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Abstract: Cardiovascular diseases are a leading cause of worldwide mortality, and exosomes have re-
cently gained attention as key mediators of intercellular communication in these diseases. Exosomes
are double-layered lipid vesicles that can carry biomolecules such as miRNAs, lncRNAs, and circR-
NAs, and the content of exosomes is dependent on the cell they originated from. They can be involved
in the pathophysiological processes of cardiovascular diseases and hold potential as diagnostic and
monitoring tools. Exosomes mediate intercellular communication, stimulate or inhibit the activity
of target cells, and affect myocardial hypertrophy, injury and infarction, ventricular remodeling,
angiogenesis, and atherosclerosis. Exosomes can be released from various types of cells, including
endothelial cells, smooth muscle cells, cardiomyocytes, fibroblasts, platelets, adipocytes, immune
cells, and stem cells. In this review, we highlight the communication between different cell-derived
exosomes and cardiovascular cells, with a focus on the roles of RNAs. This provides new insights for
further exploring targeted therapies in the clinical management of cardiovascular diseases.
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1. Introduction

Cardiovascular disease (CVD) includes diseases of the heart muscle, blood vessels, or
interstitial tissues. The prevalence of CVD has risen dramatically over the past two decades,
making it one of the major issues of global concern and imposing an enormous social and
economic burden. In 2012, approximately 17.5 million people died from CVD, and this
number is expected to increase to 23 million by 2030. As the heterogeneity and complexity
observed in CVD progression increases, the need for specific and accurate diagnosis of the
disease state becomes more urgent. In this context, it is therefore of great interest to identify
new targets to evaluate pathological responses or new diagnostic therapies for the early
detection of people at risk of CVD. The number and characteristics of exosomes change
according to the pathophysiological state of the disease and, therefore, can serve to some
extent as biomarkers for diagnosis and monitoring of the disease. The identification of
biomarkers with high sensitivity and specificity is necessary in the diagnosis and treatment
of CVD. The study of exosomes has become a frontier and hotspot in the diagnosis and
treatment of CVD.

Exosomes, as a new molecular platform for chemical signaling, have played a great role
in recent years in a variety of diseases including cardiovascular diseases and tumors [1–3].
Exosomes are vesicle-like substances secreted by living cells with a double-membrane struc-
ture, and their diameters generally range from 30 nm to 150 nm. All cells, including those of
eukaryotic and prokaryotic cells, are capable of releasing exosomes both under physiologi-
cal and pathological conditions [4]. Exosomes have a similar topology to cells and contain
substances such as DNA, RNA, proteins, lipids, small molecule metabolites, and cell surface
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proteins [5]. The reasons for cells producing exosomes and the physiological functions of
exosomes are still not particularly well understood, and more research is needed to prove
this. Previously, it was believed that the main function of exosomes was to remove excess
or nonessential cellular components from the cell to maintain cellular homeostasis. In
recent years, studies have shown that cells can selectively accumulate cellular components
in exosomes through targeted and mechanism-specific-driven processes, which suggests
an important role for exosomes in regulating intercellular communication [6]. In 2007, it
was first discovered that exosomes could transport miRNA between cells, and this finding
revealed an important transport mechanism for the functional role of ncRNAs [7]. Several
studies have confirmed that exosomes are important tools for the extracellular transport of
miRNA and lncRNA [8–11]. The ncRNAs carried by exosomes are highly stable in body
fluids and have the potential to serve as biomarkers. There is increasing evidence that
ncRNAs in exosomes are not only diverse and abundant but also highly associated with a
variety of diseases such as cardiovascular diseases, central nervous system diseases, and
malignant tumors [12–17]. In view of this, exosomal ncRNAs have a broad prospect in the
field of disease diagnosis.

The exosomes are important bioinformatic carriers that facilitate intercellular com-
munication and participate in the pathophysiological processes of various cardiovascular
diseases. Exosomes are released by different types of cells in response to various biological
and chemical stimuli, including oxidative stress [18], low pH [19], and hypoxia [20]. More
importantly, these findings have introduced a new approach in cardiology, where exosomes
are recognized as a new mechanism of communication between the heart and other organs.
A study has explored that the exosomes involved in atherosclerosis originated from various
cell types, with the majority being derived from leukocytes. Specifically, macrophages
account for 29 ± 5%, lymphocytes for 15 ± 3%, granulocytes for 8 ± 1%, red blood cells for
27 ± 4%, smooth muscle cells for 13 ± 4%, and endothelial cells for 8 ± 2% [21].

2. Biology of Exosomes
2.1. The Biogenesis and Uptake of Exosomes

The origin, synthesis, and secretion of exosomes involve the following process: the
cell membrane of the parent cell forms early endosomes through endocytosis or “inward
budding” (Figure 1). These early endosomes gradually mature into late endosomes and
multivesicular bodies (MVBs) within the cell (Figure 1). The precursor of extracellular
vesicles exists as intraluminal vesicles (ILVs) inside MVBs (Figure 1); subsequently, MVBs
fuse with the cell membrane and excrete ILVs into the extracellular space through exocytosis,
forming exosomes (Figure 1) [22]. As a result, their composition and structure are more
complex, and they may even contain components engulfed from the extracellular matrix or
culture medium. Exosomes contain proteins such as membrane transport proteins (GTPases,
Annexins, Flotillin), heat shock proteins (HSP90-70), transmembrane proteins (CD81, CD63,
CD9), and proteins associated with MVB biogenesis (ALIX and TSG101). They also have
higher levels of membrane cholesterol and diacylglycerol [23]. The biogenesis of exosomes
is regulated by two mechanisms. One is the endosomal sorting complex required for
transport (ESCRT)-dependent pathway and the other is the ESCRT-independent pathway.
The former involves more than 30 proteins organized into four families (ESCRT-0, I, II, III),
while the latter involves proteins such as neutral sphingomyelinase 2 (nSMase2) and CD63.
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Figure 1. Structure, composition, secretion, and cellular entry of exosomes. Note: (A) means early 
endosomes, (B) means multivesicular bodies (MVBs), (C) means late endosomes and (D) means 
recipient cells. 

