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Abstract: Oral mucositis (OM) is a significant complication of cancer therapy with limited manage-
ment strategies. Whilst inflammation is a central feature of destructive and ultimately ulcerative
pathology, to date, attempts to mitigate damage via this mechanism have proven limited. A relatively
underexamined aspect of OM development is the contribution of elements of the innate immune
system. In particular, the role played by barriers, pattern recognition systems, and microbial compo-
sition in early damage signaling requires further investigation. As such, this review highlights the
innate immune response as a potential focus for research to better understand OM pathogenesis and
development of interventions for patients treated with radiotherapy and chemotherapy. Future areas
of evaluation include manipulation of microbial–mucosal interactions to alter cytotoxic sensitivity,
use of germ-free models, and translation of innate immune-targeted agents interrogated for mucosal
injury in other regions of the alimentary canal into OM-based clinical trials.
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1. Introduction

Mucositis is defined by the National Library of Medicine as inflammation of the
mucosa caused by radiotherapy and chemotherapy. It has been traditionally studied as sep-
arate entities in different areas of the alimentary tract, namely, the oropharyngeal, intestinal,
and rectal segments; however, there are likely many commonalities and overlapping fea-
tures in mucositis pathogenesis regardless of region [1]. This review focuses on the mucosal
changes visualized in the mouth and oropharynx, referred to as oral mucositis (OM), which
is typified by self-limiting erythema, edema, mucosal ulceration, and pseudomembrane
formation [2]. In OM, the progression from inflammation to ulcerative mucosal destruction
and eventual repair follows a relatively well-defined trajectory, contemporarily described
around two decades ago [3]. Some of the key mediators of OM include reactive oxygen
species (ROS); DNA damage responses, including apoptosis; transcription factors, such as
NF-κB; inflammatory cytokine cascades; submucosal signals that alter matrix deposition
and support structures; and epithelial and vascular restitution signals. This is all overlayed
with the impact of microbial-derived signals, including metabolites, alterations in redox
status, and biofilm components, due to colonization at sites of ulceration [4].

Radiotherapy was the first cancer treatment modality to garner interest for the direct
and indirect mucosal damaging properties of ionizing radiation affecting tissues adjacent
to the tumor site [5]. OM has been reported to occur at least to some degree in up to 90% of
patients receiving high dose radiotherapy for head and neck cancer [6]. Chemotherapy as
a systemic treatment is associated with a myriad of toxicities affecting all body systems;
however, the mucosal impacts are most frequently associated with the drug classes fluo-
ropyrimidines and topoisomerase inhibitors and are reported in the ranges of 10 to 40% [7].
Patients’ experience of oral mucositis is highly variable but can be associated with their
treatment; genetic predisposition; socioeconomic determinants; and other risk factors, such
as age and weight [8]. In general terms, visible OM onset occurs for radiotherapy-alone
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regimens after a cumulative dose of approximately 30 Gy [9]. OM arises around one to two
weeks into cyclical chemotherapy regimens and is more severe when the modalities are
combined [10]. In the case of high-dose chemotherapy used in conditioning regimens for
hematological stem cell transplant, OM has been reported in the majority of patients and
increases the risk of infection and mortality during profound neutropenia [11].

The estimated costs associated with OM are hard to calculate based on worldwide
differences in medical billing; however, research conducted in the US has suggested that
OM-impacted regimens contribute over four billion US dollars annually [12] and cause
incremental costs of at least USD 5000 per radiotherapy patient and USD 3700 per cycle
of chemotherapy [13]. Increased expenditure occurs due to hospitalization and resource
utilization to manage hydration, pain control, feeding tubes and parenteral nutrition, and
infection control [14]. Mucosal toxicities are also experienced during targeted therapies,
including mTORC1 and EGFR inhibitors, although they are typically reported as occurring
at a lower incidence and severity [15]. The experience of oral injury with immunotherapies
is now emerging as a toxicity to investigate, particularly given the relationship between
immune checkpoint inhibitors and inflammation across systems [16]. However, since
there is a lack of evidence in the area of targeted immunotherapies and OM, the following
sections focus on conventional treatment modalities.

