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Abstract: Anthocyanin accumulation in plants plays important roles in plant growth and develop-
ment, as well as the response to environmental stresses. Anthocyanins have antioxidant properties
and play an important role in maintaining the reactive oxygen species (ROS) homeostasis in plant
cells. Furthermore, anthocyanins also act as a “sunscreen”, reducing the damage caused by ultraviolet
radiation under high-light conditions. The biosynthesis of anthocyanin in plants is mainly regulated
by an MYB-bHLH-WD40 (MBW) complex. In recent years, many new regulators in different signals
involved in anthocyanin biosynthesis were identified. This review focuses on the regulation network
mediated by different environmental factors (such as light, salinity, drought, and cold stresses) and
phytohormones (such as jasmonate, abscisic acid, salicylic acid, ethylene, brassinosteroid, strigo-
lactone, cytokinin, and auxin). We also discuss the potential application value of anthocyanin in
agriculture, horticulture, and the food industry.
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1. Introduction

Anthocyanins are a group of flavonoid pigments in plants that produce purple, pink,
red, or blue colors, and play important roles in regulating plant development, growth,
and the interactions between the plant and the environment [1-7]. For example, the
accumulation of anthocyanins in plants can attract pollinators and seed distributors and
can help the plant defend itself against UV-B stress, salinity, drought, and cold stress [8-10].
Furthermore, anthocyanin accumulation is associated with fruit veraison and ripening in
many crop and fruit plants in parallel with the activation of anthocyanin-synthesis-related
enzymes, such as in grape (Vitis vinifera L.), and contributes as an important nutrient for
human beings [11-16].

The biosynthesis of anthocyanin in plants is mainly controlled by some anthocyanin
biosynthetic structural genes, which are divided into two groups: early biosynthetic genes
(EBGs, such as CHS, CHI, and F3'H) and late biosynthetic genes (LBGs, such as DFR, LDOX,
UF3GT, UGT75C1, and 3AT1) [7,17-19]. The EBGs encode the key enzymes to synthesize
the precursors common to flavonoids or other phenolics, while LBGs encode the enzymes
specifically committed to anthocyanins [18] (Figure 1). For more comprehensive reviews
of these enzymes’ functions and the basic biosynthetic pathway of anthocyanins, we refer
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readers to other reviews [2,18,20-23].

In plants, the expression of LBGs is mainly controlled by an MYB-bHLH-WD40 (MBW)
complex, which consists of MYB transcriptional factors (TFs) (such as GL1, PAP1/MYB?75,
VvMYBA1, and VVvMYBAZ2), bHLH TFs (such as TT8, GL3, and EGL3), and WD40 protein
(such as TTG1) in Arabidopsis and grape (Vitis vinifera L.) [24-26]. In recent years, more
and more members of the MBW complex in different plants have been identified, and
different environmental stimuli or plant hormone signaling pathways can regulate the
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expression of MBW members, or they can regulate the assembly and the activity of MBW
complex to control the anthocyanin biosynthetic gene expressions [18]. To date, many new
regulators in different signals involved in MBW-mediated anthocyanin biosynthesis have

been identified (Table 1).

Figure 1. Plants accumulate anthocyanins in response to biological or abiotic stresses for better
growth. When exposed to stresses, the expressions of anthocyanin biosynthetic genes (EBGs/LBGs)
are upregulated, subsequently leading to an increase in anthocyanin accumulation within the plants.
This heightened accumulation assists the plants in defending against stress by means of scavenging
excessive reactive oxygen species (ROS) and reallocating nitrogen resources, among other mechanisms.
Red arrow indicates up-regulation of EBGs or LBGs.
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Table 1. List of genes related to MBW complex and anthocyanin accumulation in plants.

Protein Plant Environmental Stimuli and Function Regarding References
Species Phytohormones Anthocyanin
Arabidopsis . .
HY5 (Col-0, Ler, No-0) Light Upregulation [17]
Arabidopsis . .
COPr1 (Col-0) Light Downregulation [27]
VvBBX44 Grape (Vitis vinifera L.) Light Downregulation [28]
Arabidopsis Light and .
MYB112 (Col-0) salinity Upregulation [29]
Arabidopsis . .
HAT1 (Col-0) Light Downregulation [30]
Arabidopsis . .
TPL (Col-0) Light Downregulation [30]
JAZ1/6/8/11 Ar(”cbé‘fé’)sls Jasmonate Downregulation [31,32]
Arabidopsis Jasmonate, .
ECAP (Col-0) salinity, and drought Downregulation [31,33]
MdMYB308L Apple (Malus domestica) Cold Upregulation [34]
Arabidopsis . .
NLA (Col-0) Low nitrogen Upregulation [35]
Arabidopsis Gibberellin, low phosphorus, and .
DELLA (Col-0, Ler) low nitrogen Upregulation [36-38]
SPX4 A’Zg)g?(r]])sls Low phosphorus Downregulation [39]
PHR1 Arabidopsis Low phosphorus Upregulation [40]

