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Abstract: A central event in the pathogenesis of Alzheimer’s disease (AD) is the accumulation of
senile plaques composed of aggregated amyloid-β (Aβ) peptides. The main class of drugs currently
used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)
inhibitors. In this study, it has been shown that Aβ augmented AChE activity in vitro, maximum
activation of 548 ± 5% was achieved following 48 h of incubation with 10 µM of Aβ1–40, leading
to a 7.7-fold increase in catalytic efficiency. The observed non-competitive type of AChE activation
by Aβ1–40 was associated with increased Vmax and unchanged Km. Although BChE activity also
increased following incubation with Aβ1–40, this was less efficiently achieved as compared with
AChE. Ex vivo electrophysiological experiments showed that 10 µM of Aβ1–40 significantly decreased
the effect of the AChE inhibitor huperzine A on the synaptic potential parameters.

Keywords: β-amyloid peptide; cholinesterase; non-essential enzyme activators

1. Introduction

Alzheimer’s disease (AD) is a genetic and sporadic brain disorder that causes the
loss of intellectual and social skills [1]. AD is morphologically defined by the presence of
β-amyloid-containing plaques and tau-containing neurofibrillary tangles, which correlate
with neuronal degeneration and brain atrophy [2]. Unfortunately, the causes of the disease
are currently unknown [3]. Therefore, current therapies are largely symptomatic and aimed
at delaying the moment of complete disability of patients [4].

Symptomatic AD therapies are generally based on the “cholinergic hypothesis”. Ob-
served characteristics of AD neuropathology include the massive loss of basal forebrain
cholinergic neurons, resulting in cholinergic deficits in various brain regions [5–7]. These ob-
servations led to the introduction of acetylcholinesterase (AChE) and butyrylcholinesterase
(BChE) inhibitors as a primary treatment for AD. These enzymes deactivate the neurotrans-
mitter acetylcholine (ACh), partially inhibit cholinesterases (ChE) and can compensate for
the cholinergic deficit. In most patients, treatment with ChE inhibitors has a positive effect
during the early stages of the disease [8].

The main pathological hallmark of AD is a progressive production of oligomerized
amyloid-β (Aβ) peptides, followed by the formation of Aβ plaques. Accumulation of
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oligomerized Aβ may trigger or contribute to the process of neurodegeneration. Oligomer-
ized Aβ causes a wide range of neurotoxic effects, such as impaired synaptic transmission
and plasticity, and mitochondrial dysfunction, etc. [9–15].

Many studies have attempted to determine the specific cell-surface receptors for Aβ

and its oligomers [16]. It is important to note that AChE—the enzyme whose inhibition is
used for the treatment of AD—can act as a “pathological chaperone” during Aβ oligomer-
ization. AChE has been shown to promote Aβ oligomerization by forming a complex with
growing fibrils [17–20]. AChE also shifts the balance towards the predominance of Aβ

toxic forms and potentiates neurodegenerative changes induced by the Aβ peptide [21–23].
Thus, Aβ–AChE interactions can participate in the amplification of AD progression. From
this point of view, it is also of interest to consider whether Aβ peptide can affect the catalytic
activity of AChE. However, despite the ample evidence of Aβ–AChE interactions, the direct
effect of Aβ oligomers on the enzyme activity has never been studied. Understanding the
intricate relationship between Aβ peptides and ChE activity can be crucial to developing ef-
fective therapeutic strategies such as development of new ChE inhibitors and identification
of alternative targets for medical intervention.

Thus, the current study set out to test the hypothesis that the interactions between
ChE and Aβ can modulate ChE catalytic activity. It is shown that incubation of Aβ1–40
with AChE or BChE increases the catalytic activity of both enzymes. Moreover, the effect of
activation of AChE by Aβ is much more pronounced than for BChE. Ex vivo electrophysio-
logical experiments demonstrated that the application of Aβ significantly reduced the effect
of the AChE inhibitor huperzine A on the parameters of excitatory synaptic potentials.

2. Results
2.1. Aβ1–40 Increases Catalytic Activity of AChE and BChE In Vitro

To evaluate the effect of Aβ1–40 on ChE activity, AChE or BChE were incubated in
the presence of various concentrations of Aβ1–40 (1–10 µM) for 1 h, 3 h, 5 h, 24 h, and 48 h.
Aβ1–40 was assessed to enhance AChE and BChE activity beyond an existing basal level
(Figure 1A,C). Thus, Aβ1–40 can be considered as a non-essential enzyme activator. The
AChE activity shows a trend of increasing over time at each tested concentration of Aβ1–40
(Figure 1B). The most significant AChE activation effect was detected for 10 µM Aβ1–40
after 48 h of incubation: here, AChE activity increased 5.4 times (p = 0.007) as compared to
AChE activity without Aβ peptide (Figure 1B). The AChE activation plateau was reached
24 h after incubation with Aβ1–40: no significant increase in activity after 48 h of incubation
as compared with 24 h incubation was observed (Figure 1B).

