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Abstract: Mitochondrial dysfunction contributes to numerous chronic diseases, and mitochondria
are targets for various toxins and xenobiotics. Therefore, the development of drugs or therapeutic
strategies targeting mitochondria is an important task in modern medicine. It is well known that
the primary, although not the sole, function of mitochondria is ATP generation, which is achieved
by coupled respiration. However, a high membrane potential can lead to uncontrolled reactive
oxygen species (ROS) production and associated dysfunction. For over 50 years, scientists have been
studying various synthetic uncouplers, and for more than 30 years, uncoupling proteins that are
responsible for uncoupled respiration in mitochondria. Additionally, the proteins of the mitochondrial
alternative respiratory pathway exist in plant mitochondria, allowing noncoupled respiration, in
which electron flow is not associated with membrane potential formation. Over the past two decades,
advances in genetic engineering have facilitated the creation of various cellular and animal models
that simulate the effects of uncoupled and noncoupled respiration in different tissues under various
disease conditions. In this review, we summarize and discuss the findings obtained from these
transgenic models. We focus on the advantages and limitations of transgenic organisms, the observed
physiological and biochemical changes, and the therapeutic potential of uncoupled and noncoupled
respiration.

Keywords: transgenic model; Ciano intestinalis; noncoupled respiration; alternative oxidase; alternative
NADH dehydrogenase

1. Introduction

Mitochondrial respiration can be divided into three types according to its ability to
form a membrane potential (∆µH+). Energy-coupled respiration allows the generation
of ∆µH+ and it is utilized for ATP synthesis (Figure 1A). During uncoupled respiration,
∆µH+ is formed but immediately dissipated without ATP synthesis by specific proteins or
in the presence of certain substances called uncouplers (Figure 1B). During noncoupled
respiration, electron flow is not associated with ∆µH+ formation (Figure 1C) [1]. Energy-
coupled respiration is facilitated by protein complexes that form the respiratory chain. The
energy carried by electrons flowing through this electron transport chain is used to transport
protons across the inner mitochondrial membrane. This generates potential energy in the
form of an electrochemical gradient on the inner mitochondrial membrane. Subsequently,
using this potential, F0F1-ATP synthase generates ATP from ADP and inorganic phosphate
(Figure 1A) [2]. While oxidative phosphorylation is an extremely efficient process, a
significant portion of the electron energy can be diverted towards the synthesis of free
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radicals, which generally have a negative impact on the structural integrity of membranes,
proteins, and DNA [3]. For this reason, uncoupled and noncoupled respiration plays an
important role in maintaining cellular redox homeostasis.
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Figure 1. Schematic representation of the different types of mitochondrial respiration. (A) Cou-
pled respiration. Electron flow from complex I and complex II through ubiquinone, cytochrome
c complex III, and complex IV results in the transport of H+ from the mitochondrial matrix into
the intermembrane space, generating a membrane potential. The membrane potential is then used
for ATP synthesis by F0F1-ATP synthase. (B) Uncoupled respiration. Reverse leakage of H+ across
the membrane occurs either through chemical uncouplers (represented by the classical example of
2,4-dinitrophenol) or through protein uncouplers (represented by UCP1). (C) Noncoupled respiration.
This is characteristic of plants and certain sessile animals. There is no generation of a membrane
potential because NAD(P)H oxidation is carried out by internal and external NADH dehydrogenases.
Alternative oxidase (AOX) serves as a terminal complex utilizing oxygen, and electron flow through
these proteins is not coupled to the transport of H+ across the inner mitochondrial membrane.
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The physiological role of uncoupled respiration is multifaceted. Uncoupled respira-
tion, primarily mediated by proteins from the UCP family, has been extensively studied.
UCP1, found in brown adipose tissue, plays a crucial role in non-shivering adaptive thermo-
genesis. Through proton leak across the mitochondrial inner membrane, UCP1 dissipates
the ∆µH+, leading to increased substrate oxidation and heat production independently of
ATP synthesis [4]. The activation of UCP1 is facilitated by long-chain fatty acids (LCFAs).
Initially, the LCFA anion binds to UCP1 on the cytosolic side of the membrane. Subse-
quently, H+ binds to the LCFA, triggering a conformational change that releases H+ on
the opposite side of the inner mitochondrial membrane. The LCFA anion remains asso-
ciated with UCP1 through hydrophobic interactions established by its carbon tail. The
LCFA anion then returns for another cycle of H+ translocation (Figure 1B) [5]. Another
mechanism of uncoupling oxidative phosphorylation involves specific small molecules
that participate in proton translocation from the intermembrane space to the mitochondrial
matrix. Protonophores are classic uncouplers that can directly transport protons across
the inner mitochondrial membrane through their redox properties and lipophilic structure
(Figure 1B) [6]. Non-protonophore uncouplers, on the other hand, typically act as agonists
of other proteins which are involved in the regulation of ∆µH+ [7].