(Col-0)
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Table 1. Cont.
Protein Plant Environmental Stimuli and Function Regarding References
Species Phytohormones Anthocyanin
SMXL6/7/8 Arabidopsis (Col-0) Strigolactone Downregulation [41]
Arabidopsis .

COoI (Col-0) Jasmonate Upregulation [42]
MdMYB9 Apple (Malus domestica) Jasmonate Upregulation [43]
MdTRB1 Apple (Malus domestica) Jasmonate Upregulation [43]
MdJAZ1 Apple (Malus domestica) Jasmonate Downregulation [43]

VvSPL9 Grape (Vitis vinifera L.) Jasmonate Downregulation [44]
MdABI5 Apple (Malus domestica) Abscisic acid Upregulation [45]
Arabidopsis Ethylene,
MYBL2 P Cytokinin and Downregulation [46,47]
(Col-0) N
Abscisic acid
Elongator Arabidopsis Abscisic acid Downregulation [46]
(Col-0)
Arabidopsis T .
NPR1 (Col-0) Salicylic acid Upregulation [48]
MdJa2 Apple (Malus domestica) Brassinosteroid Downregulation [49]
Arabidopsis .
EIN2 (Col-0, WS) Ethylene Downregulation [47]
Arabidopsis .
EIN3/EIL1 (Col-0, WS) Ethylene Downregulation [47]
Arabidopsis .
ETR1 (Col-0, WS) Ethylene Downregulation [47]
PpERF9 Pear (Pyrus spp.) Ethylene Downregulation [50]
MdARF13 Apple (Malus domestica) Auxin Downregulation [51]
MdIAA26 Apple (Malus domestica) Auxin Upregulation [52]

In this review, we focus on the regulation network controlling anthocyanin biosyn-
thesis, which is influenced by environmental stimuli and plant hormones. We also delve
into the recent discoveries of key regulatory factors within the anthocyanin biosynthesis
pathways in plants. Additionally, we underscore the potential applications of anthocyanins
in crop breeding.

2. Environmental Stimuli and Anthocyanins
2.1. Light and Anthocyanin Biosynthesis in Plants

Light is crucial in regulating anthocyanin biosynthesis in plants [53]. Without light,
the anthocyanin biosynthesis in plants is nearly blocked [27,54,55]. In Arabidopsis, ELON-
GATED HYPOCOTYL 5 (HY5) and its coactivators BBX20/21/22 play key roles during
light-induced anthocyanin biosynthesis [17,56,57]. hy5 and bbx20 21 22 mutants accumulate
lower anthocyanin levels compared with wild-type plants [56,58]. HY5 is a key component
in light signaling and was shown to act as a transcriptional activator of CHS, CHI, F3'H,
MYB12, and PAP1/MYB?75 via its direct binding to ACEs (ACGT-containing elements), lead-
ing to the accumulation of anthocyanins in response to visible and UV-B light [17,59-62].
In contrast, VvBBX44 directly represses VVHY5 and VvMYBAT1 to balance the anthocyanin
concentration under light in grape (Vitis vinifera L.) [28]. Studies showed that in etiolated
seedlings, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), which is a RING-finger E3
ubiquitin ligase, promotes the polyubiquitination and subsequent degradation of HY5 and
HYH (HY5 homolog) in Arabidopsis, which indicates that COP1 acts as a negative regulator
of light-induced anthocyanin biosynthesis [17,59,63]. Furthermore, studies also showed
that COP1 can directly target PAP1 and PAP2 and promote their degradation in the absence
of light [27]. When exposed to light, COP1 is inhibited by activated photoreceptors, such as
CRYPTOCHROMESs (CRYs), PHYTOCHROME:s (PHYs), and UV RESISTANCE LOCUS 8
(UVRS), thereby allowing for the accumulation of positively acting TFs [53,64].
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Under high-light conditions, genes involved in anthocyanin synthesis are significantly
induced, leading to the accumulation of anthocyanins in plants [29,53,65,66]. For instance,
high light induces more expressions of MYB112 and PAP1/MYB75, therefore leading to
more anthocyanin structural gene expressions [29,65]. It is reported that the MAPK pathway
plays an important role in high-light-induced anthocyanin biosynthesis. MAP KINASE4
(MPK4) could be activated in response to light and phosphorylate PAP1/MYB75 to increase
the stability of PAP1/MYB75, which is essential for light-induced anthocyanin accumu-
lation [65]. On the other hand, the class Il HD-ZIP protein HAT1 negatively regulates
the high-light-induced anthocyanin accumulation through competitively interacting with
MYB?75 and interferes with the formation of the MBW complex, thereby repressing the LBG
(such as DFR, LDOX, and UF3GT) expressions via recruiting histone deacetylase mediated
by TOPLESS (TPL) [30]. There is a report indicating that under high light treatment, the
light attenuation function of anthocyanins is more important than their antioxidant role in
photoprotection [66] (Figure 2).
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Figure 2. Mechanism of environmental-stress-related anthocyanin biosynthesis. Environmental
stresses can promote anthocyanin biosynthesis by inducing the expressions of anthocyanin biosyn-
thesis regulatory genes (such as MYBs, WD40, and bHLHSs). Black arrows indicate positive regulation.
This model is modified from Araguirang et al. (2022) [53].