Aβ1–40 was shown to activate BChE less effectively than AChE. A significant in-
crease in BChE activity by 0.6 times (p = 0.041) was observed after 3 h of incubation
with Aβ1–40 (Figure 1D). During the next few hours of incubation, the activity did not
change significantly.

It should be noted that despite AChE and BChE activity being decreased over the
incubation time (Figure 1A,C), in general the level of enzyme activity during the experiment
was higher than at the beginning of the incubation period, which indicates an activating,
rather than a stabilizing property of Aβ1–40.

It has been reported that peptides self-assembled into amyloids (other than Aβ) itself
can catalyze hydrolysis of esters [24]. The increase in esterase activity can be assumed to
occur due to hydrolysis of the substrate by aggregated Aβ. To assess whether Aβ1–40 itself
can catalyze hydrolysis of substrates for AChE and BChE, the rate of acetylthiocholine
(ATC) and (butyrylthiocholine) (BTC) hydrolysis was assessed without enzymes. However,
no direct effect of Aβ1–40 on the ATC and BTC hydrolysis was observed. In the presence
of Aβ1–40 aggregated for 24 h, the rate of ATC and BTC spontaneous hydrolysis was not
observed to change. Thus, increased esterase activity occurs precisely as a result of the
effect of Aβ on the catalytic properties of ChE.
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level. Data are presented as mean ± SEM. *—difference to control is statistically significant at p ≤ 
0.05; **—at p ≤ 0.01. Statistical analysis was carried out using the Mann–Whitney test (n = 3). 

The inhibitors of ChE are widely used during symptomatic AD treatment. However, 
it can be assumed that the effect of ChE activation can interfere with the effect of ChE 
inhibition. The effect of Aβ1–40 on the inhibited AChE was studied (Figure 2). Initial 
enzyme activity was taken as 100%. AChE was inhibited by 10 nM of donepezil to 46.5 ± 
4.5% (p = 0.045). It was shown that incubation of the inhibited AChE with Aβ1–40 (10 µM) 
within 24 h significantly increased the AChE activity up to 495.6 ± 3.5% (p = 0.009). It is 
important to note that no significant inhibitory effect of donepezil was observed 
compared to AChE incubated with Aβ1–40 alone (without donepezil). Thus, the effect of 
AChE activation by Aβ1–40 may counteract the effect of AChE inhibition. 

Figure 1. Activity of human AChE (A) and human BChE (C) in the absence and presence of 0.1–10 µM
Aβ1–40 at 412 nm in 0.1 M phosphate buffer (pH 8.0 for AChE and pH 7.0 for BChE) at 25 ◦C. Identical
activities of human AChE (B) and BChE (D), expressed as a percentage of the control level. Data
are presented as mean ± SEM. *—difference to control is statistically significant at p ≤ 0.05; **—at
p ≤ 0.01. Statistical analysis was carried out using the Mann–Whitney test (n = 3).

The inhibitors of ChE are widely used during symptomatic AD treatment. However,
it can be assumed that the effect of ChE activation can interfere with the effect of ChE
inhibition. The effect of Aβ1–40 on the inhibited AChE was studied (Figure 2). Initial enzyme
activity was taken as 100%. AChE was inhibited by 10 nM of donepezil to 46.5 ± 4.5%
(p = 0.045). It was shown that incubation of the inhibited AChE with Aβ1–40 (10 µM) within
24 h significantly increased the AChE activity up to 495.6 ± 3.5% (p = 0.009). It is important
to note that no significant inhibitory effect of donepezil was observed compared to AChE
incubated with Aβ1–40 alone (without donepezil). Thus, the effect of AChE activation by
Aβ1–40 may counteract the effect of AChE inhibition.
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For AChE, Km in the presence of Aβ1–40 was unchanged (α = 1) (Figure 3A,D, Table 1). 
At the same time, increases of Vmax (β > 1) (Figure 3A,C; Table 1) indicating enhanced 
substrate affinity to the AChE active site was observed. Thus, for 10 µM Aβ1–40 a 6.3-fold 
increase in Vmax compared to the control was shown. Therefore, for human AChE the 
activation type can be considered as non–competitive V–type. Activators of this type 
potentially enhance the kinetic rate by realigning the kinetic machinery; here, the rate of 
the chemical step is increased without affecting the substrate binding [26]. It can be stated 