Noncoupled respiration is energetically similar to uncoupled respiration but has a
different origin. Noncoupled respiration is facilitated by special respiratory complexes that
participate in electron transport without forming ∆µH+. Classic examples of noncoupled
respiration are found in alternative respiratory pathways in plant mitochondria [8]. Plant
mitochondria contain at least five additional components in the electron transport chain.
Four of these components catalyze the transfer of NADH or NADPH to ubiquinone, while
the fifth component is an alternative oxidase (AOX) that directly catalyzes the transfer
of electrons to molecular oxygen [9,10]. Alternative respiratory pathways do not involve
the transport of protons across the inner mitochondrial membrane and, therefore, are
not coupled with ATP synthesis (Figure 1C). With a few exceptions, animals, due to
their active lifestyles, generally lack these alternative respiratory pathways [11]. Hence,
animal mitochondria are highly susceptible to various poisons and xenobiotics that can
inhibit electron flow and cause electron “leaks”, leading to the excessive production of
reactive oxygen species (ROS) [12]. Mutations in mitochondrial DNA and nuclear DNA
genes associated with the respiratory chain can also result in severe metabolic defects and
pathologies [13].

Thus, the main, but not the only, positive effect of uncoupled and noncoupled res-
piration is the normalization of the redox state to reduce the production of free radicals,
which is expected to significantly reduce the progression of various diseases [14]. In gen-
eral, chemical uncouplers show promise as pharmacological agents for treating various
metabolic disorders. However, it should be acknowledged that in recent years, there has
been a waning of interest in chemical uncouplers, despite the growing interest in the inves-
tigation of mitochondrial pathologies (Figure 2). This is likely due to the fact that many
classical and well-studied uncouplers have a very narrow therapeutic window. Perhaps
this is because some uncouplers have been “discredited” due to a high number of side
effects [15,16]. Therefore, while this review briefly addresses the topic of chemical uncou-
plers, its primary focus is on the comprehensive discussion of transgenic animal models
pertaining to uncoupled and noncoupled respiration. Undoubtedly, genome editing as a
therapeutic approach for human diseases is not yet considered a viable method. However,
transgenic animal models allow for a better assessment of the effects of uncoupled and
noncoupled respiration on cellular, tissue, and organismal states. These effects can be eval-
uated at different stages of organism development (from embryonic to aging stages) and
under conditions of various induced diseases. A deeper understanding of these processes
will help in developing new therapeutic approaches for treating metabolic disorders by
regulating the degree of coupling in mitochondrial respiration.
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Figure 2. Green line indicates the number of publications in PubMed database related to “mito-
chondrial uncouplers” (https://pubmed.ncbi.nlm.nih.gov/) (accessed 22 July 2023). It is noticeable
that the number of publications dealing with mitochondrial uncouplers has decreased over the last
decade. In contrast, interest in mitochondrial dysfunctions, represented by the blue line indicating
the number of publications in the PubMed database on the topic of “mitochondrial dysfunctions”, is
growing exponentially.

2. Chemical Uncouplers

Mitochondrial uncouplers are synthetic compounds that belong to various classes of
chemicals. These uncouplers exhibit multiple mechanisms of action, enabling them to be
classified indirectly only. Based on their functionality, uncouplers can be divided into those
that exhibit a protonophore effect, while others indirectly induce uncoupling by regulating
the activity of uncoupling proteins or altering mitochondrial function [17]. Protonophores
are typically hydrophobic aromatic compounds with a negative charge. These compounds
have the ability to distribute negative charge among multiple atoms through π-orbitals, thus
facilitating the delocalization of a proton’s charge upon its attachment to the molecule [18].
It allows them to easily penetrate through the lipid membrane and move in their neutral
form along the concentration gradient. In addition to this, protonophores can interact with
proteins within the inner membrane [6].