2.2. Salinity Induces Anthocyanin Biosynthesis

Salinity is one of the most widespread abiotic stresses all over the world, and it
can induce secondary stress in plants, such as osmotic stress, iron stress, and oxida-
tive stress [67,68]. It was reported that salt stress leads to the accumulation of antho-
cyanins, which are proposed to be antioxidants that scavenge excessive ROS induced by
salinity [8,9,29,31,33,69,70]. pap1-D plants have increased anthocyanin accumulation and
radical scavenging activity [71], and they exhibit an enhanced tolerance to high salinity [8].
Truong et al. (2018) reported that enhanced anthocyanin biosynthesis leads to better growth
performance of plants under low-nitrate and high-salinity conditions via the regulation
of nitrate metabolism [72]. Moreover, this group found that increasing the amount of an-
thocyanins by knocking out FLS1 in pap1-D mutant could improve the salt stress tolerance
under high NOj3™ application [73]. Moreover, ectopic expression of AtDFR leads to a high
level of anthocyanin accumulation and confers significant salinity tolerance in Brassica
napus L. [70]. Furthermore, Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3
were shown to improve salt tolerance via the modulation of anthocyanin accumulation [9].

Salinity induces the expressions of many anthocyanin-biosynthesis-related genes,
including both EBGs (CHS, CHI, F3'H) and LBGs (DFR, LDOX, UF3GT, UGT75C1, 3AT1,
etc.) in plants [29,33]. To date, several transcriptional regulators are identified as key
factors that regulate salt-induced structural genes. PAP1/MYBY75 is the most known TF
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that upregulates salt-induced anthocyanins, where the salt-induced anthocyanins could
be enhanced by adding sucrose, which further indicates that salt signaling may engage in
cross-talk with sucrose signaling [8,33]. AtMYB112 is another TF that positively regulates
salinity-induced anthocyanins. Salt stress (150 mM NaCl) can induce the expression
level of AtMYB112 and lead to the upregulation of downstream genes (AtMYB7 and
AtMYB32), hence promoting salt-induced anthocyanin biosynthesis in Arabidopsis [29].
Recently, research into Arabidopsis indicates that the adaptor protein EAR motif-Containing
Adaptor Protein (ECAP) interacts with PAP1/MYB75 and represses its activity in normal
conditions, while different levels of salinity can remove the ECAP’s repression of the
PAP1/MYB75-dependent MBW complex by both jasmonate (JA) signaling and an unknown
pathway (Figure 2) [33].