Figure 2. The effect of Aβ1–40 (10 µM) on the AChE inhibited by donepezil was measured after 24 h of
incubation at 412 nm in 0.1 M phosphate buffer (pH 8.0) at 25 ◦C. Data are presented as means± SEM.
*—the difference with the control is statistically significant at p ≤ 0.05; **—at p ≤ 0.01. Statistical
analysis was carried out using the Mann–Whitney test (n = 3).
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2.2. Determination of ChE Kinetic Parameters after Incubation with Aβ1–40

The mechanism of action of Aβ1–40 on AChE and BChE was studied. The activity
of AChE and BChE with 1–10 µM Aβ1–40 was assessed after 24 h of incubation with the
peptide, at which point ChE activation reaches a plateau. The kinetic parameters of the
reaction of hydrolysis of the ATC and BTC (Vmax, Km) without Aβ1–40, as well as after
incubation with 1–10 µM Aβ1–40, was measured. According to the general scheme of an
enzyme modifier (Scheme 1) [25], the type of activator and mechanism of enzyme activation
can be determined by the ratio of the α and β values.
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Scheme 1. General scheme of ChE modifier. X—enzyme modifier; E—ChE; ES—complex of ChE with
substrate; Kx—equilibrium dissociation constant for activator binding to free ChE; Ks—equilibrium
dissociation constant for substrate binding to free ChE; kcat—rate for the product-generating chemical
step; α—value determining the relative affinity for X binding to free ChE; β—factor determining the
overall rate enhancement induced by the modifier.

For AChE, Km in the presence of Aβ1–40 was unchanged (α = 1) (Figure 3A,D, Table 1).
At the same time, increases of Vmax (β > 1) (Figure 3A,C; Table 1) indicating enhanced
substrate affinity to the AChE active site was observed. Thus, for 10 µM Aβ1–40 a 6.3-fold
increase in Vmax compared to the control was shown. Therefore, for human AChE the
activation type can be considered as non–competitive V–type. Activators of this type
potentially enhance the kinetic rate by realigning the kinetic machinery; here, the rate
of the chemical step is increased without affecting the substrate binding [26]. It can be
stated that Aβ1–40 may bind before and after the ATC binding with equal affinity to the
free AChE and complex of AChE with ATC. The intersection of the Lineweaver–Burk plots
(Figure 3B) in the absence and presence of 0.1–10 µM Aβ1–40 confirms that Km does not
change. In addition, gradual increases up to 2.4 times in Kss values with changing Aβ1–40
concentrations were shown (Table 1).

Table 1. Kinetic constants for human AChE, determined in 0.1 M phosphate buffer at pH 8.0 in the
presence of Aβ1–40 at concentrations within the 0.1–10 µM range for ATC as substrate at 25 ◦C.

[Aβ1–40], µM Km
mM

Kss
mM

Vmax
µM/min

kcat
min−1

kcat/Km
M−1 min−1

Control 0.2 ± 0.06 4.1 ± 2.6 0.8 ± 0.1 533,333 ± 66,667 3.1 ± 1.1 × 109

0.1 0.1 ± 0.02 8.1 ± 3.6 2.4 ± 0.2 1,600,000 ± 133,333 1.3 ± 0.7 × 1010

1 0.1 ± 0.03 8.5 ± 4.1 3.8 ± 0.3 2,533,333 ± 200,000 1.8 ± 0.7 × 1010

10 0.1 ± 0.03 9.7 ± 5.8 5.1 ± 0.5 3,400,000 ± 333,333 2.4 ± 1.1 × 1010
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Figure 3. Demonstration of the type of activation of human AChE by Aβ1–40 at 412 nm in phosphate
buffer 0.1 M, pH 8.0 at 25 ◦C. Data are expressed in the form of representative kinetic curves of the
reaction rate of human AChE with ATC (A) and in the form of a representative Lineweaver–Burk
plot for ATC concentrations below 1 mM (B). Changes of kinetic constants Vmax (C) and Km (D)
were determined by non-linear fitting of reaction rate curves to Equation (2). Data are presented as
means ± SEM (n = 3).

For simplicity, the overall rate can be described by a single first-order rate constant
kcat proportional to the Vmax values (i.e., kcat = Vmax/[ChE]) [27] and the kinetic efficiency
of ChE in the presence of Aβ is best defined by the second-order hydrolysis rate constant
kcat/Km [28]. Table 1 shows the estimated kcat and kcat/Km ratio for AChE.

Hydrolysis of ATC by human AChE is rapid; here, the second-order hydrolysis rate
constant is equal to 3.1 ± 1.1 × 109 M−1 min−1. The increase in this ratio with the presence
of 0.1–10 µM Aβ1–40 in the medium indicates an increase in the kinetic efficiency of the
AChE (Table 1). Thus, it is shown that incubation of the AChE with 10 µM Aβ1–40 leads to
a catalytic efficiency 7.7-fold greater than that of AChE in the control.