2,4-Dinitrophenol (2,4-DNP) is commonly considered a classical protonophore. As
early as 1933, it was discovered that the use of 2,4-DNP leads to rapid weight loss by
enhancing the basal metabolism [19], resulting in the accelerated metabolism of fats and
carbohydrates [20]. However, at that time, the concept of protonophores and the mech-
anism of 2,4-DNP action were not yet established. By 1938, the sale of 2,4-DNP without
a prescription was prohibited, and shortly thereafter, it was completely banned [21]. The
rapid weight loss in patients was accompanied by side effects attributable to specific
metabolic characteristics. These included the shifting of the electrochemical gradient and
dissipation of potential energy as heat, leading to uncontrolled hyperthermia [22], the
inhibition of mitochondrial inorganic phosphate uptake [23], the excessive stimulation of
glycolysis [24], and the accumulation of Na+ and K+ [25,26] (Supplementary Table).

The term protonophore was introduced by Skulachev in 1970 [27]. By this time, other
protonophores from the hydrazone class, carbonyl cyanide-p-trifluoromethoxyphenyl
hydrazone (FCCP) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), had already
been discovered [28]. However, they also exhibit non-specific effects on other organelles,
including the cytoplasmic membrane [29]. Their effects can induce both the depolarization
and hyperpolarization of the cytoplasmic membrane by influencing H+, Na+, K+, and
Ca2+ channels [30,31]. Among other well-studied protonophores, it is worth mentioning
FR58P1 [32], BAM15 [33], C12TPP [32], C12R1 [34], CDE [35], C4R1 [36], bupivacaine [37],
catechin [38], fisetin [38], quercetin [38], apigenin [38], usnic acid [39], and others. Other

https://pubmed.ncbi.nlm.nih.gov/


Int. J. Mol. Sci. 2023, 24, 16491 5 of 19

compounds can induce uncoupling effects by targeting the mitochondrial membrane
protein PTEN-induced kinase 1 (PINK1) (niclosamide [40], triclosan [41], sertraline [41]; the
metabolic regulator AMP activated protein kinase (AMPK) (curcumin [42], sorafenib [43],
SR4 [44], FR58P1a [32], FH535 [45]), as well as the uncoupling proteins of the UCP family
(T3 [46]) (see Supplementary Materials). In addition, some antioxidants have an uncoupling
effect, which makes them more promising for further use by compounds [47]. Some
compounds are derivatives of previously studied substances, developed with the aim of
enhancing their therapeutic properties and reducing toxicity (niclosamide piperazine [48]
and DNPME [49]) (Supplementary Materials).

Chemical mitochondrial uncouplers are actively investigated in scientific research for
the development of new approaches in the treatment of neurodegenerative diseases such
as Alzheimer’s disease [50], Parkinson’s disease, traumatic brain injury and stroke [36,51],
ischemic heart disease [52,53], liver diseases [54], kidney diseases [33], as well as various
forms of obesity [55,56], diabetes [54], and cancer [57]. In the middle of the 20th century,
niclosamide was used as an antihelmintic drug. But then, its other properties were discov-
ered [58] (see Supplementary Materials). However, it should be noted that their use for
medical purposes requires further research and testing (Supplementary Materials).

This chapter provides only brief information about the nature and medical applications
of synthetic uncouplers, as there are already numerous reviews dedicated to this topic. The
focus of the current review will now shift towards transgenic animal and cellular models
that simulate intense uncoupled and noncoupled respiration without pharmacological
intervention.

3. Transgenic Models Which Overexpress UCPs

The most well-characterized and studied member of the UCP gene family is UCP1
(Figure 3C). However, adult humans exhibit minimal UCP1 expression. It is specifically
expressed in brown adipose tissue, which is abundant in newborns and infants during
early childhood. For a long time, it was believed that brown adipose tissue was absent
in adults [59]. However, at the beginning of the 21st century, it was discovered that
accumulations of brown adipose tissue, larger than 4 mm in diameter, are present in 7.5% of
women and 3.1% of men. There are cervical, supraclavicular, and upper mediastinal depots
of brown adipose tissue. [60]. The relatively high expression of UCP1 is also observed in
the adrenal gland [61] (Figure 3A). UCP1 is expressed to a lesser extent in white adipose
tissue (Figure 3B).

