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Abstract: Accumulating evidence has underscored the prognostic value of tumor-infiltrating immune
cells in the tumor microenvironment of colon cancer (CC). In this retrospective study, based on
publicly available transcriptome profiles and clinical data from the Gene Expression Omnibus and
The Cancer Genome Atlas databases, we derived and verified an activated dendritic cell (aDC)-related
gene signature (aDCRS) for predicting the survival outcomes and chemotherapy and immunotherapy
response of CC patients. We quantified the infiltration abundance of 22 immune cell subtypes via
the “CIBERSORT” R script. Univariate Cox proportional hazards (PHs) regression was used to
identify aDC as the most robust protective cell type for CC prognosis. After selecting differentially
expressed genes (DEGs) significantly correlated with aDC infiltration, we performed univariate
Cox-PH regression, LASSO regression, and stepwise multivariate Cox-PH regression successively
to screen out prognosis-related genes from selected DEGs for constructing the aDCRS. Receiver
operating characteristic (ROC) curves and Kaplan–Meier (KM) analysis were employed to assess the
discriminatory ability and risk-stratification capacity. The “oncoPredict” package, Cancer Treatment
Response gene signature DataBase, and Tumor Immune Dysfunction and Exclusion algorithm were
utilized to estimate the practicability of the aDCRS in predicting response to chemotherapy and
immune checkpoint blockade. Gene set enrichment analysis and single-cell RNA sequencing analysis
were also implemented. Furthermore, an aDCRS-based nomogram was constructed and validated via
ROC curves, calibration plots and decision curve analysis. In conclusion, aDCRS and an aDCRS-based
nomogram will facilitate precise prognosis prediction and individualized therapeutic interventions,
thus improving the survival outcomes of CC patients in the future.

Keywords: colon cancer; activated dendritic cells; gene signature; nomogram; prognosis; chemother-
apy and immunotherapy response; cancer biomarkers

1. Introduction

Colorectal cancer (CRC) remains the third most prevalent cancer and the second
leading cause of cancer-related deaths globally according to the GLOBOCAN 2020 es-
timates [1]. Approximately 50% of patients with localized lesions eventually fall into
metastatic CRC [2]. Current treatment decisions for CRC sufferers primarily rely on
histopathological assessment of tumor invasion degree according to the American Joint
Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) TNM clas-
sification system [3,4]. Nevertheless, this system has limited prognostic value to predict
response to treatment, with considerably fluctuating risks of CRC relapse and mortality
even among patients with similar histopathological tumor stage [5–7]. The core issue lies
in an inaccurate assumption of this traditional staging system, which claims that disease
progression is a tumor cell-autonomous process, and thereby confines the main focus to
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tumor cells themselves, rather than the reciprocal and dynamic interactions between tumor
cells and their adjacent tumor microenvironment (TME) [5,8].

Initiated by the stepwise accumulation of genetic and epigenetic changes, the evolu-
tion of the CRC niche is driven by both consecutive replication of dysregulated epithelial
cells lining colon mucosa and an accomplice branded TME. TME is an admixture of cellular
components mainly comprising immune and inflammatory cells, cancer-associated fibrob-
lasts, and the blood and lymphatic vascular networks, as well as non-cellular components
including extracellular matrix [9,10]. The colorectal stroma, which physiologically serves
as a defender of the equilibrium and homeostasis in normal tissues, now becomes exposed
to frequent education, cooption, and modification from the cancer cells and thereby synthe-
sizes a wide variety of cytokines, chemokines, proteinases, and growth factors [9,11]. All
of these components interact reciprocally and can concertedly regulate the proliferation,
cell death, immunosuppression, and energy metabolism of tumor cells, thus checking
the tumorigenesis, progression, and metastasis of CRC as well as determining treatment
response and drug resistance [12].