Determining the type of activation for BChE by Vmax and Km was complicated due to
the small percentage of activation (maximum 154 ± 1.5%). A minor decrease in Km and
an increase in Vmax were observed (Figure 4A,C,D; Table 2). However, Km values have no
defined trend, and according to the Lineweaver–Burk plot for BTC concentrations below
1 mM, a mixed type of activation can be assumed (Figure 4B). Thus, Aβ1–40 is able to bind
to BChE before, or after BTC with varying affinity. In addition, there were no changes in
Kss values with increasing Aβ1–40 concentrations (Table 2).
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Table 2. Kinetic constants for human BChE, determined in 0.1 M phosphate buffer at pH 7.0 in the
presence of Aβ1–40 at concentrations within the 0.1–10 µM range for BTC as substrate at 25 ◦C.

[Aβ1–40], µM Km
mM

Kss
mM

Vmax
µM/min

kcat
min−1

kcat/Km
M−1 min−1

Control 0.02 ± 0.01 2.6 ± 0.7 0.2 ± 0.02 20,909 ± 2182 1.0 ± 0.3 × 109

0.1 0.03 ± 0.01 2.0 ± 0.6 0.3 ± 0.03 22,727 ± 3000 0.8 ± 0.3 × 109

1 0.03 ± 0.01 2.3 ± 0.9 0.3 ± 0.04 24,545 ± 3636 0.9 ± 0.4 × 109

10 0.02 ± 0.01 2.0 ± 0.5 0.3 ± 0.03 25,454 ± 2727 1.5 ± 0.4 × 109

Human BChE demonstrated catalysis of BTC hydrolysis with kcat/Km about
1.0 ± 0.3 × 109 M−1·min−1 (Table 2). However, the catalytic efficiency increased only
1.5 times in the presence of 10 µM Aβ1–40 (Table 2).

It is well known that both BChE and AChE display a non-Michaelian behavior at
high concentrations (above 1 mM) of substrates with thiocholine esters; however, AChE
is inhibited by an excess of ATC [29], while BChE is activated by an excess of BTC [30].
The activator or inhibitory effect resulted from the binding of excess substrate molecules
on the enzyme peripheral site (Scheme S1) [31]. It can be noted that while in the presence
of Aβ1–40, changes in Kss value were shown for AChE (Table 1, Figure 3A), for BChE, no
significant change in the Kss with an excess of substrate was observed (Table 2, Figure 4A).
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Thus, the ability of Aβ1–40 to compete with the substrate for binding to the peripheral site
of AChE or BChE requires detailed investigation.

2.3. Aβ Oligomerization in the Presence of ChE Is Necessary for Enzyme Activation

Aβ is characterized by a high propensity for aggregation [32,33]. There is also evidence
that AChE can increase the rate of formation of Aβ fibrils by forming stable Aβ–AChE
complexes [17,22,34]. Thus, there is a high probability of AChE activation in the presence
of oligomerized Aβ.

Aβ peptide oligomerization can be studied using dynamic light scattering (DLS) and
transmission electron microscopy (TEM). Since the fibrillar structures formed by Aβ are not
strictly spherical in shape, the DLS data, which are based on a spherical approximation, can
be used for qualitatively assessing the structural rearrangements occurring in the solution.

The number-size distribution of aggregates obtained from the analysis of Aβ1–40
solution in a phosphate buffer showed a monomodal distribution with average diameter
(Dh) 8± 1 nm after 1 h of incubation (Figure 5B). Aggregates of this size are characterized by
the absence of β-structural organization of the protein. The distribution of hydrodynamic
diameter by intensity of scattered signal (Figure 5A) is polymodal with a high polydispersity
index (PdI 0.7), as also described in [35]. However, from the number-size distribution of
aggregates, it can be concluded that there is a predominance of particles with a diameter of
less than 10 nm in the solution (Figure 5B). The high polydispersity suggests that Aβ exists
as a conglomerate of different conformations [35]. Such a polymodal distribution for Aβ in
a buffer solution has previously been demonstrated by other authors [35]; moreover, the
rate of Aβ aggregation depends on the temperature at which the peptide was incubated,
the highest value being reached at 37 ◦C [36]. Complete aggregation of Aβ1–40 is observed
after 48 h at 25 ◦C as confirmed by the agreement between the values of the Dh averaged
by the intensity of the scattered signal (Figure 5A), the number of particles (Figure 5B), and
the Z-average value (763 nm). The significant reduction in the PDI from 0.7 to 0.3 probably
indicates the end of Aβ oligomerization under these experimental conditions.
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in 0.1 M phosphate buffer, pH 8.0, 25 ◦C (A); Number-averaged size distribution of the Aβ1–40

aggregates after 1 and 48 h of incubation in 0.1 M phosphate buffer, pH 8.0, 25 ◦C (B).