Various studies have shown that UCP1 is mainly expressed in the back subcutaneous
adipose tissue, perirenal adipose tissue, or visceral adipose tissue [62]. In inbred Lou/C rats,
which are a transgenic model of obesity resistance, increased Ucp1 expression was observed
in white adipose tissue, potentially contributing to resistance to diet-induced obesity [63].
A transgenic model that expresses Ucp1 in gastrocnemius muscle (MCK-UCP1-20) showed
lower body weight and specifically decreased muscle mass despite consuming the same
amount of food. Importantly, no cardiac muscle pathology was found in the MCK-UCP1-13
mouse strain, which also expressed Ucp1 [64]. Moreover, the MCK-UCP1-13 mice exhibited
improved functional recovery after heart ischemia/reperfusion [65]. Another transgenic
model, HSA-mUCP1, with increased Ucp1 expression in the muscles, exhibited increased
respiratory quotient levels, indicating overall increased glucose oxidation [66]. Additionally,
the expression of Ucp1 in skeletal muscle reduced the risk of reverse electron transfer in
the mitochondrial respiratory chain and ROS production [67]. It is known that reverse
electron transport to complex I of the respiratory chain is one of the factors contributing to
the ROS hyperproduction, particularly in in vitro mitochondrial systems [68]. The impact
of Ucp1 expression was also studied in kidney injury models, in which the viral-based
overexpression of UCP1 reduced the mitochondrial ROS generation and apoptosis in
hypoxia-treated tubular epithelial cells [69] (Table 1).
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Figure 3. Normalized expression of UCP1-5 genes in the endocrine tissues and lymphoid system
(A) and in different organs (B). Data were collected from the Human Protein Atlas (https://www.
proteinatlas.org/) (accessed 22 July 2023). The number of publications for each query, “UCP1”,
“UCP2”, “UCP3”, “UCP4”, “UCP5”, presented in the PubMed database (https://pubmed.ncbi.nlm.
nih.gov/) (accessed 22 July 2023) (C).

Table 1. Transgenic models in which UCPs are overexpressed.

Overexpressed
Gene Transgenic Strains Model of Disease Effect Reference

UCP1
Transgenic strains

expressing UCP1 in muscle
and heart

Body weight was reduced with the
same food intake. The decrease in
weight mainly occurred in muscle

tissue. No changes were observed in
cardiac muscle

[64]

UCP1
Transgenic strains

expressing UCP1 in muscle
and heart

Heart
ischemia/reperfusion

Functional recovery on reperfusion
was improved [65]

UCP1
HSA-mUCP1 mice

expressing UCP1 in the
skeletal muscles

RQ level was increased, indicating an
overall increase in glucose oxidation [66]

UCP1
HSA-mUCP1 mice

expressing UCP1 in the
skeletal muscles

UCP1 expression in skeletal muscle
reduced the risk of reverse electron

transfer and the production of
reactive oxygen species

[67]

UCP1 Lou/C rats with UCP1
overexpression in WAT Obesity

Prevented body weight gain,
decreased fat mass, and improved

insulin sensitivity
[63]

UCP2 Transgenic fly, UAS-hUCP2
Increased hUCP2 expression in the

adult nervous system, extended
life span

[70]

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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Table 1. Cont.

Overexpressed
Gene Transgenic Strains Model of Disease Effect Reference

UCP2 Transgenic fly, UAS-hUCP2 PD model
Less ROS accumulation, heightened

resistance to rotenone-induced
lethality, and extended life span

[71]

UCP2

Transgenic mice
overexpressing

UCP2 in catecholaminergic
neurons (TH-UCP2)

PD model

Upon acute exposure to MPTP,
TH-UCP2 mice showed

neuroprotection and retention of
locomotor functions

[60]

UCP2 Transgenic mice
overexpressing hUCP2 ALS model Increased survival of sod2−/− mice [72]

UCP2 Transgenic mice
overexpressing hUCP2 ALS model

Worsened mitochondrial dysfunction
and accelerated disease progression

of sod2−/− mice
[73]

UCP2 UCP2/3 transgenic
overexpressing mice Global ischemia

Overexpression of UCP2 protects
thalamic neurons following global

ischemia
[74]

UCP2 UCP2/3 transgenic
overexpressing mice Focal ischemia

Overexpression of UCP2 blunted the
ischemia-induced increase in IL-6

and decrease in Bcl2.
[75]

UCP2 UCP2/3 transgenic
overexpressing mice

Stroke
TBI

Overexpression of UCP2 enhased of
neurological recovery [76]