2.2. Mechanisms of Exosome Internalization 
Compared to the relatively clear “linear process” of exosome generation, the fate of 

exosomes is significantly complex and uncertain. If exosomes are recognized and “cap-
tured” by neighboring tissue cells, they will be taken up and utilized by the neighboring 
cells. If the adjacent cells do not recognize and capture the exosomes, the exosomes are 
transported through the circulatory system to more distant cells or tissues. The uptake 
and utilization of exosomes by both adjacent and distant tissue cells are mainly through 
several different mechanisms of action [24,25]. 

(1) The ligand on the membrane surface of exosomes binds to the receptor on the 
membrane of the recipient cells, activating the receptor-mediated signaling pathway, and 
the activated recipient cells ingest the contents into the cell through endocytosis. For ex-
ample, exosomes derived from dendritic cells containing MHC–peptide complexes can 
activate T cells through homologous T-cell receptors [26]; (2) Recipient cells directly inter-
nalize exosomes through endocytosis, allowing the contents of the exosomes to be re-
leased into the cells. Some components of exosomes participate in new multivesicular 
body biosynthesis processes; (3) Direct fusion of the exosome membrane with the cell 
membrane releases the exosome contents into the cytoplasm. Since exosomes carry a num-
ber of lipid and protein components, the interaction of these exosomal membrane proteins 
with receptors present in the membrane of the recipient cells may trigger responses lead-
ing to cellular changes. Thus, through these processes, exosomes can interact with recipi-
ent cells to trigger the release of cargo or the induction of signaling cascades that ulti-
mately lead to changes in cellular activity or function [27,28]. 

Exosomes are also primarily characterized by their ability to enter the recipient cells 
and directly transfer active substances protected by the lipid bilayer membrane to the tar-
get cells. The mechanisms by which exosomes are internalized by the recipient cells are 
numerous and controversial. Currently suggested mechanisms include cell-specific up-
take, non-specific protein interactions, endocytosis, and membrane fusion [29]. Most stud-
ies suggest that the uptake of exosomes is non-specific. On the one hand, tumor-cell-de-
rived exosomes can be taken up by multiple cells [25], and on the other hand, exosome-
mediated material delivery can cross species. For example, exosomes can transfer func-
tional mRNAs and miRNAs from mouse to human mast cells and mouse proteins can be 
detected in human mast cells [7].  

Figure 1. Structure, composition, secretion, and cellular entry of exosomes. Note: (A) means early
endosomes, (B) means multivesicular bodies (MVBs), (C) means late endosomes and (D) means
recipient cells.

2.2. Mechanisms of Exosome Internalization

Compared to the relatively clear “linear process” of exosome generation, the fate of
exosomes is significantly complex and uncertain. If exosomes are recognized and “captured”
by neighboring tissue cells, they will be taken up and utilized by the neighboring cells. If
the adjacent cells do not recognize and capture the exosomes, the exosomes are transported
through the circulatory system to more distant cells or tissues. The uptake and utilization
of exosomes by both adjacent and distant tissue cells are mainly through several different
mechanisms of action [24,25].

(1) The ligand on the membrane surface of exosomes binds to the receptor on the
membrane of the recipient cells, activating the receptor-mediated signaling pathway, and
the activated recipient cells ingest the contents into the cell through endocytosis. For
example, exosomes derived from dendritic cells containing MHC–peptide complexes
can activate T cells through homologous T-cell receptors [26]; (2) Recipient cells directly
internalize exosomes through endocytosis, allowing the contents of the exosomes to be
released into the cells. Some components of exosomes participate in new multivesicular
body biosynthesis processes; (3) Direct fusion of the exosome membrane with the cell
membrane releases the exosome contents into the cytoplasm. Since exosomes carry a
number of lipid and protein components, the interaction of these exosomal membrane
proteins with receptors present in the membrane of the recipient cells may trigger responses
leading to cellular changes. Thus, through these processes, exosomes can interact with
recipient cells to trigger the release of cargo or the induction of signaling cascades that
ultimately lead to changes in cellular activity or function [27,28].

Exosomes are also primarily characterized by their ability to enter the recipient cells
and directly transfer active substances protected by the lipid bilayer membrane to the
target cells. The mechanisms by which exosomes are internalized by the recipient cells are
numerous and controversial. Currently suggested mechanisms include cell-specific uptake,
non-specific protein interactions, endocytosis, and membrane fusion [29]. Most studies
suggest that the uptake of exosomes is non-specific. On the one hand, tumor-cell-derived
exosomes can be taken up by multiple cells [25], and on the other hand, exosome-mediated
material delivery can cross species. For example, exosomes can transfer functional mRNAs
and miRNAs from mouse to human mast cells and mouse proteins can be detected in
human mast cells [7].
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The fate of exosomes is highly uncertain and influenced by various factors. There is
both directed migration towards specific destinations, such as receptor-mediated specific
binding, as well as aimless or random wandering. They can be engulfed non-specifically
by the circulatory system and reticuloendothelial system, or their destinations can be
influenced by the local microenvironment and cellular status of recipient cells. Furthermore,
studies have shown that exosomes can interact with specific target cells based on their
cargo and origin, efficiently releasing their contents to induce phenotypic changes in target
cells [30]. Due to their ability to effectively deliver bioactive substances or artificially loaded
molecular cargos, exosomes have earned a reputation as ”natural carriers”. Therefore, in-
depth exploration of the generation process, secretion conditions, and biological functions
is crucial in understanding their impact on the physiological and pathological processes of
recipient cells, as well as their clinical applications.