2. Current Management of OM

The approach to OM control during radiotherapy and chemotherapy has been ex-
tensively studied and summarized to generate clinical practice guidance [17]. The key
practice guidance includes basic oral care (rinsing and hygiene) and pain control as well
as photobiomodulation, anti-inflammatories (benzydamine), cryotherapy, and KGF-1 in
certain settings [17]. Some practical limitations to establishing clear guidance is the array
of OM measuring tools, making trial-to-trial comparisons challenging. Assessment tools
also need to be updated to account for differences in presentation related to emerging
treatment modalities and newer combination regimens as well as to have a strong patient
perspective [18]. Regardless of these limitations, the approach to management of OM to
date has not fully applied knowledge of injury and restorative processes. While symptoms
such as pain rely on management through embedded pharmacological approaches [19],
these do not target known mucosal characteristics of OM. Basic oral care with rinsing looks
to deload microbial triggers of inflammation [20], while KGF-1 aims to increase recovery of
mucosal integrity via stimulating proliferation of epithelium. Avasopasem manganese, a
superoxide dismutase mimetic, targets upregulated ROS as an antioxidant enzyme; how-
ever, it has yet to be included in guidance documents despite showing benefit in reducing
severe OM in recent clinical trials for H&N cancer treated with chemoradiotherapy [21].

A number of clinical studies have investigated anti-inflammatory drugs, including
benzydamine, celecoxib, irsogladine maleate, misoprostol, and rebamipide, with only
benzydamine mouthwash reaching evidence sufficient to warrant a practice guideline for
prevention of OM [22]. This focus stems from the principle pathology associated with OM
development, namely, inflammation that progresses to ulceration. While inflammatory
processes are clearly a significant component of OM with increased proinflammatory
cytokine concentrations consistently detected in clinical and preclinical models of OM [3],
these changes may be a consequence of injury processes rather than the driving force.
Given there have been limited degrees of success in this anti-inflammatory drug-mediated
approach, targeting the end product, inflammation, appears to be an oversimplification and
requires investigators to take a step back to reevaluate OM induction mechanisms and the
contributing cellular responses. To this end, the innate immune response has become a hot
topic as it allows investigators to combine epithelial, microbial, and immune interactions to
evaluate development of injury.
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3. The Innate Immune System in OM Development

The innate immune system comprises barriers, cells, and humoral factors, which
are responsible for control of homeostatic tolerance to commensal microbes as well as
indiscriminate host responses to potential physiological threats [23]. The constant threat of
microbial breaches across the epithelium ensures that innate immunity is highly developed
at the oral microbe–host interface [24]. The oral cavity has the second largest and diverse
microbiota after the gut, harboring over 700 species of bacteria [25]. The presence of both
hard and soft surfaces for colonization, contact with ingested material and airborne factors,
and being bathed in saliva containing mixtures of peptides in circadian patterns means it is
an incredibly complex environment [26]. A sophisticated network of interactions between
the innate immune system and the oral microbiota creates a bidirectional relationship to
maintain optimal physiology for both systems [27].

Although not classically considered a part of the innate immune system, epithelial
cells provide physical exclusion of oral microbes and their products through the action
of tight junctions [28]. Tight junctions are the main determinant of epithelial barrier
function and are made up of transmembrane and intracellular proteins of the claudin,
occludin, zonula occludens, and junctional adhesion molecule groups. Loss of tight junction
proteins has been shown following both radiotherapy and chemotherapy and is considered
important in mucositis development [29,30]. Overlaying the epithelium is mucus and
antimicrobial peptides, including IgA and tree-foil factors secreted within saliva, providing
an additional mucosal innate immune defense mechanism. Salivary gland function and
saliva composition is rapidly altered in response to cancer therapies and impairs the ability
to retain optimal conditions to balance microbial and epithelial interactions, including
compositional shifts in the oral microbiome [31]. Epithelial cells lining the oral cavity
express a range of innate immune sensors that mediate signals between microbes and
immune cells [32] and have been shown to be major contributors of IL-1β secretion during
oral inflammation [33]. IL-1β has attracted major attention in OM research due to its diverse
role in injury development and inflammatory signals [34,35].

