation on both sides of the placenta. These
results imply that dysregulation of the DNA methylation profile, particularly IGT-related
DNA methylation changes, may contribute to long-term consequences associated with fetal
programming, such as an increased risk of developing obesity and type 2 diabetes [52].
Epigenetic changes both in the LEP gene and the ADIPOQ gene provide new insights that
can help to explain the mechanisms of fetal programming. This may help to determine its
health effects and improve diagnostics and therapies.

Earlier studies evaluated blood samples from pregnant women with GDM to deter-
mine the methylation profile of genes involved in the inflammation process. Dłuski et al.
showed that various other methylation profiles change in pregnant women, including
inflammatory processes, neuronal development, and even cellular pathways [53]. Hal-
vatsiotis et al. showed that only the ATF2 gene was hypermethylated in GDM patients.
On the contrary, the genes encoding the interleukins and interleukin receptors, such as
IL4R, IL6R, IL17RA, IL12A, IL13, and IL10RA, were found to only be hypomethylated in
pregnant women with GDM [54]. IL-10 is an anti-inflammatory cytokine produced by T
cells, B cells, and macrophages. It both stimulates and suppresses the immune response.
Additionally, it participates in cell activation, proliferation, and differentiation [49]. It has
been stated that the IL-10 plasma level is lower in GDM patients than in people without
GDM. There is a correlation between low IL-10 levels and excessive insulin resistance.
This may suggest that low IL-10 concentrations contribute to insulin resistance in GDM
patients [55]. The typical level of methylation of the IL-10 gene in a GDM group was lower
than in maternal blood samples from a non-GDM group [56], supporting the hypothesis
that epigenetic modifications are related to the etiology of GDM. Qiu et al. showed the
upregulated expression of miR-518d in placentas affected by GDM compared to a healthy
pregnancy group. Further, increased mRNA levels of nuclear factor-kappa B (NF-κB),
cytochrome C oxidase subunit II (COX-2), TNF-α, IL-1β, IL-6, and decreased mRNA levels
of peroxisome proliferator-activated receptor α (PPARα) were presented in placentas in
women with GDM. In the study, miR-518d was believed to promote the mRNA expression
of COX-2, TNF-α, IL-1β, and IL-6, but PPARα was negatively regulated by it. This may
imply an association between the development of GDM and inflammatory response in
placentas regulated by miR-518d [57]. However, it would be premature to assume that
epigenetic changes predate GDM. Investigating epigenetic changes in other genes involved
in energy balance, glycemic regulation, and insulin resistance pathways will be essential in
establishing the causality of GDM. The determination of molecular mechanisms and genetic
involvement in the fetal programming of energy metabolism will assist in understanding
the pathophysiological processes leading to metabolic disorders. However, Valenzia-Ortega
et al. point to the fact that specific causality is yet to be established, and more studies
should focus on exploring changes in gene expression [58].
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4. The β3-Adrenergic Receptor (ADRB3)

ADRB3 is a catecholamine-stimulated receptor found on cell walls and is expressed
in many tissues including skeletal muscle and pancreatic β-cells [59,60]. However, it is
mainly found in adipose tissue, where it mediates thermogenesis and lipolysis. It is bound
by noradrenaline to induce metabolic changes [61].

ADRB3 is coded for on the short arm of chromosome 8. A connection between
ADRB3 polymorphisms and metabolic syndrome was reported in 2004 by Parikh and
Groop [62]. A Trp64Arg SNP polymorphism was found to influence the risk of insulin
resistance, abdominal obesity, and the early onset of type 2 diabetes [63,64]. Further studies
showed that this SNP variant influences insulin secretion, both in vivo and in vitro [65,66].
Additionally, this polymorphism has been associated with increased weight gain and
higher glucose and insulin levels during pregnancy [67]. A study by Festa et al. associated
Trp64Arg with increased glucose levels during pregnancy [68]. On the contrary, a study by
Alevizaki et al. showed no association between Trp64Arg and GDM [69]. As SNPs have
been more widely investigated, other ADR3B SNPs have been found that are associated
with an increased risk of GDM. A metanalysis by Zhang et al. focused on the relationship
of 10 genes and their SNPs to GDM. ADRB3 was found to have no statistical correlation
with GDM from the pooled results of five studies [70].