2.3. Drought Promotes Anthocyanin Accumulation in Plants

Drought is one of the most common environmental stresses that plants suffer [74-77].
Lots of studies found that drought promotes anthocyanin accumulation in plants, and the
accumulated anthocyanins serve as an important antioxidant to scavenge ROS induced by
drought stress [9,78]. Recently, there was a study showing that the ectopic overexpression
of StANT1 (a key TF that regulates ANS, DFR, and UFGT from Solanum tuberosum) in tobacco
plants leads to the overaccumulation of anthocyanins, and the transgenic plants have
a stronger drought tolerance compared with wild-type plants [79] (Figure 2). A study
of Arabidopsis indicated that different abiotic-stress-induced anthocyanins have different
localizations at the tissue and organ levels [80]. ECAP was shown to mediate the drought-
induced anthocyanin accumulation in Arabidopsis [31]; however, whether this process is
dependent on JA signaling remains unclear.

2.4. Cold Induces Anthocyanins Accumulation in Plants

Cold stress, which is a common abiotic factor, exerts significant impacts on plant
growth, development, and overall fitness [81]. Plants have evolved complex molecular
responses to counteract the detrimental effects of cold stress, and one intriguing aspect of
this response is the induction of anthocyanin synthesis [4,82]. Cold stress triggers the upreg-
ulation of specific transcription factors, such as MYBs (such as BrMYB2 and AtMYB75) and
bHLHs (such as BrTT8), which bind to the promoter regions of anthocyanin biosynthetic
genes (such as BrDFR1, BrANS1, and BrUF3GT?2), initiating the transcriptional cascade
that leads to anthocyanin production [83] (Figure 2). Anthocyanins possess potent antiox-
idant properties to scavenge ROS generated during cold stress [84]. ROS accumulation
can result in cellular damage, membrane disruption, and oxidative stress. By effectively
neutralizing ROS, anthocyanins contribute to the maintenance of cellular integrity and
homeostasis, reducing the potential for cold-induced damage [84,85]. In addition to ROS
scavenging, anthocyanins may also play a role in photoprotection [86]. Cold stress often
leads to photoinhibition due to the deregulation of photosynthesis homeostasis. Antho-
cyanins can act as “sunscreen” pigments, absorbing excess light energy and dissipating it as
heat, thereby protecting the photosynthetic apparatus from photodamage [87,88]. In apple,
MdMYB308L serves as a positive regulator of cold tolerance and anthocyanin accumulation
through its interaction with MdbHLH33 and undergoes protein degradation mediated
by MdMIEL1, highlighting the pivotal role of dynamic MYB-bHLH protein complexes in
plant growth and development regulation [34]. In grape (Vitis vinifera L.), anthocyanin
accumulation in leaves induced by the low temperature in autumn can help to enhance
their cold tolerance [89].

2.5. Anthocyanins Confer Pest and Disease Resistance in Plants

Recent studies suggest that anthocyanins may contribute to plant defense against pests
and diseases [4,10,90-92] (Figure 2). For instance, the content of anthocyanins was signifi-
cantly increased in rust-infected symptomatic tissue of Malus apple, and the anthocyanin
biosynthetic genes McDFR and McLOX were also upregulated [91]. Another study showed
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that some flavonoid glycosides in Basella alba could inhibit the growth of Spodoptera litura lar-
vae [92]. However, the molecular mechanisms of pest- or disease-mediating anthocyanins
accumulation still need further investigation.

2.6. Nutrient-Limitation-Induced Anthocyanin Accumulation in Plants

Low phosphorus and low nitrogen stresses often induce the accumulation of antho-
cyanins in plants. Under conditions of phosphorus and nitrogen limitation, plants adapt to
environmental stress by modulating nutrient allocation and metabolic pathways, including
increasing the synthesis of anthocyanins [35,36,93] (Figure 2). This phenomenon is known
as nutrient-limitation-induced anthocyanin accumulation [35,94,95]. This represents a
physiological response strategy of plants to environmental stress that is aimed at enhancing
their resilience.

Phosphorus is a vital component in energy transfer and molecular signaling, and thus,
its scarcity prompts plants to allocate resources strategically. In response, plants regulate
anthocyanin biosynthesis as a part of a larger mechanism to enhance their adaptive fit-
ness [36,96]. Under low-phosphorus conditions, increased expression of MYB transcription
factors, such as PHOSPHATE STARVATION RESPONSE 1 (PHR1), was observed [39,40,97].
PHR1 can initiate a signaling cascade that directly upregulates anthocyanin-related genes,
such as F3'H and LDOX in Arabidopsis [40]. Furthermore, SPX4 also controls the PAP1
protein level and affects the PAP1-mediated anthocyanin pathway under low-phosphorus
stress [39]. Notably, the Gibberellin (GA)-DELLA signaling pathway also regulates the
phosphate-starvation-induced anthocyanin in Arabidopsis [36].