Where there is a loss of spatial separation between surface microbial factors and
the lamina propria, the result is activation of oral mucosal innate immune cells proper,
including macrophages, dendritic cells, neutrophils, and innate lymphoid cells. These
cells have a range of microbial sensing systems designed to orchestrate a rapid response
through the release of defense-associated factors, such as bacteriocins and cytokines [36].
In particular, type I macrophages have been associated with OM progression due to
submucosal release of a range of proinflammatory cytokines and chemokines, including
TNFα, IL-1β, IL-6, CXCL8, and MIP [37]. Infiltrating neutrophils also contribute to OM
progression by enhancing the release of cytokines and MMPs and have been implicated in
risk of severe OM development through an elevated neutrophil-to-lymphocyte ratio [38].
One intriguing factor is IL-17, which is released during an inflammatory response by innate
immune cells and is associated with neutrophil recruitment [39]. In radiotherapy-induced
OM, it is increased substantially in areas of ulceration and has been hypothesized to signal
repair of tight junctions. In mice lacking the IL-17 receptor, OM severity is increased,
presumably through inability to fine-tune neutrophil responses to restore epithelium [40]
and lack of production of antimicrobial defensins [41]. Despite these intriguing findings,
studies are yet to directly investigate IL-17 as an OM treatment. Finally, dendritic cells
are commonly found at the oral epithelial barrier interface and responsible for integrating
microbial signals to the immune system via pattern recognition receptors and antigen
presentation [42].

3.1. Pattern Recognition Receptors and OM Development

Pattern recognition receptors (PRRs) in the innate immune system were first described
over 30 years ago [43]. These receptors sense microorganisms through conserved molecular
structures and comprise several families, including toll-like receptors (TLRs), nucleotide-
binding oligomerization (NOD)-like receptors (NLRs), RIG-I-like receptors, C-type lectin
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receptors, absent in melanoma 2 (AIM2)-like receptors, and OAS-like receptors [44]. PRRs
constitute a continuous surveillance system for the presence of pathogen-associated molec-
ular patterns (PAMPs) and endogenous-damage-associated molecular patterns (DAMPs)
and are expressed on both the external and internal cellular compartments of immune and
epithelial cells [45].

TLRs have been increasingly recognized as being important in mucositis pathogenesis,
established through a range of studies focusing predominantly on lower gastrointestinal
tract injury. These studies clearly demonstrated modulation of mucosal injury following
chemotherapy due to the knock-out of specific proteins, namely, TLR2 [46], TLR4 [47,48],
and TLR9 [46]. However, whether genetic deletion proves protective or exacerbates in-
jury depends on the specific model and context. Dependent on the external facing motif
of each receptor, TLRs can recognize PAMPs, including lipoproteins and peptidoglycan,
lipoteichoic acid (LTA), fungal zymosan, single and double-stranded RNA, lipopolysac-
charide (LPS), bacterial flagellin, and double-stranded and unmethylated CpG DNA [49].
In addition, DAMPs, such as heat shock proteins; HMGB-1; and ECM molecules biglycan,
tenascin-C, versican, hyaluronic acid, and heparan sulfate, are able to activate TLRs [50].
All TLRs are expressed in the oral mucosa and appear to be upregulated during periods of
inflammation [51], establishing their potential role in OM pathology [52,53]. However, the
spatiotemporal distribution and contribution of TLRs expressed on different cells within
the oral cavity on the development of oral mucositis has yet to be described.

Whilst there is a lack of direct evidence of TLR signaling in controlling OM sever-
ity, TLRs clearly maintain homeostasis of the oral epithelium. For example, the TLR4
rs10759931 polymorphism is significantly associated with recurrent aphthous stomatitis,
suggesting that TLR4 may be an important mediator of oral ulcers [54]. It is likely that
TLR signaling in the oral cavity creates direct defensive mechanisms via the induction of
antimicrobial substances, such as defensins, which influence microbial communities and
function [55,56]. The downstream intracellular signaling pathways for all TLRs incorpo-
rate kinases and transcription factors either through the myeloid differentiation factor 88
(MyD88)-dependent pathway or the TIR domain containing adapter-inducing interferon
β (TRIF)-dependent pathway [57]. Importantly, the transcription factor NF-κB is a key
component activated by TLR signaling and is known to contribute to numerous inflamma-
tory signals, including those leading to OM [58,59]. During ulcerative mucositis, PAMPs,
such as lipopolysaccharides, can interact with TLRs expressed on innate immune cells of
the oral mucosa to trigger an inflammatory response [60]. In addition, release of DAMPs,
such as HMGB1, from cells undergoing necrosis or oxidative stress also contributes to
innate immune activation via detection by TLRs. It has been demonstrated that HMGB1
overexpression exacerbates chemotherapy-induced oral inflammation and, furthermore,
inhibition of HMGB1 production attenuates OM [61].