Nowadays, the secretion of exosomes has expanded to various cell types, and their
significance in intercellular communication in both normal and pathological states has been
well documented. Moreover, different cell types regulate exosome biogenesis according
to their physiological state and release exosomes with specific lipid, protein, and nucleic-
acid compositions.

3. ncRNAs and Cardiovascular Diseases

With the continuous development and advancement of molecular biology technology,
the role of genes and RNA in cardiovascular diseases has been increasingly emphasized.
Some studies have shown that ncRNAs are abundantly expressed in the cardiovascular
system, and changes in ncRNA expression levels have been found in the occurrence and
development of many cardiovascular diseases. ncRNAs include transfer ribonucleic acid
(tRNAs), ribosome ribonucleic acid (rRNAs), long non-coding ribonucleic acid (lncRNAs),
circular ribonucleic acid (circRNAs), small nuclear ribonucleic acid (snRNAs) and micro-
ribonucleic acid (miRNAs), as well as other RNAs with unknown functions. It is now well
established that lncRNAs, circRNAs, and miRNAs are closely associated with the devel-
opment of CVDs and have been recognized as new biomarkers and potential therapeutic
targets for a variety of diseases, including CVDs.

Recent studies have proposed approximately 50 miRNAs associated with essential
hypertension and more than 30 miRNAs associated with heart failure and myocardial
infarction, many of which could serve as promising biomarkers. miR-21 was expressed
in many cell types associated with the cardiovascular system, including vascular smooth
muscle cells, vascular endothelial cells, cardiomyocytes, cardiac fibroblasts, and blood [31].
miR-21 expression was closely associated with the occurrence and development of hyper-
tension [32]. In addition, studies of cardiac dysfunction after myocardial infarction have
shown that miR-21 can be involved in the occurrence of hypertension and myocardial
fibrosis through the TGF-β/smad7 signaling pathway [32]. miR-19a/19b expression was
up-regulated in patients with heart failure after myocardial infarction, and miR-19a/19b
increased cardiac proliferation and regeneration, suggesting that there might be a compen-
satory mechanism for the stress response [33].

Similar to miRNAs, a large number of lncRNAs are involved in the critical regulation
of a variety of cardiac diseases, highlighting their role in the occurrence and development
of cardiovascular disease. It was shown that lncRNA H19 promoted the development
of atherosclerosis by promoting the MAPK and NF-kB signaling pathways [34]. lncRNA
Chaer was significantly down-regulated in hypoxia-treated cardiomyocytes and in the
hearts of myocardial infarction [35]. In vitro overexpression of lncRNA Chaer reduced
hypoxia-induced cardiomyocyte apoptosis; conversely, silencing of lncRNA Chaer pro-
moted cardiomyocyte apoptosis [35]. In vivo overexpression of lncRNA Chaer slowed
myocyte apoptosis, reduced the infarcted area, and improved cardiac function in infarcted
mice, suggesting that lncRNA Chaer has a protective effect against myocardial infarc-
tion [35]. lncRNA Nron expression was elevated in the peripheral blood of myocardial
infarcted patients and in hypoxia-stimulated H9c2 cells [36]. Knockdown of lncRNA Nron
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promoted cell viability and inhibited apoptosis in hypoxia-stimulated H9c2 cells; mean-
while, knockdown of lncRNA Nron significantly attenuated cardiac injury and improved
cardiac function in myocardial infarction mice [36].

The role of circRNA in various cardiovascular diseases has also been reported. Ex-
ogenous expression of circANRIL in a rat model of coronary atherosclerosis exerted ben-
eficial effects by lowering the levels of total cholesterol, triglycerides, ox-LDL, and pro-
inflammatory and pro-apoptotic markers’ expression in endothelial cells, thereby playing
a beneficial role [37]. circRNA circ_0003204 inhibited the progression of atherosclero-
sis through the miR-370-3p/TGFβR2/phosph-SMAD3 axis [38]. circSNRK was signifi-
cantly down-regulated in myocardial infarction rats, and overexpression of circSNRK in
cardiomyocytes inhibited apoptosis and promoted cell proliferation. Overexpression of
circSNRK in the heart after myocardial infarction reduced cardiomyocyte apoptosis, pro-
moted cardiomyocyte proliferation, enhanced angiogenesis, and improved cardiac function.
Overall, circSNRK promotes cardiac survival and functional recovery after myocardial
infarction [39].

4. Exosome-Mediated Intercellular Communication

Since intercellular communication is critical for maintaining tissue homeostasis and
preventing disease, understanding exosome-mediated intercellular communication may
provide important insights into the development of vascular pathogenesis. Over short
distances, direct cell-to-cell contact can generate cellular crosstalk, whereas long-distance
communication can be mediated by cytokines or hormones. Recently, a novel communica-
tion pathway mediated by exosomes has emerged as a newly discovered means of intercel-
lular communication. Transfer of exosome contents to receptor cells has been described
in a variety of cells and these exosomes act as regulators of intercellular communication
between neighboring and distal cells [40]. Furthermore, the microenvironmental stimuli
can influence the quantity and types of exosome contents through induction of molecular
enrichment or depletion [41]. Therefore, their potential use as diagnostic, prognostic, and
therapeutic markers in physiological and pathological processes has garnered immense
interest [42–45]. The role of exosomes as key regulators in intravascular homeostasis and
cardiovascular disease progression has been emphasized by recent studies [46–51].