Similarly, low-nitrogen stress triggers a sophisticated interplay of molecular mech-
anisms that culminate in the induction of anthocyanin accumulation. Nitrogen, as an
essential component of amino acids and proteins, plays a central role in plant growth
and development. In response to nitrogen scarcity, plants redistribute resources to favor
metabolic pathways that improve nutrient efficiency [98,99]. This reallocation often coin-
cides with the accumulation of anthocyanins, as observed in the model plant Arabidopsis
thaliana. NLA (nitrogen limitation adaptation) plays a key role in regulating N-limitation-
induced anthocyanin synthesis. The nla mutant cannot accumulate anthocyanins and
instead produces an N-limitation-induced early senescence phenotype [35]. The MYB TFs
also play a key role in low-N-induced anthocyanin accumulation, and the PAP1 loss-of-
function mutant showed low anthocyanin accumulation and low survival rate under a
low-N stress treatment [93,100]. Furthermore, a DFR-deficient mutant #3 also showed sig-
nificantly lower survival rates after N starvation compared with the wild type in Arabidopsis
(Figure 2). These studies all indicate that low-N-induced anthocyanin accumulation plays
a substantial role in plant tolerance to low-N stress. Moreover, studies also showed that the
GA-DELLA module is involved in nitrogen-deficiency-induced anthocyanin accumulation.
DELLAs could interact with PAP1 and enhance the transcriptional activity of PAP1 to
promote the expressions of F3'H and DFR [37,101].

3. Plant Hormones and Anthocyanins
3.1. Strigolactone Promotes Anthocyanin Accumulation

Strigolactone (SL) is an important phytohormone that participates in regulating shoot
branching, leaf shape, and metabolism in plants [41]. A report indicates that SL can promote
the accumulation of anthocyanin, which further confers adaption to a low-phosphate
condition in Arabidopsis [102]. Wang et al. 2020 found that the SL-mediated anthocyanin
biosynthesis was triggered by the degradation of SMXL6, SMXL7, and SMXLS8 proteins
through the 26S proteasome pathway, further promoting the expressions of PAP1/PAP2 in
Arabidopsis. The SMXLs are the key repressors and have dual functions in SL signaling. On
one hand, SMXL6 can directly bind the promoters of SMXL6/7/8 and negatively regulate
their transcription; on the other hand, SMXL6 can function as a transcriptional repressor
to inhibit the expressions of SL-responsive genes, including PAP1/PAP2 [41] (Figure 3).
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However, further investigation is still needed to determine which TFs directly bind to
SMXLs and function upstream of PAP1/PAP2.
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Figure 3. Mechanism of plant-hormone-related anthocyanin biosynthesis in Arabidopsis, apple, and
pear. The major regulation network between MBW complex and plant hormones (such as Auxin,
ABA, JA, GA, and BR) shows that plant hormones can promote or repress anthocyanin biosynthesis
via positively or negatively regulating MBW complex or directly regulating LBG expressions. Black
arrows indicate positive regulation and perpendicular lines indicate negative regulation.

3.2. JA Mediates Anthocyanin Biosynthesis

JA is a plant hormone that participates in plant defense against biotic/abiotic stress
and regulates plant metabolisms [18,103]. JA was shown to have a positive effect on
anthocyanin biosynthesis in plants [32,42,104]. Studies showed that multiple members of
JA signaling in plants are involved in anthocyanin biosynthesis. The mutants of JA receptor
gene CORONATINE INSENSITIVE1 (COI1) and JA biosynthetic gene 12-oxophytodienoate
reductase 3 (OPR3) show a low anthocyanin phenotype compared with wild-type Arabidopsis
seedlings [31-33,42]; while the key repressors of JA signaling, namely, JAZs, are negative
regulators of anthocyanin accumulation [31,32,105], and ECAP acts as an adaptor protein
mediating the interacting of JAZ6/8 and co-repressor TPR2 to form the JET complex and
plays a negative role in anthocyanin biosynthesis in Arabidopsis [31]. It has become clear that
JA regulates anthocyanin biosynthesis by affecting the stability and activity of the MBW
complex [31,32]. JAZ1/8/11 can competitively inhibit the formation of the MBW complex
and hence inhibit the expressions of LBGs [32]. ECAP-mediated repression is mainly
achieved via histone deacetylation on the target genes of the MBW complex rather than
by competitively binding with MBW members [31], while JA promotes the degradation of
JAZs and allows for the activity of the MBW complex, thereby leading to the upregulation
of LBGs [31,32]. In apple, a study showed that the JAZ1-TRB1-MYB9 complex dynamically
modulates the JA-mediated accumulation of both anthocyanin and proanthocyanidin [43]
(Figure 3). Furthermore, in grape (Vitis vinifera L.), methyl jasmonate (MeJA) treatment
promotes anthocyanin accumulation by regulating a VvmIR156-VvSPL9 module in the
early stage of color conversion [44].