5. Insulin Receptor

The insulin receptor (INSR) is a ligand-activated transmembrane signaling protein
that belongs to the tyrosine kinase group [71]. The INSR is responsible for metabolism
regulation [71]. Mutations in INSR have been observed in patients with extreme insulin
resistance [72]. The hypermethylation of cytosine-phosphate-guanine (CpG) dinucleotides
in the promoter of INSR is found in women with GDM [73] compared to normoglycemic
pregnant women [74]. Furthermore, levels of the INSR protein are lower in pregnant
women without GDM than in women with GDM [72]. Insulin-like growth factor 2 (IGF2)
is a part of the insulin group and has an influence on metabolic disorder development [75].
Another study focused on the association between a higher risk of GDM occurrence and
polymorphisms in the restriction fragment length of INSR and IGF2 and found that Cau-
casian women with polymorphisms in INSR as well as in IGF2 had an increased risk of
GDM [76].

5.1. Insulin Receptor Substrate 1

Hormonal control of metabolism is provided by insulin receptor substrate 1 (IRS1),
one of the main targets of the insulin receptor tyrosine kinase enzyme [77]. Patients
with diabetes and insulin resistance are differentiated by dysfunction of IRS-dependent
signaling in their tissues [77]. Insulin resistance observed during pregnancy may be related
to an increase in maternal and placental hormones [78] including prolactin, progesterone,
estrogen, placental growth hormone (hPGH), and human placental lactogen (hPL) [78].
Each hormone contributes to insulin resistance in pregnant women through different
mechanisms [78]. Progesterone is responsible for the suppression of IRS-1 expression [78].
Increased levels of estradiol lead to insulin resistance by the serine phosphorylation of
IRS-1, which is a result of c-Jun N-terminal kinase (JNK) activation mediated by estrogen
receptors (ER) [79]. Moreover, the influence of hPGH on insulin resistance is associated
with increased expression of the p85-regulatory unit of PI3-kinase (PI3K). This causes a
decrease in RS-1-associated PI3K activity [78]. hPL is considered to be the primary insulin
resistance hormone that leads to reduced phosphorylation of IRS-1 [80].

5.2. Insulin-Sensitive Glucose Transporter Protein 4/Solute Carrier Family 2 Member 4

The insulin-sensitive glucose transporter protein 4 (GLUT4), also known as the solute
carrier family 2 member 4 (SLC2A4), is encoded by the SLC2A4 gene [81,82]. GLUT4 pro-
tein expression is regulated by estrogens, which may explain why those hormones have
an impact on insulin resistance progression [81]. The SLC2A4 protein is responsible for
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postprandial glycemic control [83] due to its action as an insulin-dependent glucose trans-
porter [82]. A study by Li and Zhang showed that decreased SLC2A4 expression was
observed both in blood samples and pancreatic cell lines collected from type 2 diabetes
patients [82]. Insulin resistance in women with GDM can also be a result of imperfect
SLC2A4 translocation [72]. GLUT4 is normally translocated to the plasma membrane due
to insulin stimulus [83]. Moreover, women who suffer from GDM are characterized by a
lower level of SLC2A4 protein in their adipose tissue in comparison to healthy pregnant
women [84].

6. Plasma Cell Membrane Glycoprotein 1

The plasma cell membrane glycoprotein 1 (PC-1) is encoded by the ectonucleotide
pyrophosphate phosphodiesterase-1 (ENPP1) gene, which is expressed in adipose tissue
and skeletal muscle [72]. ENPP1 is responsible for reducing the tyrosine kinase activity of
insulin receptors [84], which makes it a probable insulin resistance gene [83]. Furthermore,
tissue ENPP1 protein levels have been found to be significantly lower in pregnant women
who are not diagnosed with GDM than in women with GDM [72]. Moreover, SNPs in the
ENPP1 gene have been found to play a role in positive OGTTs [85]. There is also a higher
risk of diabetes type 2 in obese people who have been found to have SNPs in the ENPP1
gene, as well as an association with obesity and an increased chance of GDM [85].