4.1. The Role of Exosomal ncRNA from Vascular Smooth Muscle Cells in Cardiovascular Disease

The composition of the human medium and large arterial vessel wall includes a va-
riety of cells such as endothelial cells (ECs), immune macrophages, and vascular smooth
muscle cells (SMCs). The structural and functional integrity of these cells is an impor-
tant guarantee of the maintenance of the normal physiological function of blood vessels.
Among the various cells, ECs and SMCs especially, perform very complicated intercellular
communication. They are the main components of the vascular wall and exhibit a high
degree of plasticity. The communication between ECs and VSMCs can be carried out in an
indirect (biochemical) manner [52]. Exosomes originating from VSMCs can inhibit vascular
regeneration through an intermediary mediation of miR-16 to down-regulate vascular
endothelial growth factor levels and inhibit vascular regeneration in breast cancer cells [53].
Research has explored the role of exosome-mediated transfer of miR-155 from VSMCs to
ECs in inducing endothelial injury and promoting atherosclerosis [54]. The study reveals
that VSMCs release exosomes carrying miR-155, which can be taken up by neighboring ECs.
This transfer leads to endothelial injury characterized by compromised barrier function,
increased permeability, and enhanced endothelial cell apoptosis [54].

4.2. The Role of Exosomal ncRNA from Endothelial Cells in Cardiovascular Disease

Abnormal proliferation of VSMCs plays an important role in the development of
diabetic vascular complications. Under high glucose (HG) conditions, ECs act as the first
barrier to injury stimuli, triggering multiple responses, including ECs and VSMCs crosstalk.
The results showed that exosomes secreted by mouse aortic endothelial cells (MAEC)



Int. J. Mol. Sci. 2023, 24, 16197 6 of 17

promoted HG-induced proliferation and inhibited apoptosis of VSMCs. MAEC exosomes
exposed to HG could transfer circHIPK3 enriched in MAEC exosomes to VSMCs [55]. Exo-
somal circHIPK3 promoted VSMC proliferation and inhibited VSMC apoptosis. circHIPK3
was sponge-wiped with miR-106a-5p to deregulate its inhibition of Foxo1 expression. The
increased expression of Foxo1 served as a transcription factor to promote the expression of
Vcam1, which promoted the uptake of MAEC-derived exosomes by VSMCs [55].

In the presence of atherosclerosis, the amount of microRNA-92a-3p in EC exosomes
was significantly increased [56]. MicroRNA-92a-3p encapsulated by EC exosomes could
translocate to recipient cells and regulate target genes through a thbs1-dependent mech-
anism [56]. Oxidized low-density lipoprotein-treated VSMCs released exosomes encap-
sulating miR-505 [57]. These exosomes are ingested and internalized into macrophages,
targeting and inhibiting SIRT3 in neutrophils, thereby inducing elevated levels of reactive
oxygen species in neutrophils, triggering an inflammatory response, and exacerbating
atherosclerosis development [57]. It was found that exosomal miRNAs mediated signaling
between cardiomyocytes and ECs [58]. Prolactin hydrolyzed fragments could mediate sig-
naling between cardiomyocytes and ECs by stimulating ECs to release exosomes containing
miR-146a [58]. Acquisition of these exosomes by cardiomyocytes resulted in a decrease in
metabolic activity [58]. Specifically, the researchers discovered that miRNA-143/145 played
a key role in the development of atherosclerosis. miRNA-143/145 was transferred from ECs
to SMCs via exosomes, mediating intercellular communication. This communication could
inhibit the proliferation and migration of SMCs and maintain the integrity of the vascular
endothelium, thus exerting a protective effect on the process of atherosclerosis [59].

The increased expression of lncRNA-LINC00174 in exosomes derived from mouse
primary aortic ECs directly interacted with SRSF1 to suppress the expression of p53, thereby
inhibiting p53-mediated autophagy and cell apoptosis, reducing ischemia-reperfusion-
induced myocardial injury [59]. Knockdown of circNPHP4 inhibited heterotypic adhesion
between monocytes and coronary artery endothelial cells and reduced the expression of
ICAM-1 and VCAM-1. Studies on the potential mechanisms showed that circNPHP4
affected the expression of miR-1231 and its target gene EGFR. Overexpression of miR-1231
abrogated the inhibitory effect of circNPHP4 on heterotypic adhesion [60]. The article
comprehensively elucidated the abnormal communication between ECs and macrophages
mediated by METTL3 through the regulation of miR-93 in exosomes in smoking-induced
emphysema [61]. Smoking induced the accumulation of METTL3, which in turn promoted
the maturation of miR-93 in exosomes. By targeting the negative regulation of DUSP2,
the JNK/MMPs pathway was activated, leading to the degradation of elastin and the
development of emphysema [61].

4.3. The Role of Exosomal ncRNA from Cardiac Fibroblasts in Cardiovascular Disease

Cardiac fibroblasts (CFs) play an important role in the regulation of cardiac physiology
during injury [62]. Emerging evidence suggests that exosomes released by CFs are one of
the major components leading to cardiomyocyte hypertrophy [63–66]. Recently, several
published papers have confirmed the direct involvement of fibroblasts in ec-mediated
angiogenesis [67,68]. The study investigated the role of CF-derived exosomes microRNA in
cardiomyocyte hypertrophy. Evaluation of miRNA content in exosomes derived from CFs
revealed a relatively high abundance of miRNAs. Among them, miR-21_3p (miR-21*) could
be taken up by cardiomyocytes to silence SORBS2 or PDLIM5, leading to the induction of
cardiomyocyte hypertrophy [69]. In addition, CF-exo miR-23a-3p could be taken up by
cardiomyocytes, resulting in the inhibition of SLC7A11 expression and the promotion of
ferroptosis, ultimately contributing to the development of atrial fibrillation [70].