UCP2 Ucp2KIfl/fl mice Glaucoma Decreased glaucomatous cell death [77]

UCP2 UCP2/3-overexpressing
mice Epileptic seizures

Increased mitochondrial number and
ATP levels with a parallel decrease in

free radical-induced damage
[78]

UCP2
Transgenic mice with
targeted expression of

UCP2 in the liver
Acute liver injury

Expression of UCP2 in mouse liver
increases susceptibility to acute liver
injury induced by lipopolysaccharide

and galactosamine

[79]

UCP3
Mice overexpressing

human UCP-3 in skeletal
muscle (UCP-3tg)

Mice were hyperphagic but
weighed less [80]

UCP3
Mice overexpressing

human UCP-3 in skeletal
muscle (UCP-3tg)

UCP-3tg showed increase in
β-oxidation in the

MTE-1-dependent manner
[81]

UCP3
Mice overexpressing

human UCP-3 in skeletal
muscle (UCP-3tg)

UCP-3tg showed increase in muscle
mitochondrial inefficiency and

decrease in ATP synthesis
[82]

UCP5 UCP5-transfected cell lines
of heart and kidney

The mitochondrial ROS production
was decreased [83]

UCP5
SH-SY5Y neuroblastoma

cells stably overexpressing
human UCP5

PD model
UCP5 overexpression protected

against MPP(+)- and
dopamine-induced toxicity

[84]

UCP2 is a well-studied uncoupling protein (Figure 3C) that is mainly expressed in
organs and cells associated with the immune system [85] (Figure 3A). The analysis of its
expression patterns also shows high expression levels in almost all sections of the digestive
system, adipose tissue, smooth muscle, lungs, and gallbladder (Figures 3B and 4A). UCP2
is expressed at a lower level (compared to UCP4) in the brain (Figure 4C), predominantly
in axons and axon terminals. The heat generated by axonal UCP2 modulates neurotrans-
mission in homeostatic centers, coordinating the activity of brain circuits that regulate
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energy balance and related autonomic and endocrine processes [86]. Drosophila models
overexpressing human hUCP2 in the nervous system have shown increased lifespan, re-
duced oxidative damage, and enhanced resistance to paraquat and rotenone, both of which
are commonly used to create Parkinson’s disease models [70,71]. Similarly, transgenic
mice overexpressing Ucp2 in catecholaminergic neurons exhibited similar effects. These
mice showed a twofold elevation in Ucp2 expression in dopaminergic neurons of the sub-
stantia nigra, resulting in increased mitochondrial uncoupling. When acutely exposed to
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin used in Parkinson’s
disease models, transgenic mice demonstrated neuroprotection and retained locomotor
functions [60] (Table 1).
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Figure 4. Normalized expression of UCP1-5 genes in the gastrointestinal tract (A), in the male and
female reproductive systems (B), in the different brain compartments (C). Data were obtained from
the Human Protein Atlas (https://www.proteinatlas.org/) (accessed 22 July 2023).

The impact of Ucp2 overexpression has been studied in various neurological disease
models. Contradictory results have been obtained in amyotrophic lateral sclerosis (ALS)
models. On the one hand, it has been shown that the overexpression of hUCP2 increased
the survival age of superoxide dismutase 2 knockdown (sod2−/−) mice and reduced ROS
production and oxidative stress throughout the aging process [72]. Conversely, other stud-
ies conducted on the same transgenic model showed that hUCP2 overexpression worsens
mitochondrial dysfunction and accelerates ALS progression [73]. The positive effects of
UCP2 overexpression have been consistently observed in ischemic disease models. The
overexpression of Ucp2 protected thalamic neurons following global ischemia [74] and at-
tenuated the increase in IL-6 levels and decrease in Bcl2 levels following focal ischemia [75].
Ucp2-overexpressing mice demonstrated faster recovery rates after middle cerebral artery
occlusion (MCAO)-induced stroke and traumatic brain injury [76]. Rat transgenic models
overexpressing Ucp2 have not been created. However, the injection of a lentiviral vector
encoding UCP2 (LV-UCP2) into stroke-prone spontaneously hypertensive rats (SHRSP),
fed with a high-salt Japanese-style diet, resulted in the delayed onset of stroke and kidney
injury [87]. In transgenic mice constitutively expressing Ucp2 in the hippocampus prior to
epileptic seizure induction, a substantial reduction in cell death was observed [78]. Ucp2
expression in transgenic animals decreased retinal ganglion cell degeneration and death in

https://www.proteinatlas.org/
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a mouse model of glaucoma [77]. It is worth noting that the overexpression of UCP2 has
a therapeutic effect not only in neurological and neurodegenerative diseases. It has been
shown that the targeted expression of Ucp2 in mouse liver increases susceptibility to acute
liver injury induced by lipopolysaccharide and galactosamine [79] (Table 1).