In the case of the binary Aβ1–40/AChE system, aggregates with a Dh averaged over
the number of particles equal to 39 ± 4 nm are already observed 1 h after mixing the Aβ

and AChE (Figure 6). This indicates that AChE promotes the aggregation process of Aβ1–40:
aggregates larger than 10 nm are not fixed after 1 h in an Aβ1–40 solution incubated without
AChE. After 48 h of incubation of the Aβ1–40/AChE binary system, aggregates with a Dh
of 845 ± 5 nm are observed. There is a statistically significant (p < 0.05) increase in the size
of the mixed Aβ1–40/AChE composition by ~90 nm compared to pure Aβ1–40 aggregates
(764 nm). Here, it should be noted that the PdI of Aβ1–40 in the presence of AChE is quite
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low (0.25), which indicates the homogeneity of the system; however, it increases slightly
48 h after mixing the components (from 0.25 to 0.4).
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Figure 6. Number-averaged size distribution of aggregates in the mixed Aβ1–40/AChE system after
1 and 48 h of incubation in 0.1 M phosphate buffer, pH 8.0, 25 ◦C.

To shed light on the morphology of Aβ1–40 aggregates, negative staining TEM for
fibrils both with and without AChE was utilized. TEM images of the 10 µM Aβ1–40
incubated for 24 h without AChE demonstrated mostly aggregated fuzzy filamentous
particles ~7 nm in diameter (Figure 7A). A different situation was found in the binary
system, where 10 µM Aβ1–40 was incubated for 24 h with AChE. In this case, there were a
lot of long intertwined fibrillar particles of about 4 nm diameter (Figure 7B). Noteworthy,
negatively stained samples of 10 µM Aβ1–40 that were incubated for 3 h with and without
AChE did not contain fibrils, possibly due to short incubation times.
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incubated without (A) and with AChE (B).

The question arises as to whether Aβ aggregation in the presence of AChE is necessary
for AChE activation, or whether enzyme activity can also be increased by Aβ aggregated
without AChE. For this reason, the effect of preliminary aggregated Aβ1–40 on the activity
of AChE was also studied. If Aβ1–40 was pre-aggregated in phosphate buffer and AChE
was added to the Aβ after 24 h, no increase in AChE activity was observed (Figure 8).
Thus, it is probably only by assembling Aβ oligomers on the surface of ChE that the confor-
mational changes in the protein, leading to improved catalytic activity, can be triggered
and stabilized.
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Figure 8. The effect of preliminarily aggregated (within 24 h) Aβ1–40 (10 µM) with/or without AChE
on the enzyme activity as measured at 412 nm in 0.1 M phosphate buffer (pH 8.0) at 25 ◦C. Data are
presented as means ± SEM. *—the difference with the control is statistically significant at p ≤ 0.05;
**—at p ≤ 0.01. Statistical analysis was carried out using the Mann–Whitney test (n = 3).

2.4. Activation of Enzyme by Aβ1–40 Decreases Efficacy of the Treatment with AChE Inhibitor
Ex Vivo

In the final series of experiments, we studied the possibility of activation of AChE,
which hydrolyzes endogenous ACh released during synaptic transmission. The neuro-
muscular junction (NMJ) was selected as a well-studied cholinergic synapse. Inhibition
of AChE at the NMJ is known to lead to an increase in the amplitude and duration of
end-plate potentials [37]. We used analysis of changes in these parameters to study the
effect of Aβ on the activity of synaptic AChE. With partial inhibition of AChE at the NMJ,
it can be assumed that activation of residual AChE by Aβ will reduce the effect of the
AChE inhibitor on the amplitude and duration of end-plate potentials. Experiments were
performed ex vivo on mouse diaphragm muscles. Miniature end-plate potentials (MEPPs)
were recorded in the control and following application of the selective AChE inhibitor
huperzine A [38]. Huperzine A was shown to increase the amplitude and duration (decay
time constant, τ) of MEPP in a concentration-dependent manner (Figure 9).