The role of myofibroblast-derived exosomes in inducing cardiac EC dysfunction was
explored [71]. It was shown that miR-200a-3q secreted by TGF-β-activated fibroblasts
targeted the VEGF-A/PIGF signaling pathway, leading to a decrease in vascular formation
ability, impaired migration capability, and increased vascular permeability in cardiac
ECs [71]. A research article on miRNA-423-3p derived from CF exosomes regulating
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cardioprotective effects after ischemia is reported [72]. The study discovered that miRNA-
423-3p in CF-derived exosomes was able to attenuate cardiac damage induced by ischemia-
reperfusion injury and improve cardiac function by translocating into cardiomyocytes
and targeting the downstream effector RAP2C [72]. The study aimed to investigate the
role of circular RNAs (circRNAs) derived from M2 macrophages (M2Ms) exosomes in the
development of myocardial fibrosis. The results showed that the circRNAbe3a derived from
M2Ms exosomes promoted the proliferation, migration, and phenotypic transformation of
CFs by directly targeting the miR-138-5p/RhoC axis, which might exacerbate myocardial
fibrosis after acute myocardial infarction [73].

4.4. The Role of Exosomal ncRNA from Cardiomyocyte in Cardiovascular Disease

Myocardial infarction (MI) is the leading cause of congestive heart failure and death.
Hypoxia is an important trigger factor for myocardial remodeling during the development
of heart disease. The mechanism by which exosomes derived from cardiomyocytes pro-
mote cardiac fibrosis through interactions between cardiomyocytes and fibroblasts was
investigated. The study found that lncRNA AK139128 produced by cardiomyocytes under
hypoxic conditions could be delivered to CFs through exosomes, regulating their apoptosis
and proliferation processes [74]. Cardiomyocytes secreted exosomes containing miR-208a
into fibroblasts, which promoted fibroblast proliferation and differentiation toward myofi-
broblasts by targeting Dyrk2 [75]. The contribution of miR-210-3p from myocyte-derived
exosomes to atrial fibrosis in patients with atrial fibrillation was covered [76]. The findings
indicated that miR-210-3p inhibited GPD1L in atrial fibroblasts, thereby regulating the
PI3K/AKT signaling pathway and promoting cell proliferation and collagen synthesis [76].
By inhibiting miR-210-3p in these exosomes, the extent of atrial fibrosis could be atten-
uated [76]. Meanwhile, the study found that the exosome released by cardiomyocytes
contained miRNA-92a, and that the exosome was able to deliver miR-92a to postischemic
myofibroblasts, alleviating smad7-mediated repression of αSMA transcription and trig-
gering phenotypic transformation towards myofibroblasts [77]. The study investigated
the mechanism by which cardiomyocytes mediated anti-angiogenesis in type-2 diabetic
rats by releasing exosomes for delivery to endothelial cells [78]. The results showed that
cardiomyocytes transferred exosomes miR-320 to ECs, leading to the down-regulation of
target genes (IGF-1, Hsp20, and Ets2), thereby inhibiting ECs proliferation, migration, and
angiogenesis [78].

In 2019, the specific expression pattern of circular RNAs (circRNAs) in exosomes from
cardiac tissues during ischemia/reperfusion (I/R) injury was first revealed, providing
important evidence for the role of circRNAs and exosomes in cardiac I/R pathology [79].
It was found that exosomes released from hypoxia preconditioned cardiomyocytes were
enriched in circHIPK3, which was delivered to cardiac microvascular ECs and inhibited
IGF-1 expression by binding to miR-29a to reduce oxidative stress-induced injury and
protected cardiac microvascular ECs [80]. On the other hand, the circHIPK3 in these
exosomes could increase the expression of VEGFA by inhibiting the activity of miR-29a [81].
This, in turn, accelerated cell cycle progression and proliferation of cardiac ECs, ultimately
facilitating angiogenesis [81].

lncRNA-AK139128, up-regulated in hypoxia preconditioned cardiomyocyte-derived
exosomes, promoted cardiac fibroblast apoptosis, and inhibited their proliferation and
migration [74]. lncRNA-MALAT1 was up-regulated in exosomes derived from cardiomy-
ocytes treated with hyperbaric oxygen, inhibiting the expression of miR-92a and relieving
miR-92a-mediated inhibition of KLF2 and CD31 expression after myocardial infarction,
thus, enhancing neovascularization and significantly reducing the infarct size [82]. Further-
more, exosomes enriched with lncRNA-ZFAS1 from cardiomyocytes have been shown to
worsen cardiac fibrosis in a mouse model of chronic kidney disease through the activation
of the Wnt4/β-catenin signaling pathway [83].