Whilst not as comprehensively studied as the TLR family, the NLRs are a class of
pattern-recognition receptors that are also likely to play important roles in OM develop-
ment [62]. These receptors are mostly expressed in the cytoplasm to detect intracellular
danger signals [63], including bacterial cell products and cell stress markers, such as
ROS [64]. Of key interest for OM is the formation of the NLRP3 inflammasome, which
occurs after priming by lipopolysaccharide and mitochondrial dysfunction and leads to
caspase-1 activation followed by IL-1 and IL-18 secretion [65]. Given the critical role of
IL-1β in neutrophil recruitment and other consequences of OM, the inflammasome presents
a compelling target for further research.

3.2. Oral Microbiome—Innate Immune Interactions and OM Development

The oral microbiome is known to be altered by chemotherapy and radiotherapy,
contributes to the severity of oral injury, and may be a predictive factor for risk of OM
development [66]. The mechanisms by which the microbiome exerts this influence have
yet to be fully uncovered; however, evidence supports a bidirectional relationship between
these oral microbial communities and the innate immune system [67]. Structural and
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secretory changes in the mouth during treatment as well as the inflammatory processes
underpinning OM development influence oral microbial communities. Typically a decrease
in the numbers and diversity of microbial communities and a compositional shift from
a commensal towards a pathobiont-dominated enterotype is observed following both
chemotherapy and radiotherapy [68]. The loss of commensals undermines the normally
highly regulated coordination between the oral microbiome and host innate immune system
to maintain homeostasis [53]. The indirect impacts of altered host–microbial interactions
can include dysfunctional signaling through immunological regulators, such as defensins,
CXCL2, and GAS6 [69,70]. During ulcerative mucositis progression, increased bacterial
colonization at these sites causes unbalanced PAMPs and DAMPs, which trigger PRR-
mediated activation of downstream NF-κB signaling pathways, leading to augmented
inflammatory responses due to the constant release of proinflammatory cytokines from
innate immune cells [61]. The compositional changes to the oral microbiome observed
across prior studies have varied, with reduction and expansion of differing microbial
species being identified following treatment [71,72]. This varying nature of compositional
analysis has led to suggestions that the resilience of the oral microbiome as well as the speed
at which the microbial community is able to recover post-treatment may offer more reliable
indicators for the impact of the oral microbiome on OM development and severity [73].

The introduction of germ-free mice in experimental research has elegantly confirmed
the critical role of microbes in both OM development and shaping the innate immune
system [74]. In a recent study, germ-free mice exhibited significantly less severe OM fol-
lowing treatment with the common chemotherapeutic 5-fluorouracil compared to specific-
pathogen-free conventional mice. This was observed alongside a decrease in MMP and
proinflammatory cytokine expression in the oral mucosa, underscoring the potentially
causal role of the microbiome in OM development. However, given that germ-free mice are
completely devoid of a microbiome, the results of this study cannot confirm the microbial
community responsible, with both the oral and gut microbiome hypothesized to play a
role in OM development in isolation to one another and collectively [75], likely through
microbe–immune interactions. In relation to the innate immune system, myeloid cells are
decreased in germ-free mice [76] and have reduced function, possibly explained by the
diminished cytokine and chemokine levels necessary for cell recruitment and differenti-
ation [77]. Additionally, innate-like lymphocytes and innate lymphoid cells that hone to
barrier sites within the oral cavity are influenced by the presence of commensal microbes
and mediate granulocyte activity [78]. Therefore, while research is still needed to precisely
examine how microbiome–innate immunity crosstalk influences OM, there are clearly mul-
tiple points of interaction that could significantly impact injury processes via inflammation
regulation (Figure 1).
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Figure 1. Role of the innate immune system in the development of OM. Initiation: Epithelial cells, 
connected via tight junctions, provide a physical barrier excluding oral microbes and their products 
from underlying tissue. Overlaying the epithelium is mucus and antimicrobial peptides, including 
IgA and tree-foil factors (TFF) secreted within saliva. At initiation of OM, the oral mucosa is exposed 
to radiotherapy or chemotherapy. Epithelial barrier breakdown: Following exposure, loss of tight 
junction proteins compromises epithelial barrier integrity. Salivary gland function and saliva com-
position is altered, decreasing its antimicrobial properties and influencing microbial and epithelial 
interactions. This induces compositional shifts in the oral microbiome, increasing the presence of 
pathobionts and enhancing IL-1β production by epithelial cells. Inflammation and ulceration: There 
is a loss of physical separation between surface microbes and the lamina propria, causing activation 
of oral mucosal innate immune cells, including macrophages, dendritic cells, neutrophils, and in-
nate lymphoid cells, through interactions of PRRs (TLRs and NLRs) with PAMPs and DAMPs. OM 
progresses due to submucosal release of proinflammatory cytokines and chemokines, including 
TNFα, IL-1β, IL-6, CXCL8, and MIP. Healing: IL-17 plays an important role in fine-tuning neutrophil 
responses to trigger injury resolution and epithelium restoration. 