7. Calpain 10

Calpain 10 (CAPN10) is a cysteine protease dependent on calcium ions encoded by
the CAPN10 gene in the human genome. Calpains are activated by calcium ion influx
and they then catalyze the controlled proteolysis of targeted proteins [86]. The calpain
family has been implicated in a variety of diseases including Alzheimer’s disease, ischemic
stroke, and limb–girdle muscular dystrophy 2A [87–89]. There has been a focus of research
on this after gene scanning was conducted in search of diabetes predisposition factors.
The CAPN10 gene was the first to be identified as a predisposing factor by the positional
cloning approach [90]. Despite extensive investigation of calpain in the pathophysiology of
diabetes, its exact properties remain unknown. It takes part in many metabolic pathways,
including cell cycle regulation, apoptosis, and signal transduction [91]. Laske et al. showed
that upregulation of CAPN10 is present in Alzheimer-type diseases, where it increases
the accumulation of β–amyloid peptides. It leads to hyperphosphorylation in the central
nervous system and the degeneration of neurologic functions [92]. CAPN10 gene polymor-
phisms are associated with the risk of developing type 2 DM. A study by Wu and Car [93]
focused on two SNPs found in the CAPN10 gene: SNP43 (G/A) and SNP63 (C/T), and
their relation to cerebral small vessel disease. Patients with SNP43 had an increased risk of
cognitive impairment in cerebral small vessel disease, type 2 diabetes, and elevated fasting
serum insulin. In another study, Perez-Martinez et al. analyzed 452 subjects with metabolic
syndrome (MS) for several MS-related factors and five CAPN10 polymorphisms. They
found that the rs2953171 CAPN10 polymorphism may influence insulin sensitivity. It was
found to interact with plasma fatty acid composition in MS patients with higher fasting
insulin and HOMA-IR values [94]. Another approach to investigating the epigenetics of
CAPN10 is to look for complementary DNA synthesized from mRNA used to express
specific proteins. Ono et al. [95] found that the CAPN10 cDNA transcript is subject to
cryptic splicing. This led to unexpected protein products being expressed, and the team
analyzed two CAPN10 isoforms. The two isoforms had different substrate proteolysis
and potential cell functions, demonstrating that, recombinantly expressed, CAPN10 pro-
teins may express different cell actions, with further research needed to study alternative
expression routes [95].

8. Histone Modification

Histones are proteins that wrap the DNA around themselves and provide structural
support for DNA. Condensing DNA into chromatin enables long DNA strands to fit inside
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the nucleus. Histones can be modified by several enzymatic reactions that affect their
structure with a subsequent chromatin structure. By unwrapping the specific DNA region,
they enable gene expression, and by tightening the chromatin structure, they suppress gene
expression. Those changes control cell metabolism. Therefore, histone modification can
alter all metabolic pathways, with potential clinical consequences.

Görisch et al. [96] showed that histone acetylation increased chromatin accessibility,
thus creating an active euchromatin state and increasing gene expression. Additionally,
Kimura has shown that transcription sites are marked with trimethylated H3K4 histones
and acetylated H3K27 histones, and gene repression is achieved by the trimethylation
of H3K9 histones and H3K27 histones [97]. Histone modification is responsible for the
potential increased risk of GDM. Argreaves and deacetylases were found to be responsible
for modifying the histone, with subsequent under-expression of GLUT4, in a study by
McGee [98].

MODY 4 is associated with impaired PDX1 function, which is responsible for pancreas
and β-cell development. Histone acetylation, combined with reactive oxygen species,
has been shown to result in suppressed PDX1 expression and potentially be correlated
with the risk of GDM by Fernández-Morera et al. [99]. Histone modification and the
risk of GDM were also investigated by Michalczyk et al. [100], who found that specific
histone methylation patterns could be a basis for predicting the risk of GDM. The study
by Hepp et al. analyzed histone modifications in 40 control and 40 GDM placentas. They
demonstrated that H3K9ac expression was downregulated in GDM ones, especially in
syncytiotrophoblast, EVT, and fetal endothelial cells. H3K9ac is crucial in modifying
transcription activity, especially throughout intrauterine development, synzytialisation,
and angiogenesis. This indicates that the downregulation of H3K9ac in GDM may lead to
an insufficient capacity for gene expression and, subsequently, to the development of fetal
complications such as organ immaturity [101]. However, more data are needed to evaluate
the effect of histone modification on GDM risk and explore potential treatment options.