Int. J. Mol. Sci. 2023, 24, 16197 8 of 17

4.5. The Role of Exosomal ncRNA from Stem Cells in Cardiovascular Disease

Embryonic stem cells (ESCs) hold great promise for cardiac regeneration and have
the ability to produce exosomes, and the miR-290-295 cluster, especially miR-294, is sig-
nificantly enriched in ESCs exosomes [84]. The delivery of miR-294 to the heart mediated
the activation of endogenous repair mechanisms, enhancing cardiac function [84]. A study
evaluated the protective effects of mesenchymal stem cell (MSC)-derived exosomes on
cardiomyocytes in an animal model of doxorubicin-induced cardiomyopathy [85]. This
protection was achieved through the modulation of the miR-199a-3p-Akt-Sp1/p53 sig-
naling pathway [85]. Exosomes derived from MSCs have been widely reported to have
a protective effect against myocardial infarction. It was discovered that blocking exoso-
mal miRNA-153-3p derived from bone marrow mesenchymal stem cells could activate
the VEGF/VEGFR2/PI3K/Akt/eNOS pathway, thereby alleviating hypoxia-induced my-
ocardial and microvascular damage and improving myocardial function [86]. A study
has identified that exosomes derived from iPS carried various cardioprotective miRNAs,
including miRNA-21 and miRNA-210 [87]. Delivery of these miRNAs modulated multiple
target genes, inhibited cardiomyocyte apoptosis, and promoted cell survival and improve-
ment of myocardial function [87]. It provides a novel therapeutic strategy of utilizing
exosomes to deliver miRNAs for cardioprotection and improving prognosis in ischemic
heart disease [87].

LncRNA-UCA1 expression was found to be up-regulated in hypoxia-treated MSC
exosomes. In vitro experiments demonstrated that exosomal lncRNA-UCA1 mediated the
protective effect on hypoxic cardiomyocytes through the miR-873-5p/interlocked apoptosis
inhibitory protein (XIAP) axis [88]. MSC-derived exosomal lncRNA KLF3-AS1 ameliorated
the focal death of infarcted cardiomyocytes, inhibited the release of pro-inflammatory
cytokines, and ultimately reduced the area of cardiac infarction by competitively inhibiting
the down-regulation of silencing information regulatory factor 1 (SIRT1) by miR-138-5p [89].
Increased lncRNA H19 in MSC-derived exosomes pretreated with atorvastatin up-regulated
the expression of VEGF and ICAM-1 and attenuated the apoptosis of infarcted myocardium
by acting on miR-675 [90]. Meanwhile, it down-regulated the levels of IL-6 and TNF-α, in-
hibited the excessive inflammatory response, and ultimately improved the cardiac function
of infarcted hearts [90]. The expression of lncRNA-NEAT1 in human adipose MSC-derived
exosomes pretreated with macrophage migration inhibitory factor (MIF) was up-regulated,
which protected cardiomyocytes from H2O2-induced apoptosis by competitively inhibiting
miR-142-3p and restored the expression of FOXO1 [91]. Additionally, lncRNA-UCA1 in
exosomes derived from human umbilical cord mesenchymal stem cells up-regulated the
anti-apoptotic factor Bcl-2 through competitive binding with miR-143, inhibiting excessive
apoptosis and autophagy in the hearts of rats subjected to ischemia-reperfusion injury [92].

The study investigated whether exosomes derived from umbilical cord mesenchymal
stem cells (UMSCs) can repair the heart after myocardial infarction (MI) by delivering
circRNAs. The results showed that circRNA-0001273 significantly inhibited apoptosis
of myocardial cells under ischemic conditions and promoted myocardial infarction re-
pair, providing a promising reference for clinical treatment [93]. The exosomes derived
from circRNA_0002113-deficient MSCs could regulate the RUNX1 nuclear relocation by
sponge miR-188-3p to inhibit myocardial infarction [94]. The expression of circHIPK3 in
ischemic muscles was reduced, while treatment with exosomes derived from umbilical cord
mesenchymal stem cells (UMSC-Exo) significantly increased circHIPK3 expression and
improved blood perfusion [95]. Functional studies demonstrated that miR-421/FOXO3a is
a direct target of circHIPK3 [95].

4.6. The Role of Exosomal ncRNA from Adipocyte in Cardiovascular Disease

Adipocytes have been shown as a major source of exosomes containing miRNAs [96–98].
The results showed that exosomes released from visceral adipocytes carried high levels
of miR-27b-3p, and these exosomes could activate ECs by translocating miR-27b-3p and
promote endothelial inflammation and atherosclerosis by activating the NF-κB pathway
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through down-regulation of PPARα [99]. Exosomes released from epididymal white adi-
pose tissue were enriched in miR-23a-3p [100]. These exosomes promoted myocardial
fibrosis by translocating miR-23a-3p to fibroblasts, which were converted to myofibrob-
lasts [100]. Meanwhile, it has been suggested that adipocyte-derived exosomes deliver
lncRNA-SNHG9 to ECs, which in turn suppresses the expression of the TNF receptor-
associated death domain (TRADD), thereby reducing endothelial inflammation and apopto-
sis [101]. This provides a potential molecular mechanism for the maintenance of endothelial
function [101]. Research established that microRNA-31 presented in exosomes derived
from adipose-derived stem cells could be penetrated to cardiomyocytes and inhibited
FIH1 expression, thus encouraging the activation of HIF-1α with enhancing cell survival
ability, promotion of angiogenesis, and inflammatory reaction reduction, consequently
diminishing the impact of myocardial infarction [102]. The exosomes released from highly
obese adipocytes were enriched in miR-802-5p, which inhibited the expression of HSP60,
altered the pathways associated with insulin signaling in cardiac myocytes, and led to the
development of insulin resistance [103]. This finding not only deepens the understanding
of the mechanism of insulin resistance but also provides new clues for further exploration
of the treatment of obesity-related heart diseases [103].