3.3. Abscisic Acid Promotes Anthocyanin Accumulation

Abscisic acid (ABA) is a plant hormone that regulates plant growth, development,
and stress response [106,107]. There are also many reports indicating that ABA mediates
development-dependent anthocyanin biosynthesis in the leaves and fruits of many plants,
such as apple, strawberry, sweet berry, bilberry, and lycium plants [45,108-112]. The key
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TF of ABA signaling in apple, namely, MdABI5, was found to positively regulate ABA-
induced anthocyanin biosynthesis by directly upregulating the expression of MdbHLH3
and interacting with MdbHLHS3 to enhance the MAMYB1-MdbHLH3 interaction, which
led to the upregulation of MdDFR and MdUF3GT transcripts [45]. Elongators also play
important roles in regulating ABA signaling and anthocyanin biosynthesis. The Elongator
subunit (ELO1/ELP4, ELP2, and ELP6) mutants in Arabidopsis are hypersensitive to ABA
and accumulate more anthocyanins than the wild type [46]. Further investigation shows
that Elongator positively regulates the expression of MYBL2, which is a negative regulator
of the MBW complex [46] (Figure 3).

3.4. Salicylic Acid Mediates Anthocyanin Biosynthesis

Salicylic acid (SA) is a vital plant hormone that regulates immunity against biotrophic
and semi-biotrophic pathogens [113]. SA also positively regulates anthocyanin accumu-
lation in many plants, such as grape, pomegranate, and Arabidopsis [48,114,115]. It shows
that knocking out the SA receptor NPR1 leads to a low-anthocyanin-content phenotype in
Arabidopsis compared with the wild type, regardless of the airborne fungus treatment [48].
Furthermore, the MBW complex also participates in airborne-fungus-induced anthocyanin
biosynthesis [48]. This indicates that SA signaling mediates airborne-fungus-induced an-
thocyanin accumulation, though the key components of the TFs or other co-regulators are
still not very clear.

3.5. Brassinosteroid and Anthocyanin Biosynthesis

Brassinosteroid (BR) is a new class of plant hormone that participates in many phys-
iological processes, including anthocyanin biosynthesis, in many plants [49,116-118]. In
grape, the exogenous application of BR and its analogs led to an increase in anthocyanin
accumulation in its fruit [119]. However, a study of apple showed that BR treatment inhibits
the synthesis of anthocyanin, and the MdBZR1-MdJa2 module plays a negative role in the
control of downstream LBG expressions [49] (Figure 3). Furthermore, studies of Arabidopsis
also indicated that the BR biosynthetic mutant det2 accumulates more anthocyanins than
the wild type [116,120], indicating that BR acts as a negative regulator of anthocyanin
biosynthesis. BR may cross talk with JA and CK signals to regulate anthocyanin biosynthe-
sis [121,122]. It was indicated that JA-induced anthocyanin accumulation was repressed
in BR mutants or the wild type treated with brassinazole, which is an inhibitor of BR
biosynthesis, whereas it was induced via an application of exogenous BR. Further study
showed that BR affects JA-induced anthocyanin accumulation by regulating the LBGs,
and this regulation might be mediated by the WD-repeat/MYB/bHLH transcriptional
complex [121].