4. Innate Immune Response Targeted Interventions for OM 
Undoubtedly, the application of new insights into the role of innate immune re-

sponses on OM development is to direct research towards novel effective interventions. 

Figure 1. Role of the innate immune system in the development of OM. Initiation: Epithelial
cells, connected via tight junctions, provide a physical barrier excluding oral microbes and their
products from underlying tissue. Overlaying the epithelium is mucus and antimicrobial peptides,
including IgA and tree-foil factors (TFF) secreted within saliva. At initiation of OM, the oral mucosa
is exposed to radiotherapy or chemotherapy. Epithelial barrier breakdown: Following exposure, loss
of tight junction proteins compromises epithelial barrier integrity. Salivary gland function and saliva
composition is altered, decreasing its antimicrobial properties and influencing microbial and epithelial
interactions. This induces compositional shifts in the oral microbiome, increasing the presence of
pathobionts and enhancing IL-1β production by epithelial cells. Inflammation and ulceration: There
is a loss of physical separation between surface microbes and the lamina propria, causing activation
of oral mucosal innate immune cells, including macrophages, dendritic cells, neutrophils, and innate
lymphoid cells, through interactions of PRRs (TLRs and NLRs) with PAMPs and DAMPs. OM
progresses due to submucosal release of proinflammatory cytokines and chemokines, including
TNFα, IL-1β, IL-6, CXCL8, and MIP. Healing: IL-17 plays an important role in fine-tuning neutrophil
responses to trigger injury resolution and epithelium restoration.
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4. Innate Immune Response Targeted Interventions for OM

Undoubtedly, the application of new insights into the role of innate immune responses
on OM development is to direct research towards novel effective interventions. And given
that the innate immune system comprises barriers, cells, and humoral factors, all with
known involvement in OM development, it provides a number of potential therapeutic
targets for alleviating symptom burden.

Since the appreciation of microbial disruption as a component of mucositis patho-
genesis, multiple attempts have been made to sterilize the oral cavity during treatment
with various antiseptics and antibiotics [79–83]. There has been a general lack of clinical
effectiveness with this approach, suggesting oral microbial load is a minor contributor
to OM severity. In comparison, the use of ingested probiotics has shown potential to
reduce severe cases of OM following mixed cancer regimens [84] but not when applied as a
lozenge [85]. Probiotics influence innate immunity via increasing B-cell-mediated IgA se-
cretion and immunomodulation via dendritic cell cytokine release and TLR activation [86].
The risk with general depletion of microbes as a strategy to improve OM is the disruption
to commensals that are required to maintain homeostasis and assist with mucosal repair
processes through innate immune signaling. Alternatively, ingested probiotic-based thera-
pies influence the gut microbiome and may indirectly enhance systemic immune responses
to support oral integrity. This theory is encouraged by recent work that found mice treated
with intragastric antibiotics had reduced severity of OM that occurred independent of
changes in oral microbiome composition, indicating a systemic regulation of inflammation
risk [87]. In additional experiments, the same investigators also found that oral microbiome
transplantation from healthy mice was able to reduce OM severity, which corroborates
the hypothesis that oral microbiome composition regulates oral mucositis [88], but further
research is required to unpack the direction and causality.