4.7. The Role of Exosomal ncRNA from Immune Cells in Cardiovascular Disease

Expansion and activation of CD4+ T cells in the heart have been identified as con-
tributors to pathological cardiac remodeling. The researchers found that the miR-142-3p
in exosomes released by activated CD4+ T cells inhibited the expression of APC, the
negative regulator of the WNT signaling pathway, promoting post-ischemic ventricular
remodeling [104]. Researchers have found that the crosstalk between cardiomyocytes and
macrophages is mediated by the expression of miR-34a-5p/PNUTS signaling pathway in
exosomes to exert pro-aging effects [105].

Arteriosclerosis is a common cardiovascular disease associated with chronic inflam-
mation and ES dysfunction. Recent research has found that neutrophil microvesicles, by
delivering miR-155 to ECs, drive the development of atherosclerosis [106]. Experimental re-
sults demonstrated that miR-155 in exosomes downregulated the expression of SoS1, a gene
associated with fibroblast proliferation, and activated inflammatory pathways, thereby
regulating the fibrotic response during cardiac injury [107]. Up-regulation of lncRNA
39868 expression in neutrophil-derived exosomes promoted the expression of p-AKT and
Bcl-xL by acting on PDGFD and reduced the production of NADPH oxidase 2 (NOX2)
and reactive oxygen species (ROS), alleviating ischemia-reperfusion-induced myocardial
oxidative stress injury and improving heart function [108].

5. Exosome Therapy

The functional delivery of RNA molecules is an emerging vaccination and therapeutic
approach, and mRNA delivery holds great clinical potential. Although naked mRNA de-
livery has been reported, its efficacy is limited by high plasma RNA degradation rates, low
cellular uptake, and nucleic-acid-induced inflammatory responses. Formulating RNA into
lipid nanoparticles (LNPs) has been developed as a method to overcome these limitations
but LNPs and other synthetic nanoparticles are exogenous entities associated with a range
of side effects. Exosomes are the only biologically normal nanovesicles, and compared to
LNPs that can cause significant cellular toxicity, exosomes have shown no adverse effects
in vitro or in vivo at any tested dose. However, the targeting ability of natural exosomes is
limited, which partially restricts their application in cardiovascular disease treatment [109].
Constructing exosomes as drug delivery vehicles in a specific way can improve cardiac
targeting and improve the stability of exosomes in the circulation [110]. Methods for en-
gineering exosomes mainly include passive loading, active loading, and biotechnological
modifications of donor cells. Each method has its own advantages and disadvantages,
and the appropriate method should be selected based on the source, characteristics, and
practical application of the exosome to effectively target delivery and stabilize its thera-
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peutic effects. Passive loading involves co-incubation of the target drug with exosomes.
Loading efficiency mainly depends on the concentration gradient and hydrophobicity of
the drug. Compared to hydrophilic drugs, highly concentrated hydrophobic drugs have
higher loading efficiency [111]. The advantage of passive loading is that it does not disrupt
the integrity of the exosome membrane but the disadvantage is that the drug payload is
lower compared to other loading methods.

Active loading involves directly targeting exosomes using techniques such as electro-
poration, ultrasound, liposomal freeze-thaw, and mechanical extrusion, etc. These methods
are conducive to delivering various types of RNA to target tissues and regulate gene expres-
sion in target cells [112]. Some researchers have collected exosomes from cardiac progenitor
cells and loaded them with miR-322 using electroporation [113]. Injection of these loaded ex-
osomes into a myocardial infarction mouse model resulted in reduced infarct size, reduced
fibrosis, and increased angiogenesis compared to mice injected with miR-322-unloaded
exosomes. M2 macrophage-derived exosomes (M2-Exos) exhibited inflammation-targeting
ability, and their active loading via electroporation significantly alleviated atherosclero-
sis [114]. Since exosomes are secreted by donor cells, biotechnological modification of
donor cells can be utilized to change their genetic characteristics and enable the integration
of molecular components naturally into budding vesicles, and substances internalized into
the cell interior can be packaged into secreted exosomes. It has been reported that exosomes
derived from MSCs can effectively promote cardiac injury repair. To further enhance the
therapeutic effects of these exosomes, Wang and Mentkowski engineered donor cells via
lentiviral transduction to produce ischemic myocardium-targeting peptide-lamp2b and
cardiomyocyte-specific peptide-lamp2b fusion-expressing exosomes [109,115]; however,
the targeting peptide-lamp2b fusion protein related to exosomes was found to be prone to
degradation by nuclear proteases during exosome biogenesis. To overcome peptide loss, a
glycosylation motif at different positions of the targeting peptide-lamp2b fusion protein
was inserted to protect the peptide from degradation and increase the expression of the
lamp2b fusion protein in cells and exosomes [116].

The advantages of exosomes over other carriers include biocompatibility and a lower
likelihood of triggering innate and adaptive immune responses [117]. Clinical studies
have demonstrated that exosomes secreted by dendritic cells can stimulate the immune
system and, therefore, can be used as antitumor vaccines [118,119]. Exosome-encapsulated
adeno-associated viral vectors are more efficient and less immunogenic than free vectors in
delivering gene-therapeutic substances to recipient cells [120]. Manipulation of exosomes
in vitro to load specific cargo (such as siRNAs, mRNAs, proteins, and miRNAs) and
then using them as drugs or for bioengineering purposes have been reported [121,122].
Exosomes are naturally occurring nanocarriers that can maintain the biological activity
of their cargo in living organisms. They possess low immunogenicity and high safety,
making them promising for drug delivery. In addition, exosomes can circulate to all
compartments in the body and have good potential for non-hepatic targeting of nucleic
acid drug delivery. Currently, although preliminary results have been taken, there are
several obstacles that need to be overcome for exosomes to become effective nucleic acid
carriers, such as improving circulation time and in vivo distribution, enhancing organ-
specific targeting, addressing safety concerns related to exosomes derived from tumors,
and achieving stable large-scale production. The development of the exosomes industry is
still at a very early and budding stage, offering tremendous development opportunities
but also facing difficulties in clinical translation and inconsistent evaluation systems.