Figure 9. Concentration-dependent effect of huperzine A (Hup A) on amplitude (A) and decay
time constant (B) of miniature end-plate potentials (MEPP) recorded in mouse diaphragm muscle.
CTR—control (intact AChE) values. The inset shows representative MEPPs recorded in the control
(left MEPP) and after application of 100 nM huperzine A (right MEPP). Mean ± SEM obtained from
20 NMJs, 100 MEPPs in each NMJ were analyzed.
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A huperzine A concentration of 100 nM, which significantly increases both amplitude
and duration of MEPPs, was selected to study the effect of Aβ. After recording MEPPs
in the control and after 1 h of incubation of the muscle with Aβ1–40 (10 µM), huperzine A
(100 nM) was applied. With fully active AChE, incubation with Aβ1–40 did not significantly
change the amplitude and duration of MEPP (Figure 10). However, the effect of huperzine
A following incubation with amyloid on the decay constant was significantly lower. After
1 h of pre-incubation with Aβ1–40 (10 µM), the application of huperzine A (100 nM) did not
lead to a significant change in the MEPP decay time (Figure 10). Thus, even a fairly short
incubation time with Aβ (1 h) is sufficient to detect a statistically significant reduction in
the effect of the AChE inhibitor on synaptic transmission.
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Figure 10. Effect of pre-incubation with Aβ1–40 (10 µM) and following AChE inhibition with 100 nM
huperzine A (Hup A) on amplitude (A) and the decay time constant (B) of miniature end-plate
potentials (MEPP). *—the difference with the control is statistically significant at p ≤ 0.05; #—the
difference with the Hup A 100 nM is statistically significant at p ≤ 0.05. Statistical analysis was
carried out using the Student’s t-test. Mean ± SEM obtained from 20 NMJs, 100 MEPPs in each NMJ
were analyzed.

3. Discussion

The present study set out to test the hypothesis that Aβ may influence the catalytic
activity of ChE. Our in vitro experiments showed that incubation of AChE with Aβ1–40
increases the catalytic efficiency of the enzyme by more than seven times. However, the
catalytic efficiency of BChE increases to a lesser extent, by only 1.5 times. The activation
of AChE evident after the preceding lag phase correlated with the time of Aβ oligomer
formation. According to the kinetics study, Aβ can be considered as a non-essential activator
(also termed a positive allosteric modulator) of ChE. This type of activator increases enzyme
activity beyond an existing basal level, indicating that the reaction can occur in the absence
of the activator, as well as in its presence [25].

The positive modulation of ChE activity has been previously described. It has been
shown that the presence of cations (Ca2+, Mg2+, Mn2+) in phosphate buffer increases the
activity of ChE in vitro [39]. Allosteric small-molecule AChE activators have also been
reported [40]. However, to the best of our knowledge, the phenomenon of ChE activation
in the presence of Aβ peptide has not previously been described.

The cholinergic deficit is one of the main hallmarks of AD. Since the discovery of the
cholinergic deficit, ChE has been widely investigated in brain tissues obtained post mortem
from AD patients [41]. Most of the cortical AChE activity present in post mortem AD brain
tissue was found to be co-localized with Aβ deposits [42,43]. This includes both amyloid
diffuse deposits and mature senile plaques [44,45]. The diffuse deposition of Aβ together
with AChE is particularly interesting since it represents an early step in the development of
senile plaques [46]. BChE has also been detected in Aβ plaques, suggesting the possible
involvement of the protein in the pathogenesis of AD [47–50]. Thus, AChE and BChE
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have been shown to form a complex with senile plaque components in vivo. If activation
of AChE by Aβ occurs in vivo, it is possible that this may additionally exacerbate the
cholinergic deficit.

The inhibitors of ChE are widely used during symptomatic AD treatment to com-
pensate the cholinergic deficit. Here, it is interesting to note that at least ten-fold higher
concentrations of the AChE inhibitor BW284C51 are necessary for complete inhibition
of AChE within plaques as compared to the normal enzyme [43]. Small-molecule AChE
activators have also been studied as a novel approach in the treatment of organophosphate
ChE inhibitor poisoning. The IC50 value of paraoxon for AChE has been shown to increase
from 20.4 nM to 42.1 nM in the presence of an AChE activator [40]. Thus, the effect of ChE
activation can significantly decrease the efficacy of the ChE inhibitor. Our experiments
in vitro showed that incubation of AChE with Aβ1–40 can decrease the inhibitory effect
of donepezil. Our ex vivo experiments showed that Aβ1–40 can decrease the effect of the
AChE inhibitor huperzine A on decay time of MEPPs at the mouse NMJ. The analysis of
MEPP parameters was chosen due to the processes accompanying AChE inhibition at the
level of spontaneous ACh release being very well studied. Electrophysiological recordings
show that prolonged lifetime of acetylcholine in the synaptic cleft due to AChE inhibition
results in an increase in amplitude and duration of MEPPs. It is important to note that
the effects of inhibition of synaptic AChE on MEPP parameters depend on the level of
inhibition [37,51]. The amplitude increases linearly, while the decay time constant increases
exponentially. Until the level of inhibition of AChE activity reaches 90%, only the MEPP
amplitude increases. However, when the remaining 10% of AChE activity is inhibited,
an exponential increase in the MEPP decay time is observed along with a further slight
increase in amplitude (for an example see Figure 9). Thus, in our experiments, a significant
decrease in only the decay time constant of MEPP after 1 h of incubation with Aβ1–40
following AChE inhibition indicates the achievement of a small (less than 10%) level of
synaptic AChE activation. Because of the linear relationship between the level of AChE
inhibition and the increase in MEPP amplitude, the effect of such a small augmentation of
AChE activity on MEPP amplitude cannot be reliably assessed. This is consistent with the
results of experiments on AChE activation in vitro, indicating the need for longer (several
days) incubation with Aβ1–40 to achieve the highest level of activation.