Any shifts in microbes will undoubtedly change the composition of PAMPs; thus,
interventions that directly target these molecules or their sensors (PRRs) will potentially
be powerful regulators of innate immune responses in OM. The TLR5 agonist BLB502
(developed as CBLB502 entolimod) has been shown to be effective at alleviating mucositis
following single-dose and fractionated radiotherapy to the head and neck [89]. Similarly,
TLR5 agonist KMRC011 has been explored in multiple models of OM and found to provide
some protection against ulcer development [90,91]. The proposed mechanisms of protection
appear to be through NF-κB signaling, leading to superoxide dismutase 2 induction and
granulocyte-colony-stimulating factor production. Topical melatonin has been shown to
prevent NLRP3 inflammasome activation by reducing mitochondria oxidative damage
and dysfunction [92]. Glycosaminoglycans, such as hyaluronic acid, are DAMPs known
to activate TLRs. GM-1111 is a synthetic glycosaminoglycan molecule, which was found
to reduce radiation-induced oral inflammation in mice by inhibiting TLR-mediated proin-
flammatory cell signaling and the NLRP3 inflammasome, highlighting the context-specific
regulation of injury through these PRRs [93]. Dusquetide (SGX942) is a first-in-class in-
nate defense regulator (IDR) that has shown benefit against radiotherapy-induced OM by
modulating the innate immune response through a key adaptor protein known as p62 [94].
Golotimod (SCV-07), a synthetic peptide that acts broadly on the TLR pathway, has been
shown to reduce injury in a hamster model of chemoradiotherapy-induced OM [95]. The
interventions and their ability to modify oral mucositis progression have been summarized
in Table 1.



Int. J. Mol. Sci. 2023, 24, 16314 8 of 14

Table 1. Innate immune response targeted interventions for oral mucositis.

Intervention
Type

Research Methodology Effective?

ReferenceTherapeutic
Compound Study Design Study Subjects Yes No

C
lin

ic
al

A
nt

is
ep

ti
c/

an
ti

bi
ot

ic
ap

pr
oa

ch
es

Iodine-based
mouthwash

Double-blind,
randomized controlled

trial (n = 20)

Patients receiving
chemoradiation for

head and neck
cancer

X [79]

0.3%
chlorhexidine-based

mouthwash

Double-blind,
randomized controlled

trial (n = 47)

Patients receiving
chemotherapy X [80]

0.1%
chlorhexidine-based

mouthwash

Double-blind,
randomized controlled

trial (n = 30)

Patients receiving
radiotherapy for
head and neck

cancer

X [81]

Lozenges containing
polymyxin E,

tobramycin, and
amphotericin B

Double-blind,
randomized controlled

trial (n = 65)

Patients receiving
radiotherapy for
head and neck

cancer

X [82]

Oral paste containing
polymyxin E,

tobramycin, and
amphotericin B

Double-blind,
randomized controlled

trial (n = 77)

Patients receiving
radiotherapy for
head and neck

cancer

X [83]

M
ic

ro
bi

ot
a-

ta
rg

et
ed

th
er

ap
eu

ti
cs

Lactobacillus brevis CD2
lozenges

Double-blind,
randomized controlled

trial (n = 31)

Patients receiving
chemoradiation for

head and neck
cancer

X [85]

Capsule containing
Bifidobacterium longum,
Lactobacillus lactis, and

Enterococcus faecium

Double-blind,
randomized controlled

trial (n = 99)

Patients receiving
chemoradiation for

head and neck
cancer

4 [84]

Pr
ec

lin
ic

al

Oral microbiota
transplantation (OMT)

Mice received OMT after
treatment

Mice receiving
head and neck

irradiation
4 [87]

N
ov

el
in

na
te

im
m

un
e-

ta
rg

et
ed

th
er

ap
eu

ti
cs

TLR5 agonist CBLB502
Mice were injected

subcutaneously with
CBLB502 after treatment

Mouse model of
head and neck

cancer treated with
radiotherapy

4 [89]

TLR5 agonist
KMRC011

Beagle dogs were
administered with

KMRC011 up to 48 h after
treatment

Beagle dogs
receiving head and

neck irradiation
4 [90]

Melatonin
Rats were administered

with melatonin gel up to
21 days after treatment

Rats receiving
tongue irradiation 4 [92]

Synthetic
glycosaminoglycan

GM-1111

Mice were administered
with GM-1111

subcutaneously daily

Mice receiving
head and neck

irradiation
4 [93]

Immunomodulator
peptide SCV-07

Golden Syrian hamsters
were administered

SCV-07

Hamsters receiving
irradiation of

buccal mucosa
+/− chemotherapy

4 [95]