3.6. Cytokinin Mediates Anthocyanin Biosynthesis

Cytokinin (CK) is an important plant hormone that controls plant organ formation,
seed germination, senescence, etc. [123]. There was a study that showed that exoge-
nous CK treatment promotes Arabidopsis accumulating more anthocyanin pigments [124],
which indicates that CK may play a positive role in regulating plant anthocyanin biosyn-
thesis. CK enhances sucrose-mediated anthocyanin pigmentation, and the CK sensors
(AHK2/3/4), histidine-containing phosphotransfer proteins (AHP2/3/5), and master TFs
(type B ARR1/10/12) in CK signaling mediate this process in Arabidopsis [1,125] (Figure 3).
However, CK seems to play a negative role during the high-salinity-induced anthocyanin
accumulation. It is reported that the CK-signaling-defective mutants ahp2,3,5 and arr1,10,12
triple mutants show more anthocyanin accumulations after a high-salinity treatment [126].
This indicates that CK-mediated anthocyanin biosynthesis is very complex and CK may
cross talk with other signals to regulate anthocyanin biosynthesis and cope with the change
in environment, such as high salinity. And further investigation should focus on the mech-
anism of how CK interacts with other signals to regulate anthocyanin biosynthesis under a
stress environment.
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3.7. Ethylene and Anthocyanin Biosynthesis

Ethylene participates in many biological processes, such as plant growth, senescence,
fruit ripening, and stress responses [127,128]. There are also reports showing that ethylene
negatively regulates anthocyanin pigmentation in many plants [47,129,130]. It was found
that ethylene inhibited sucrose- and light-induced-anthocyanin accumulation in Arabidop-
sis [47,129,131]. The mutants of key components in Arabidopsis ethylene signaling, such
as etrl-1, ein2-1, and ein3 eill, all showed ethylene-insensitive and enhanced anthocyanin
accumulation phenotypes and further investigation showed that ethylene represses an-
thocyanin biosynthesis by upregulating the expression of the negative TF MYBL2 while
downregulating the expression of positive TFs, such as MYB75, GL3, and TT8 [47] (Figure 3).
In tomato, exogenous ethylene treatment significantly repressed anthocyanin accumulation
and the expression of SIAN2-like and other anthocyanin-related genes [130]. A recent study
indicates an ethylene-responsive transcription factor PpPERF9 inhibits anthocyanin biosyn-
thesis through epigenetic repression of PpRAP2.4 and PpMYB114 via histone deacetylation
in pear [50] (Figure 3). However, ethylene can promote anthocyanin accumulation in certain
fruits by upregulating genes related to anthocyanin synthesis or increasing the activity
of enzymes involved in anthocyanin metabolism. This was observed in fruits such as
plum (Prunus spp.), grape (Vitis vinifera L.), and strawberry (Fragaria x ananassa) [132-134].
Furthermore, when dark-grown sorghum seedlings, which were treated with ethylene,
were subsequently exposed to light, the anthocyanin levels increased compared with those
without treatment [131]. In summary, the relationship between ethylene and anthocyanin
is complex and warrants further exploration in future studies.

3.8. GA Negatively Regulates Anthocyanin Biosynthesis

GA is one of the important plant hormones that regulate a diverse range of processes
associated with plant growth and development [135]. There are many studies that showed
that GA acts as a negative regulator in plant anthocyanin biosynthesis [37]. For instance,
a study showed that exogenous application of GA treatment could significantly reduce
anthocyanin accumulation in Arabidopsis wild-type seedlings [38]. GA also negatively
regulates low-temperature-induced anthocyanin accumulation in a HY5/HYH-dependent
manner [136]. Zhang et al. 2017 found that a DELLA protein, namely, RGA, can strongly
interact with PAP1/MYB75 and enhance its transcriptional activity in Arabidopsis, thereby
leading to the upregulation of the LBGs under a nitrogen deficiency condition [37]. GA sig-
naling may engage in cross-talk with ABA and JA signaling-mediated anthocyanin biosyn-
thesis, where it was shown that DELLA proteins can promote anthocyanin biosynthesis
through sequestering MYBL2 and JAZ suppressors of the MBW complex in Arabidopsis [38]
(Figure 3).