As the major TME stromal cellular constituents, immune cells aggregate into the tumor-
adjacent milieu and exert profound influence on clinical outcomes [9]. As a heterogeneous
and rare type of immune cells, dendritic cells (DCs) are professional antigen-presenting
cells that orchestrate innate and adaptive immune responses through a developmental
process termed “maturation” [13,14]. Inherently, DCs exist in two phenotypically and
functionally discrepant states, immature and mature, which can exert distinct impacts
on CRC progression. Immature DCs are highly adept at antigen uptake, but are less
proficient in antigen presentation and may induce immune tolerance and immune escape
that can lead to further progression of CRC. Mature DCs have a reduced capacity for
antigen uptake but obtain an exceptional capacity for T cell stimulation at this stage [13].
Most DCs in peripheral tissues are of the immature phenotype, which expresses relatively
low levels of surface costimulatory molecules (CD40, CD70, CD80, CD86, etc.) [13,15]. In
response to microbial or inflammatory stimuli, immature DCs are activated and transform
into mature DCs, which migrate from peripheral tissues to secondary lymphoid organs,
present captured antigens to naïve T cells, and ultimately prime naïve T cells to initiate
adaptive immunity. Meanwhile, the expression of costimulatory molecules and production
of inflammatory cytokines are all elevated [13,16]. Distinct subsets of DCs with specific
phenotype and maturation status are involved in different immune responses. Therefore,
the presence or absence of DCs and their explicit subtype, as well as activation/maturation
status, are robustly correlated with different survival outcomes [17,18]. An enhanced
infiltration of activated and mature DCs in CRC can improve overall survival (OS) in CRC
patients, suggesting the important role of DCs in tumor progression [17,19,20].

Considering DCs’ prognostic utility, tumor cell-oriented therapeutic strategies should
be integrated with specific interventions that modify pre- and post-operative immune
responses mediated by DCs to achieve ideal clinical outcomes [17]. In this study, we identi-
fied activated DC (aDC) infiltration as the most robust protective factor for colon cancer
(CC) prognosis among 22 immune cell types. Differentially expressed genes (DEGs) that
are significantly correlated with both aDC infiltration abundance and OS probabilities were
selected through a sophisticated procedure and incorporated into an aDC-related gene
signature (aDCRS). The aDCRS exhibited extraordinary discriminatory ability and risk-
stratification capacity, both for predicting patient survival and for forecasting response to
chemotherapy and immune checkpoint blockade (ICB). Ultimately, a prognostic nomogram
was formulated anchored in the aDCRS and clinicopathological features to improve the pre-
dictive accuracy and efficiency. Our results shed light on how DC activation and infiltration
shape the immune pathogenesis of CC and can assist clinicians to make precise predictions
of patient prognosis and select appropriate therapeutic strategies for each patient.
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2. Results
2.1. Estimation of Immune Cell Infiltration Abundance and Their Prognostic Value