In conclusion, studies of enzyme modulators, including ChE, remain an important
topic of scientific investigation. Based on previous studies of Aβ–ChE interactions and our
findings here, we propose a novel mechanism for the modulation of ChE activity involving
the Aβ peptide. Further study of the processes associated with the activation of AChE and
BChE by Aβ peptides can lead to a better understanding of AD pathogenesis and help to
increase efficacy of therapeutic treatments using ChE inhibitors.

4. Materials and Methods
4.1. Animals

All experiments involving animals were performed in accordance with the guide-
lines set forth by the European Union Council Directive 2010/63/EU, and conducted in
accordance with ARRIVE guidelines, as well as the protocol of experiments approved by
the Animal Care and Use Committee of FRC Kazan Scientific Center of RAS (protocol
No. 2 from 9 June 2022). Six-week-old CD-1 mice weighing 25–30 g were purchased from
the Laboratory Animal Breeding Facility (Branch of Shemyakin-Ovchinnikov Institute of
Bioorganic Chemistry, Puschino, Moscow Region, Russia) and allowed to acclimatize to
their environment in a vivarium for at least 1 week before experiments. Animals were kept
in sawdust-lined plastic cages in a well-ventilated room at 20–22 ◦C, a 12-h light/dark cycle
at 60−70% relative humidity and given ad libitum access to food and water.

4.2. Enzymes and Chemicals

Human recombinant Aβ1–40 (ultra-pure, HFIP), acetylthiocholine, butyrylthiocholine,
5,5′–dithiobis–(2–nitrobenzoic) acid (DTNB), huperzine A, donepezil, recombinant hu-
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man acetylcholinesterase and butyrylcholinesterase obtained from human plasma were
purchased from Sigma–Aldrich (Sigma–Aldrich Corp., St. Louis, MO, USA). AChE spe-
cific activity was 60 U/mL, while BChE specific activity was 450 U/mL based on the
Ellman assay with ATC, or BTC as substrate. Dimethyl sulfoxide (DMSO) was purchased
from PanReac AppliChem GmbH (Darmstadt, Germany). All other chemicals were of
biochemical grade.

4.3. Dynamic Light Scattering

Dynamic light scattering experiments were conducted using the Malvern ZetaSizer
Nano instrument (Malvern Instruments Ltd., Worcestershire, UK). These experiments
utilized a He−Ne laser as the irradiation source, with a wavelength of 633 nm and a power
of 4 mW. The analysis of the scattered light involved phase and frequency analysis, which
was performed using the dispersion technology software version 5.10. The scattering angle
used in all measurements was 173◦. Particle size was determined using the Stokes–Einstein
Equation (1) for spherical particles.

D =
kT

6πηR
(1)

where D—diffusion coefficient; k—Boltzmann’s constant; T—absolute temperature;
η—solvent viscosity; R—hydrodynamic radius. The polydispersity index (PdI) was calcu-
lated using cumulative second-order correlation function analysis.

4.4. Negative Staining TEM

Copper grids supported by a thin layer carbon film (Lacey C only 300 mesh, Ted Pella,
Redding, CA, USA) were glow-discharged for 30 s at 15 mA with a PELCO easyGlow
system (Ted Pella, USA). Samples of 3 µL were applied to grids and stained with 1%
uranyl acetate in ethanol using a standard protocol. The negatively stained grids were
examined using a JEM-2100 (JEOL, Tokyo, Japan) equipped with a Direct Electron DE-20
(Gatan, Pleasanton, CA, USA) camera. The microscope operated at 200 kV with a nominal
magnification of 62,000×.

4.5. In Vitro Cholinesterases Activity Assay
4.5.1. Determination of ChE Activity In Vitro

All measurements of ChE enzyme activity were performed on a Shimadzu UV–1800
(Shimadzu Co., Tokyo, Japan) spectrophotometer using standard quartz cuvettes of 1 cm-
path length in a total volume of 2 mL using Ellman’s assay [52] at 412 nm at 25 ◦C in 0.1 M
phosphate buffer at the optimum pH of AChE (pH 8.0) and BChE (pH 7.0).