UCP3 is primarily expressed in skeletal muscles [88] (Figure 3B). The data from the
Protein Atlas indicates that the high expression of UCP3 is observed in the tongue, which
is not contradictory to the previous statement, as the tongue is a muscle organ (Figure 4A).
Mice overexpressing human UCP3 in skeletal muscle (UCP-3tg) exhibited hyperphagia
along with a significant reduction in adipose tissue mass [80] and increased β-oxidation
through a thioesterase-1-dependent mechanism in the mitochondria [81]. However, the
overexpression of Ucp3 in the skeletal muscle of transgenic mice was also accompanied by
an increase in muscle mitochondrial inefficiency, as indicated by a reduction in the ratio of
ATP synthesis to mitochondrial oxidation [82] (Table 1).

UCP4, or solute carrier family 25 member 27 (SLC25A27), is primarily expressed in
the brain and in male and female reproductive systems (Figure 4B). However, it plays a
lesser role in uncoupling oxidative phosphorylation, as it is preferentially localized in close
vicinity to VDAC, presumably at the inner boundary membrane of neuronal mitochondria,
whereas F0F1-ATP synthase is more centrally located at the cristae membrane. Therefore,
due to the distinctive mitochondrial morphology, UCP4 is unlikely to function as a direct
uncoupler of oxidative phosphorylation. However, this observation supports the possibility
that UCP4 may instead play a role in dissipating the excessive proton gradient typically
linked to ROS production [89]. No information was found regarding transgenic models that
overexpress UCP4. However, targeted overexpression was induced using lentiviruses and
vectors. The viral-induced overexpression of UCP4 improved neuronal survival in vitro
in a mouse model of Alzheimer’s disease and prevented spatial memory impairments
in vivo in 3xTg mice [90]. The lentiviral-induced overexpression of UCP4 in astrocytes
was found to promote neuronal survival. The reduction in ATP production was effectively
compensated by an enhancement of glycolysis, which resulted in nonoxidative energy
production without deleterious H2O2 generation. It was observed that astrocytes exhibiting
higher levels of UCP4 produced increased amounts of lactate, which served as an energy
source for neurons and facilitated enhanced neuronal survival [91].

UCP5 (also known as BMCP1, brain mitochondrial carrier protein-1) is similarly
expressed predominantly in the nervous system (Figure 4C), like UCP4. It is the least
studied member of the UCP family (Figure 3C), but cellular cultures overexpressing UCP5
have been obtained. Neuronal (GT1-1) cell lines with the stable overexpression of UCP5
showed a lower mitochondrial ∆µH+, indicating the stronger uncoupling of mitochondria,
as well as reduced ATP production [83]. The stable overexpression of UCP5 provided
protection against 1-methyl-4-phenylpyridinium (MPP(+))- and dopamine-induced toxicity
in SH-SY5Y neuroblastoma cells [84] (Table 1).

4. Transgenic Animal Models in Which Components of Alternative Respiratory
Pathways Are Expressed

The discovery of gene-encoded proteins for alternative respiratory pathways in the
genomes of some animals in 2004 has provided important background for the future
development of transgenic animal models [11]. Ciona intestinalis, an ascidian, has been
widely used as a donor for the alternative oxidase (AOX) in transgenic models in numerous
studies [92–99]. Additionally, in two studies, C. intestinalis was utilized as the source
of alternative NADH dehydrogenases [100,101]. Saccharomyces cerevisiae has been the
primary source of alternative NADH dehydrogenases in most studies [102–105]. There has
also been reported a study in which alternative NADH dehydrogenases from plants were
transfected into human cells [106] (Table 2).
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Table 2. List of transgenic models in which component of alternative respiratory pathways was
expressed.