9. miRNA

miRNAs are non-coding RNAs used in post-transcriptional gene expression control.
They interact with messenger RNA to degrade or inhibit their translation [102]. As they can
control gene expression, their impact on epigenetic changes has been studied to assess their
role in developing diseases, including GDM. Zhao et al. [103] focused on three miRNAs
found in pregnant women with GDM: MiR-29a, miR-222, and miR-132 all had decreased
plasma concentrations in the control group. Those findings were later supported by studies
that found 12 miRNAs that were over-expressed in GDM women and were found to relate
to glucose and insulin metabolism. They disrupted the expression of mitogen-activated
protein kinase (MAPK) and IRS genes. This resulted in impaired signaling pathways within
cells [104].

A meta-analysis of the association between miRNA and GDM was performed by da
Silva et al. [105] and identified 82 GDM-related miRNAs, with 4 dysregulated miRNAs
being the most frequently cited: miR-16, miR-330, miR-20a, and miR-222. They are re-
sponsible for glucose and insulin metabolism and controlling the metabolic pathways of
pancreatic β-cells. MiR-16, when upregulated, was observed to downregulate the insulin
signaling pathway, with possible resulting chronic hyperglycemia [106]. The upregula-
tion of miR-330 is associated with β-cell impairment by altering their proliferation and
growth [107]. MiR20a is responsible for regulating cell metabolic pathways responsible
for glucose homeostasis. Therefore, its dysregulation results in hyperglycemia and it may
be a possible biomarker for GDM [108,109]. MiR-222 is found in maternal plasma in the
highest concentration during weeks 24 to 28 of pregnancy. It is produced by the placenta
and is responsible for estrogen receptor-α expression in estrogen-induced insulin resistance.
A study by Filardi et al. showed that dysregulated miRNA levels were correlated with
increased fasting plasma glucose and increased birth weight [110–112]. Another study
by Dong et al. focused on potential neural tube defects in neural stem cells. They were



Int. J. Mol. Sci. 2023, 24, 16619 10 of 15

cultured in a normal or high glucose medium, with subsequent measures of miR-200c
levels. It was shown that the high glucose medium caused an upregulation of miR-200c,
resulting in neural stem cell damage, potentially providing a pathway for neural tube
defects found in the offspring of mothers with GDM [113].

A new study suggests that long non-coding RNA Meg3 found in the liver may con-
tribute to impaired glucose metabolism. A novel study by Yang et al. uses an animal model
to mimic GDM and its effects on offspring. They showed that intrauterine exposure to hy-
perglycemia impairs pregenital glucose and insulin resistance. The expression of Meg3 in
the liver was increased, leading to significant differences in PPAR signaling pathways.
They suggest new insights into new possible pathways of DM in the offspring of GDM
mothers [114].

As more and more data are being published about miRNAs, miRNA panels are being
proposed as a viable option for the risk assessment of different illnesses. A study by
Mitra et al. [115] proposed the creation of race- and region-specific miRNA panels for
GDM screening in large populations. This is to create forecasting strategies to lower
GDM prevalence in mothers and their children. Exosomal microRNA (ExomiRs) are
potential targets for understanding the pathophysiology of β-cell dysfunction in GDM.
According to a study by Mitra et al., the overexpression of certain ExomiRs may help
overcome insulin resistance by modifying glucose uptake. Thus, this capacity makes
ExomiRs promising to be used as a clinical tool for reducing the risk of GDM and other
pregnancy complications. As a result, many pregnancy complications could be avoided
by the appropriate intervention [115]. However, with the high costs of miRNA detection,
more research is needed to establish the predictive value of miRNA in GDM.