The flowchart of this study is depicted in Figure 1. The infiltration abundance of
22 immune cell subtypes in all enrolled tumor samples was appraised via the Cell-type
Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) R script and
displayed in a heatmap (Figure 2A). The detailed CIBERSORT scores, p-values, and Pearson
correlation coefficients corresponding to each sample from 562 CC patients in the training
set (GSE39582) are demonstrated in Figure S1. As revealed by univariate Cox proportional
hazards (PHs) regression analysis (Figure 2B), among the 22 investigated immune cell types,
the CIBERSORT scores of resting NK cells, M1-type macrophages, M0-type macrophages,
activated CD4+ memory T cells, and aDCs show positive correlation with the OS status of
CC patients, with aDCs exhibiting the strongest protective effect. Meanwhile, monocytes,
plasma cells, M2-type macrophages, activated mast cells, and neutrophils are all significant
unfavorable factors for CC prognosis. Kaplan–Meier (KM) analysis with log-rank statistical
tests unearthed that patients with higher aDC infiltration showed better OS compared
to those with lower aDC infiltration (Figure 2C). We also categorized the 562 patients
according to the optimal cutoff values of the CIBERSORT scores of other immune cells
that had significant association with CC prognosis. The results of the corresponding KM
analyses are displayed in Figure S2.
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Figure 1. The study flowchart. CIBERSORT: Cell-type Identification by Estimating Relative Subsets
of RNA Transcripts; PH: proportional hazards; KM: Kaplan–Meier; aDC: activated dendritic cell;
CC: colon cancer; DEGs: differentially expressed genes; LASSO: least absolute shrinkage and selec-
tion operator; TCGA: The Cancer Genome Atlas; COAD: colon adenocarcinoma; CTR-DB: Cancer
Treatment Response gene signature DataBase; TIDE: Tumor Immune Dysfunction and Exclusion;
GSEA: Gene Set Enrichment Analysis; ScRNA-seq: single-cell RNA sequencing; AIC: Akaike informa-
tion criterion; tROC: time-dependent receiver operating characteristic; C-index: concordance index;
DCA: decision curve analysis.
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as uncovered by the univariate Cox-PH analysis. The least absolute shrinkage and selec-
tion operator (LASSO) regression retained 53 genes with individual nonzero LASSO co-
efficients when the optimal λ value was 0.033 (Figure 3B,C). Subsequently, the stepwise 
multivariate Cox-PH regression was employed to identify optimal prognostic markers 
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Figure 2. Estimation of immune cell infiltration abundance and their prognostic value. (A) Quantifi-
cation of immune cell infiltration via CIBERSORT analysis of gene expression data from all enrolled
tumor samples. The heatmap displays the infiltration abundance of 22 immune cell subtypes in each
sample. The color intensity shown in the left column is proportional to the CIBERSORT score. (B) A
forest plot exhibiting results of univariate Cox-PH regression analysis based on 562 patients in the
training set. Cell types are marked in red to represent risk factors and blue to represent protective fac-
tors. *: p < 0.05; **: p < 0.01. (C) KM survival curves of patients in the high- and low-aDC-infiltration
groups based on 562 patients in the training set. Individual survival numbers and time data are
labeled at the bottom.

2.2. Selection of Candidate Genes and Construction of the Prognostic Gene Signature

A total of 3333 aDC-related DEGs, including 1581 up-regulated genes and 1752 down-
regulated genes, were screened out in the high-aDC-infiltration group (Figure 3A). Among
these genes, 812 candidate genes were associated with the OS rates of CC patients as
uncovered by the univariate Cox-PH analysis. The least absolute shrinkage and selection
operator (LASSO) regression retained 53 genes with individual nonzero LASSO coefficients
when the optimal λ value was 0.033 (Figure 3B,C). Subsequently, the stepwise multivariate
Cox-PH regression was employed to identify optimal prognostic markers and construct
a gene signature termed “aDCRS”, which was a risk score model composed of 17 aDC-
related prognostic genes (aDCRGs): CMKLR1, C16orf78, LRRC41, YIPF4, GAS6, YIPF6,
PLEC, PIWIL4, INHBB, IL17RB, ASL, LY75, APOL3, EPHB2, APOL4, SLC22A1 and RPS4X.
The coefficient for each aDCRG is displayed in Figure 3D. Furthermore, there are significant
discrepancies in the mRNA levels of most of these genes between tumor tissues and
adjacent normal tissues based on the training set (Figure S3A) and the second validation
set (TCGA-COAD, Figure S3B).
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Risk score = 0.902 × Exp(CMKLR1) + 0.897 × Exp(C16orf78) + 0.724 × Exp(LRRC41) + 0.606 × Exp(YIPF4)+
0.604 × Exp(GAS6) + 0.550 × Exp(YIPF6) + 0.503 × Exp(PLEC) + 0.498 × Exp(PIWIL4) + 0.364 × Exp(INHBB)−
0.195 × Exp(IL17RB)− 0.299 × Exp(ASL)− 0.318 × Exp(LY75)− 0.405 × Exp(APOL3)− 0.439 × Exp(EPHB2)−

0.512 × Exp(APOL4)− 0.636 × Exp(SLC22A1)− 1.481 × Exp(RPS4X).