6. Conclusions

Exosomes are an emerging area of research in cardiovascular disease. Currently,
the study of exosomes highly relies on the methods used for isolation and purification,
which impose higher requirements on the extraction steps and laboratory equipment.
Several ncRNAs have been described in the context of cardiovascular disease specifically
for mediating cellular communication (Table 1). The different small molecules carried by
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exosomes from different sources hold the potential to become therapeutic targets for future
cardiovascular diseases and provide a basis for precision medicine (Figure 2). However,
further research and exploration are still needed in this regard.

Table 1. ncRNAs and Cardiovascular Diseases.

Exosomal ncRNA Target Cell Type/Communication Refs.

miR-16 VEGF Vascular smooth muscle cells–Endothelial cells [53]

miR-155 miR-155 Vascular smooth muscle cells–Endothelial cells [54]

circHIPK3 miR-106a-5p Mouse aortic endothelial cells–Vascular smooth muscle cells [55]

miR-92a-3p THBS1 Endothelial cells–recipient Endothelial cells [56]

miR-505 SIRT3 Vascular endothelial cells–Macrophages [57]

miR-146a Erbb4, Notch1, Irak1 Endothelial cells–Cardiomyocytes [58]

miRNA-143/145 Unknown Endothelial cells–Smooth muscle cells [59]

LINC00174 SRSF1 Vascular endothelial cells–Myocardial cells [60]

circNPHP4 miR-1231-EGFR Monocytes–Coronary artery endothelial cells [61]

miR-93 MMP12 Macrophages–Bronchial epithelial cells [62]

miR-21_3p SORBS2, PDLIM5 Cardiac fibroblasts–Cardiomyocytes [69]

miR-23a-3p SLC7A11 Cardiac fibroblasts–Cardiomyocytes [70]

miR-200a-3q VEGF-A/PIGF Fibroblasts–Cardiac endothelial cells [71]

miR-423-3p RAP2C Cardiac fibroblasts–Cardiomyocytes [72]

circRNAbe3a miR-138-5p/RhoC M2 macrophages–Cardiac fibroblasts [73]

lncRNA AK139128 Unknown Cardiomyocytes–Fibroblasts [74]

miR-208a Dyrk2 Cardiomyocytes–Fibroblasts [75]

miR-210-3p GPD1L-PI3K/AKT Myocytes–Fibroblasts [76]

miR-92a smad7 Cardiomyocytes–Myofibroblasts [77]

miR-320 IGF-1, Hsp20, Ets2 Cardiomyocytes–Endothelial cells [78]

circHIPK3 miR-29a-IGF-1 Cardiomyocytes–Cardiac microvascular endothelial cells [80,81]

lncRNA-AK139128 Unknown Cardiomyocytes–Cardiac fibroblasts [74]

lncRNA-MALAT1 miR-92a-3p/ATG4a Stem cells–Cardiomyocytes [82]

miR-294 Unknown Embryonic stem cells–Cardiomyocytes [84]

miR-199a-3p Akt-Sp1/p53 signaling
pathway Mesenchymal stem cells–Cardiomyocytes [85]

miRNA-153-3p VEGF/VEGFR2/PI3K/
Akt/eNOS pathway Mesenchymal stem cells–Cardiomyocytes [86]

miRNA-21, miRNA-210 Unknown Induced pluripotent stem cells–Cardiomyocytes [87]

lncRNA-UCA1 miR-873-5p/XIAP Mesenchymal stem cells–Cardiomyocytes [88]

lncRNA KLF3-AS1 miR-138-5p/SIRT1 Mesenchymal stem cells–Cardiomyocytes [89]

lncRNA H19 miR-675/VEGF, ICAM-1 Mesenchymal stem cells–Cardiomyocytes [90]

lncRNA-NEAT1 miR-142-3p/FOXO1 Adipose mesenchymal stem cells–Macrophages [91]

lncRNA-UCA1 miR-143/Bcl-2 Human umbilical cord mesenchymal stem cells–Cardiomyocytes [92]

circRNA-0001273 Unknown Umbilical cord mesenchymal stem cells–Myocardial cells [93]

circRNA_0002113 miR-188-3p/RUNX1 axis Mesenchymal stem cells–Myocardial cells [94]

circHIPK3 miR-421/FOXO3a Umbilical cord mesenchymal stem cells [95]

miR-27b-3p PPARα Visceral adipocytes–Endothelial cells [99]

miR-23a-3p RAP1 Epididymal white adipose tissue–Myocardial fibrosis [100]

lncRNA-SNHG9 TRADD Adipocytes–Endothelial cells [101]

miRNA-31 FIH1 Adipose-derived stem cells–Cardiomyocytes [102]

miR-802-5p HSP60 Adipocytes–Cardiac myocytes [103]

miR-142-3p WNT signaling pathway CD4+ T cells–Cardiac myofibroblasts [104]

miR-34a-5p PNUTS signaling pathway Cardiomyocytes–Macrophages [105]

miR-155 VEGF signaling pathway Neutrophil microvesicles–Endothelial cells [106]

miR-155 Son of Sevenless 1 Macrophages–Fibroblasts [107]

lncRNA 39868 PDGFD Neutrophils [108]
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