3.9. Auxin and Anthocyanin Biosynthesis

Auxin is an important phytohormone that governs plant growth, development, and
responses to environmental variations [137-139]. Early studies found that exogenous
indole acetic acid (IAA) represses Sorghum and Brassica anthocyanin accumulation in
a dose-dependent manner [140,141], indicating that auxin may play a negative role in
regulating anthocyanin biosynthesis in plants. Later studies in many plants confirmed that
high auxin can repress plant anthocyanin accumulation [51,52,142,143]. Recently, studies
in apple showed that auxin inhibits anthocyanin biosynthesis through the Aux/IAA-ARF
signaling pathway [51]. On one hand, a TF MdARF13 binds the promoter of MdDFR and
inhibits its transcription; on the other hand, MdARF13 also destabilizes the MBW complex
by competitively interacting with MdAMYB10, which is a key member of the MBW complex
in apple. When the auxin level is low, the auxin/indole-3-acetic acid (Aux/IAA) repressor
MdAIAA121 binds MdARF13 and restrains it from directly binding the MdDFR promoter
or interacting with MdMYB10 [51] (Figure 3). Furthermore, another study in apple also
found that MdIAA26 acts as a positive regulator that promotes anthocyanin accumulation,
while auxin promotes the degradation of MdIAA26. However, further investigation is
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still needed to determine which MdAREF is the target of MAIAA26 [52]. Recently, there
was a study in sweet cherry that showed that the synthetic auxin 1-naphthaleneacetic acid
(NAA) treatment enhances the anthocyanin pigments during the straw-color stage of fruit
development, probably by regulating ethylene and ABA metabolism [144]. This indicates
that auxin may cross talk with other signals to regulate anthocyanin biosynthesis, and
further studies should focus on the mechanisms of how auxin interacts with other signals
to control anthocyanin homeostasis in plants.

4. Unveiling the Future: Anthocyanins’ Revolutionary Role in Agriculture, Food,
and Horticulture

Anthocyanins, which comprise a class of natural pigments responsible for the vibrant
hues of various fruits, vegetables, and flowers, have gained significant attention due to
their potential health benefits [145,146]. As scientific studies continue to unravel the multi-
faceted properties of anthocyanins, their applications in agriculture and food processing
are emerging as promising avenues for enhancing visual appeal, nutritional content, and
overall consumer satisfaction.

4.1. Crop Color Enhancement

Synthetic food colorants have raised concerns regarding their safety and impact on
health. Anthocyanins offer a natural alternative to food coloring, enabling food processors
to meet consumer demand for visually appealing and safe products without compromising
health [147]. Anthocyanin-rich foods not only add vibrant colors but also contribute
to nutritional enhancement. Incorporating these pigments into a variety of processed
foods can elevate their antioxidant and phytonutrient contents, thereby improving the
overall nutritional profile. Anthocyanin-rich crops have the potential to revolutionize
the esthetics of agricultural landscapes. Manipulating anthocyanin biosynthesis through
genetic engineering or selective breeding can result in visually appealing crops, thereby
increasing consumer interest and market value (Figure 4).

Abiotic stress-
tolerant crop

breeding

Color-enhanced Disease-

horticultural resistant crop

crop breeding

Potential
Natural food . Ornamental
application
colorants . plants
of anthocyanin

Figure 4. Anthocyanins’ potential applications in agriculture, food, and horticulture. Anthocyanins
have various potential applications in food, crops, and horticulture due to their health benefits,
enhanced stress tolerance, and bright colors.

4.2. Stress-Tolerant Crop Breeding

Anthocyanins have been linked to enhanced stress tolerance in plants, including resis-
tance to various abiotic stresses and biotic stresses [2,4,93]. Incorporating these traits into
crops can lead to improved resilience, increased yield stability, and sustainable agricultural
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practices, which may provide significant guidance to crop breeding and improvement
(Figure 4).

4.3. Ornamental Plant Innovations

The utilization of anthocyanins can extend beyond edibles to ornamental plants [148].
Developing new cultivars with vibrant colors and prolonged bloom periods can signifi-
cantly enhance the ornamental horticulture industry. Furthermore, anthocyanin-rich plants
can contribute to urban greening initiatives to beautify cityscapes while also providing
ecosystem services, such as air purification and temperature regulation (Figure 4).

The growing body of research on anthocyanins’ health benefits and diverse applica-
tions has sparked interest across the agricultural and food industries. From enhancing
crop aesthetics to improving nutritional content and contributing to sustainable agricul-
tural practices, anthocyanins hold immense promise. As scientific knowledge advances
and consumer preferences shift toward natural and healthier options, the integration of
anthocyanins in agriculture, food processing, and horticulture is poised to play a pivotal
role in shaping the future of these industries. Thus, identifying additional regulatory and
structural genes controlling anthocyanin biosynthesis in various plants and deciphering
their regulatory networks holds significant scientific importance for the future molecular
breeding of crops and horticultural species.
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