As more and more data are being published about miRNAs, miRNA panels are being
proposed as a viable option for the risk assessment of different illnesses. A study by Mitra
et al. [115] proposed the creation of race- and region-specific miRNA panels for GDM
screening in large populations for the development of forecasting strategies to lower GDM
risk in mothers and their children. However, with the high costs of miRNA detection, more
research is needed to establish the predictive value of miRNA in GDM.

10. Conclusions

Gestational diabetes mellitus (GDM) is a disorder of carbohydrate metabolism that
occurs in pregnant women. Underlying GDM is decreased insulin secretion by pancreatic
beta cells and tissue insulin resistance. The development of GDM is influenced by a number
of environmental factors, such as obesity, the woman’s age, improper diet, and a number
of genetic and epigenetic factors. The development of this complication occurs when
there is an interaction between environmental, genetic, and epigenetic factors. Among
the most important genetic factors considered so far are genes that affect the function
of pancreatic beta cells and thus insulin secretion. It is believed that among these genes,
HNF1A, HNF1B, HNF4A, and GCK may be the most important. Among the rarer mutations
leading to pancreatic beta-cell dysfunction are mutations within the IPFI/PDX1, KCNJII,
ABCC8, CAPN10, INSR, and GLUT4/SCLA4 genes. There are also various epigenetic
mechanisms, such as histone modification and non-coding RNAs, which may contribute
to the onset of carbohydrate disorders in pregnant women and the development of GDM.
However, it is important to remember that a number of factors can lead to GDM that
disrupt pancreatic beta cell function and increase tissue insulin resistance. Previous studies
have shown that many genes are associated with pancreatic beta-cell dysfunction and may
predispose women to the development of GDM. However, environmental factors modulate,
through epigenetics, the influence of these genes on the risk of GDM. Only the interaction
between environmental, genetic, and epigenetic factors can lead to the development of this
complication in pregnant women.
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86. Vasudevan, A.A.J.; Perković, M.; Bulliard, Y.; Cichutek, K.; Trono, D.; Häussinger, D.; Münk, C. Prototype Foamy Virus Bet
Impairs the Dimerization and Cytosolic Solubility of Human APOBEC3G. J. Virol. 2013, 87, 9030–9040. [CrossRef]

87. Branca, D. Calpain-related diseases. Biochem. Biophys. Res. Commun. 2004, 322, 1098–1104. [CrossRef]
88. Biswas, S.; Harris, F.; Singh, J.; Phoenix, D. Role of calpains in diabetes mellitus-induced cataractogenesis: A mini review. Mol.

Cell. Biochem. 2004, 261, 151–159. [CrossRef]
89. Huang, Y.; Wang, K.K. The calpain family and human disease. Trends Mol. Med. 2001, 7, 355–362. [CrossRef]
90. Turner, M.D.; Cassell, P.G.; Hitman, G.A. Calpain-10: From genome search to function. Diabetes/Metab. Res. Rev. 2005, 21, 505–514.

[CrossRef]
91. Shang, L.; Huang, J.-F.; Ding, W.; Chen, S.; Xue, L.-X.; Ma, R.-F.; Xiong, K. Calpain: A molecule to induce AIF-mediated necroptosis

in RGC-5 following elevated hydrostatic pressure. BMC Neurosci. 2014, 15, 63. [CrossRef]
92. Laske, C.; Stellos, K.; Kempter, I.; Stransky, E.; Maetzler, W.; Fleming, I.; Randriamboavonjy, V. Increased cerebrospinal fluid

calpain activity and microparticle levels in Alzheimer’s disease. Alzheimers Dement. 2015, 11, 465–474. [CrossRef]
93. Wu, K.; Cai, Y. The SNP43 (G/A) polymorphism in CAPN10 gene confers an increased risk of cognitive impairment in cerebral

small vessel disease. J. Clin. Lab. Anal. 2018, 32, e22615. [CrossRef] [PubMed]
94. Perez-Martinez, P.; Delgado-Lista, J.; Garcia-Rios, A.; Ferguson, J.F.; Gulseth, H.L.; Williams, C.M.; Karlström, B.; Kieć-Wilk, B.; E
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