5. Future Directions

Given the inherent similarities in pathophysiology, investigating the efficacy of drugs
that have shown promise in the treatment of intestinal mucositis in the context of OM
represents an important avenue for future research. Anakinra is a recombinant human
IL-1 receptor antagonist, which has been shown to alleviate intestinal mucositis in various
preclinical models [96–98]. Clinical Phase IIA trials of anakinra have also established safety
in HSCT recipients, with Phase IIB trials currently establishing efficacy in the management
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of intestinal mucositis [98,99]. By blocking the action of IL-1β, anakinra controls the
positive feedback loops through which IL-1β exacerbates inflammation to degrade the
mucosal barrier lining. Considering this, along with the knowledge that IL-1β-induced
epithelial barrier injury in the oral mucosa is a critical driver of OM development and
progression, anakinra may hold promise in the treatment of OM. Neutrophil-targeted
agents have received increasing recognition for their potential to treat mucositis, with a
recent preclinical study establishing that MPH-996, a neutrophil elastase inhibitor that limits
neutrophil degranulation and the resulting inflammation, is capable of reducing intestinal
barrier damage, inflammation, and gut microbial imbalances [100]. With neutrophil-derived
inflammation being an important hallmark of OM, MPH-996 may also hold potential in the
treatment of OM, thus warranting further investigation.

The results of the growing body of work dedicated to exploring the efficacy of innate
immune-targeted therapeutics in alleviating intestinal mucositis highlight a myriad of
possible therapeutics for the treatment of OM. However, considering the highly comparable
pathophysiological mechanisms underlying both intestinal and oral mucositis, analyzing
both outcomes simultaneously in models treated with chemotherapy and radiotherapy
represents an important consideration for future research to streamline the screening of
potential therapeutics.

While the studies described represent a generally successful paradigm when harness-
ing innate immune responses to mitigate oral or intestinal inflammation, it is important
to acknowledge the inherent limitations associated with such therapeutics, namely, their
potential interactions within the tumor microenvironment and effects on immunogenic cell
death. A number of anticancer therapies, including radiotherapy and certain chemother-
apies, induce immunogenic cell death through promoting the release of DAMPs from
dying tumor cells. Recognition of these DAMPs by innate PRRs, including TLRs, activates
tumor-specific immune responses to enhance efficacy of anticancer agents through the
combined action of direct cytotoxicity and antitumor immunity [101]. Given that the innate
immune system is critical in establishing this response, therapeutics capable of influencing
immune function could unwittingly impair or inhibit tumor response.

In addition to the potential effects on radiotherapy- and/or chemotherapy-related
immunogenic cell death, OM therapies targeting the innate immune system could also
influence the efficacy of immunotherapy. Increasingly, drugs that alter immune function
are receiving recognition for their detrimental effects on immunotherapy outcomes. For ex-
ample, in a cohort of patients with non-small-cell lung cancer receiving PD-(L)-1 blockade,
corticosteroid use was associated with decreased overall response rate, progression-free
survival, and overall survival [102]. Furthermore, antibiotics have also been associated with
inferior clinical outcomes following immunotherapies [103,104], which is thought to be
through alterations to the microbiome and the resulting implications for immune function.
In the context of chemotherapy, mice that were treated with antibiotic or germ-free had
reduced IL-17 responses and tumors resistant to cyclophosphamide [105]. In a similarly
designed experiment, it was found that these mice failed to respond to oxaliplatin and
had shorter survival, likely due to reduced tumor DNA damage and apoptosis, in part by
decreased ROS production [106]. Collectively, these studies point to the interwoven rela-
tionship between mechanisms responsible for OM development and tumor cell cytotoxicity
that needs to be considered during the development of any new intervention.

6. Conclusions

The innate immune response provides both protective and injury signals within the
oral cavity depending on the context. These signals are balanced across epithelial, im-
mune, and microbial compartments to regulate inflammation caused by radiotherapy and
chemotherapy. The increasing appreciation of innate immunity and interactions with resi-
dent microbes during OM development has created opportunities to target specific features
of early signaling cascades. This is an advance on traditional therapeutic interventions,
which often aimed to intervene once inflammation was thoroughly established. Future



Int. J. Mol. Sci. 2023, 24, 16314 10 of 14

directions for the field should include testing OM interventions in relevant tumor-bearing
models to avoid inadvertent cancer cryoprotection and develop more complex models
that take into account the effects of emerging immunotherapies and combination regimens
on innate immune signals. Locally targeted strategies for OM prevention that do not
negatively disrupt whole-gut microbial composition should be prioritized. As research
continues to clarify the direct interactions between innate immune sensors and subsequent
cellular processes, the payoff will be more precise and OM interventions will be more
targeted, leading to improved outcomes for patients.
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