Model Object Gene Donor
Organism Complex Bypass ROS Effect Model of Disease Reference

Cell lines

Flp-InTM

T-RExTM-293 cells
AOX C. intestinalis

CIV dysfunction.
Cyanide-induced

inhibition

Decrease in
antimycin-

induced
superoxide

overproduction

[97]

COX10-depleted
HEK-293-derived
AOX-transgenic

cells from Hakkaart
et al., 2005

AOX C. intestinalis
CIV dysfunction.
shRNA targeted
against COX10

[92]

COX-defective
fibroblasts AOX C. intestinalis

CIV dysfunction.
Deleterious COX15

gene mutation

Reduction in
the superoxide
production in

COX15– cells in
the presence of

antimycin

Hypertrophic
cardiomyopathy [92]

HEK293 Flp-In cells AOX C. intestinalis Alzheimer’s
disease [94]

Complex I
defective

fibroblasts
NDH-2 Arabidopsis

thaliana

CI dysfunction.
CI-defective
fibroblasts

The
normalization

of SOD activity
[106]

Drosophila

w1118 Drosophila AOX C. intestinalis

CIV dysfunctions.
Partial knockdown

of COXVIc and
complex IV

assembly factor
Surf1

Leigh syndrome [95]

w1118 Drosophila AOX C. intestinalis
Reduction in

the ROS
production

Parkinson’s disease [95]

w1118 Drosophila
with knockdown of
different complex

IV subunits

AOX C. intestinalis

CIV dysfunctions.
Knockdown of
different CIV

subunits

w1118 Drosophila AOX C. intestinalis

AOX abrogates
induction of

oxidative stress
markers in a

Drosophila AD
model

Alzheimer’s
disease [94]

w1118 Drosophila Ndi1 S. cerevisiae

CI dysfunction.
Rotenone-induced

inhibition,
paraquat-induced

inhibition

Mitigation of
mitochondrial

ROS
production,
oxidative
damage

[105]
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Table 2. Cont.

Model Object Gene Donor
Organism Complex Bypass ROS Effect Model of Disease Reference

w1118 Drosophila Ndi1 S. cerevisiae

CI dysfunction.
Rotenone-induced

inhibition

Ndi1 expression
in neurons,

reducing ROS
levels

[102]

UAS-dCIA30
Drosophila Ndi1 S. cerevisiae

CI dysfunction.
Reduced

expression of CI
assembly factor

[103]

w1118 Drosophila Ndi1 Saccharomyces
cerevisiae

CI dysfunction.
Rotenone-induced

inhibition

Reduction in
whole tissue
ROS levels

[104]

Drosophila lines
24,861 and 24,871 Ndx C. intestinalis

Increased
resistance to
menadione-

induced ROS
production

[100]

Mice

Mice (strain not
specified) AOX C. intestinalis

CIV dysfunction.
Cyanide-induced

inhibition

Decrease in
antimycin- and

cyanide-
induced

superoxide
overproduction

[93]

AOXRosa26 mice,
C57Bl/6J strain

background
AOX C. intestinalis

CIV dysfunction.
Cyanide-induced

inhibition
Azide-induced

inhibition.
CIII dysfunction.

Antimicyn-
induced

inhibition

Decrease in
H2O2

production in
succinate-
supported

mitochondria

[99]

AOXRosa26 mice,
C57Bl/6J strain

background
AOX C. intestinalis

CII dysfunction.
Cigarette smoke

condensate-
induced inhibition.
CIV dysfunction.
Cigarette smoke

condensate-
induced

inhibition

Decreases
superoxide
production

[96]

(cIII)-deficient
Bcs1lp.S78G

knock-in mice AOX
backcross with
transgenic mice

AOX C. intestinalis

CIII dysfunction.
(CIII)-deficient

Bcs1lp.S78G

knock-in mice

Lethal
mitochondrial

cardiomyopathy
[98]

There are two main therapeutic effects resulting from the expression of alternative
respiratory pathways in insect and mammalian cells. The first effect is associated with
the restoration of the respiratory rate following inhibition or damage to the subunits of
respiratory chain complexes. The expression of alternative NADH dehydrogenases restored
the respiration rate in cells with defective complex I cells [106], in flies with the reduced
expression of the complex I assembly factor [102], as well as during complex I inhibition by
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rotenone [101,104,105] and paraquat [105]. The expression of AOX led to the restoration
of the respiratory rate upon the inhibition of complex III by antimycin [99], complex IV
by cyanide [93,97,99], azide [99], cigarette smoke condensate [96], mutations in genes
encoding complex IV subunits [92,95,107], and gene knockdown responsible for complex
IV assembly [95] as well as in complex III-deficient mice [98].