Human recombinant Aβ1–40 was lyophilized from hexafluoro–2–propanol (HFIP)
solution. A 2 mM stock solution of Aβ1–40 was prepared in DMSO and stored at −20 ◦C.
Recombinant human AChE or BChE from human plasma were mixed with a solution of
Aβ1–40 in phosphate buffer. The final Aβ1–40 concentration was 0.1, 1, or 10 µM. The final
DMSO concentration was 0.5%. After 1–48 h of incubation at 25.0 ◦C, the enzymatic activity
of 100 µL of sample was measured using 0.1 mM DTNB, 1 mM BTC, or 1 mM ATC as a
substrate. The absorbance was measured over 2 min. Initial velocities of the reaction were
measured in the presence and absence of Aβ1–40. An enzyme mixture with 0.5% DMSO
was used as a control. The inhibitory effect against ChE of 0.5% DMSO was considered
weak [53].

To evaluate the effect of Aβ1–40 on the inhibited AChE, enzyme was incubated with
10 nM donepezil to achieve residual enzyme activity ≈ 50%. Then, 10 µM of Aβ1–40 was
added to the mixture and incubated within 24 h. The enzymatic activity was assessed as
described above.

To study the effect of pre-aggregated Aβ on the AChE activity, the activity of the
enzyme incubated 24 h with 10 µM Aβ1–40 was compared with the activity of the enzyme
added to within 24 h, self-aggregated 10 µM Aβ1–40. The enzymatic activity was assessed
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as described above. To assess the effect of aggregated Aβ1–40 on the substrate’s hydrolysis,
the rate of spontaneous hydrolysis without enzymes was estimated.

4.5.2. Kinetic Parameters Evaluation

0.1–10 µM Aβ1–40 was mixed with recombinant human AChE, or BChE from human
plasma in 0.1 M phosphate buffer. An enzyme mixture with DMSO was used as a control.
Kinetic analysis of ATC and BTC hydrolysis in the absence and presence of Aβ1–40 was
carried out after 48 h of incubation. The reaction mixture contained 100 µL of sample,
20 µL of 0.01 M DTNB, and 1860 µL of 0.1 M phosphate buffer. The enzymatic reaction
was started by adding ATC or BTC. Final substrate concentrations ranged between 0.01
and 30 mM. The active site concentration was 1.5 × 10−12 M for AChE and 1.1 × 10−11 M
for BChE.

The rate of enzymatic reaction was plotted against the substrate concentration. Ki-
netic parameters Km and Vmax were determined by non-linear fitting of Equation (2)
(Scheme S1) [29].

v =
Vmax

1 + Km/[S]
(

1 + b[S]/Kss

1 + [S]/Kss
) (2)

where Km—Michaelis constant, Vmax—enzyme maximum velocity, Kss—dissociation con-
stant, b—factor determining the alteration in the catalytic constant kcat.

kcat values were determined using the Equation (3).

Vmax = kcat[E] (3)

where [E]—ChE concentration.
The type of ChE activation was determined by changing the Km and Vmax parameters

and according to the Lineweaver–Burk plot for substrate concentrations below 1 mM: with
an excess of substrates for ChEs, Lineaweaver–Burk plots are non-linear [54].

4.6. Ex Vivo Electrophysiology

Mouse hemidiaphragm muscles were isolated from animals killed by cervical dislo-
cation followed by immediate exsanguination. Diaphragm muscles were perfused with
oxygenated (95% O2, 5%CO2) Ringer’s–Krebs’ solution: 154 mM NaCl, 5 mM KCl, 2 mM
CaCl2, 1 mM MgCl2, 5.0 mM HEPES buffer, 11 mM glucose (pH 7.4). Spontaneous miniature
end-plate potentials (MEPPs) were recorded at 20–22 ◦C via standard glass microelectrodes
filled with 3 M KCl; the resistance of the electrode was 10–15 MΩ. MEPPs were recorded
using an Axoclamp 900A amplifier and digitized using a Digidata 1440A (Molecular De-
vices, San Jose, CA, USA) with WinWCP V5.5.2 software (John Dempster, University of
Strathclyde, Glasgow, UK). Huperzine A and Aβ1–40 were dissolved in a Krebs–Ringer
solution and applied into the experimental chamber with the muscle.

4.7. Statistical Analysis

Data analysis was performed using OriginPro 8.5 software (OriginLab Corporation,
Northampton, MA, USA). Each biochemical assay was conducted in triplicate; each experi-
ment was repeated at least three times independently. Data were expressed as mean± SEM.
Statistical analysis was carried out using the Mann–Whitney test. Differences were consid-
ered statistically significant at p < 0.05. The results of ex vivo electrophysiology experiments
are presented as the mean ± SEM of 20 separate end-plates from 4 muscles, obtained from
different animals. Data were analyzed using the Student’s t-test; differences between the
control and experimental values were considered statistically significant at p < 0.05.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
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