The second effect is related to the modulation of ROS metabolism. The expression
of alternative NADH dehydrogenases induced a decrease in the rate of ROS produc-
tion [102,104,105] and suppressed the levels of oxidative stress markers [102,105,106]. AOX
expression reduced the rate of ROS production [95,99], levels of oxidative stress mark-
ers [94], and the rate of superoxide production induced by cyanide [93], antimycin [92,93,97],
menadione [100], and cigarette smoke condensate [96].

The therapeutic potential of alternative respiratory pathways has been demonstrated
in models of Alzheimer’s disease [94], Parkinson’s disease [95], Leigh syndrome [95], and
cardiomyopathy [92,98]. It has been shown that AOX expression may be associated with
the activation of signaling pathways linked to cell survival and protection against oxidative
stress, particularly the Nrf2/ARE signaling pathway [101].

However, it would be incorrect to assume that the expression of genes encoding
components of alternative respiratory pathways is capable of resolving all mitochondrial
dysfunctions. The tko25t mutant Drosophila, which carries a recessive point mutation in the
gene for mitoribosomal protein S12, demonstrates a decreased abundance of mitoribosomal
small subunits, multiple respiratory chain dysfunctions, and ATP synthase deficiency [108].
The expression of AOX from C. intestinalis does not rescue the tko25t phenotype. Addition-
ally, the expression of Ndi1 by S. cerevisiae during development is lethal for tko25t [109].
Moreover, the expression of Ndi1 exacerbates the neuronal phenotype resulting from com-
plex IV subunit knockdown [107]. The overexpression of monocyte chemoattractant protein
1 (Mcp1) in mice cardiomyocytes induces inflammatory cardiomyopathy, leading to death
from heart failure at the age of 7–8 months. AOX is unable to rescue heart failure directly
caused by complex IV deficiency in mice overexpressing Mcp1 [110]. Concerns have been
raised that a drastic decrease in the rate of superoxide production, dependent on AOX,
may impair the functioning of signaling pathways associated with ROS metabolism [93].
Catania et al. (2019) showed that the affinity of alternative NADH dehydrogenase from Ara-
bidopsis thaliana to NADH is over 3-fold higher than the affinity of complex I for NADH
in human fibroblasts. This could potentially have a negative impact on ATP production
and the metabolic status of the entire organism [106].

5. Conclusions

With rare exceptions, we observe that transgenic models simulating uncoupled and
noncoupled respiration have shown positive effects in various disease models. However,
it is important to recognize that implementing this approach as a therapeutic strategy is
currently challenging and not yet practical in clinical practice. In the context of uncoupled
respiration, synthetic uncouplers serve as an alternative for transgenic models that theo-
retically could be implemented in clinical practice not only for eliminating helminths [58]
but also for treating metabolic and neurodegenerative diseases in humans. However,
the situation is more difficult when it comes to the analogs of noncoupled respiration,
which is characteristic of plants and certain types of sessile animals. Currently, we are
not aware of any specific compounds that prevent the formation of a membrane potential
without inhibiting any respiratory complexes. However, in our opinion, the closest model
for simulating noncoupled respiration is provided by methylene blue, which facilitates
alternative electron transport [111]. Methylene blue can accept electrons from NADH,
the succinate dehydrogenase complex, and the alpha-glycerophosphate dehydrogenase
complex, and then transfer them to cytochrome c [112]. Methylene blue can act as a bypass
for an inhibited or damaged complex I [113], similar to how plant alternative NADH dehy-
drogenases function. As a result, when using methylene blue, electrons from the reducing
equivalents pass through fewer coupling complexes compared to fully coupled respiration.
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Today, the intravenous injection of methylene blue is approved by the Food and Drug
Administration (FDA) (Accession Number: DB09241) and European Medicines Agency
(EMA) (Agency product number: EMEA/H/C/002108) for the treatment of patients with
acquired methemoglobinemia. Clinical trials are underway for its potential therapeutic use
in Alzheimer’s disease (Accession Number: NCT03446001). Studies suggest that methylene
blue may slow the progression of Parkinson’s disease [114], Huntington’s disease [115],
amyotrophic lateral sclerosis [116], and cognitive decline associated with aging [117–138].
Consequently, targeting the mitochondrial respiratory chain to reduce the tension on the
inner mitochondrial membrane or bypass inhibited or damaged respiratory complexes
represents a promising direction that requires further investigation.
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