(1)
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plot exhibiting DEGs between the high- and low-aDC-infiltration groups. Up-regulated genes and down-
regulated genes in the high-aDC-infiltration group are marked in red and blue, respectively. (B) Tuning
parameter (λ) selection of deviance in LASSO regression analysis. The red dot represents the mean
cross-validated error (CVM), and the gray line represents the standard error of CVM. (C) LASSO
coefficient profiles of 812 candidate genes selected by univariate Cox-PH regression analysis. Each
curve in different color represents the trajectory of the coefficient of each variable. (D) The coefficient
for each aDC-related prognostic gene (aDCRG). Genes are marked in red to represent risk factors and
blue to represent protective factors. (E,F) The tROC curves demonstrating the discriminatory ability
of the aDC-related gene signature (aDCRS) for predicting OS probabilities in the training set (E) and
two validation sets (F). (G–I) KM survival curves of patients in the high- and low-risk groups based



Int. J. Mol. Sci. 2023, 24, 15959 6 of 21

on the training set (G) and two validation sets (H,I). Numbers of individuals alive at different time
points are presented at the bottom. (J–L) Comparison of the risk scores between alive and deceased
patients in the training set (J) and two validation sets (K,L). Statistical significance was determined
by Wilcoxon–Mann–Whitney test for the training set and the second validation set, or by Student’s
t-test for the first validation set. AUC (t): the areas under the curve at different time points. *: p < 0.05;
****: p < 0.0001.

2.3. Validation of the Discriminatory Ability and Risk-Stratification Capacity of the aDCRS in
Predicting CC Prognosis

The time-dependent receiver operating characteristic (tROC) curves of the aDCRS
based on the training set (Figure 3E) and two validation sets (Figure 3F) were delineated
for OS probabilities. The Akaike information criterion (AIC), concordance index (C-index)
and bootstrapping-corrected C-index values were calculated as 2024.739, 0.754, and 0.734,
respectively, and the 1-year, 3-year, and 5-year area under the curve (AUC) values were
computed as 0.803, 0.798, and 0.782, respectively, based on the training set, indicating that
the discriminatory ability of the signature is reliable and stable over time.

To assess the risk-stratification capacity of the aDCRS, we divided CC patients into
two groups according to the optimal cutoff value of their risk scores. KM analysis with
log-rank tests disclosed that OS probabilities were significantly higher in low-risk patients
compared to those in high-risk patients in the training set (Figure 3G), the first validation set
(GSE17536 + GSE17537, Figure 3H), the second validation set (Figure 3I), subset GSE17536
(Figure S3C), and subset GSE17537 (Figure S3D).

We further divided CC patients into the alive group and the dead group and compared
their risk scores. Patients who remained alive during follow-up had significantly lower
risk scores than deceased patients in the training set (Figure 3J) and two validation sets
(Figure 3K–L). These results illuminated that the aDCRS has convincing discriminatory
power and risk-stratification function in predicting CC prognosis.

2.4. Validation of the Pertinence between the aDCRGs and DC Activation and Infiltration and
Exploration of Underlying Mechanisms

Pearson correlation analysis disclosed that 14 of 17 aDCRGs were significantly as-
sociated with CIBERSORT aDC scores based on the training set (Figure 4A). LRRC41,
PLEC, INHBB, GAS6, and CMKLR1, which were identified as unfavorable factors for OS
by multivariate Cox-PH regression analysis, were shown to be inversely correlated with
aDC infiltration, whereas EPHB2, RPS4X, IL17RB, and LY75, which were recognized as
protective factors for patient survival, were demonstrated to be positively correlated with
CIBERSORT aDC scores. Moreover, the infiltration abundance of aDCs was significantly
lower in the high-risk group than that in the low-risk group (Figure 4B). Furthermore,
each aDCRG had significant correlation with aDC/DC markers (Figure 4C). These results
further corroborate the potential function of aDCRGs in DC activation and infiltration.

Additionally, Gene Set Enrichment Analysis (GSEA) based on DC-relevant gene sets
uncovered that the DC maturation down-regulation pathway was enriched in the high-
risk group in the training set (Figure 4D) and the first validation set (Figure 4E). The DC
maturation activation pathway, the DC chemotaxis pathway, and the DC migration pathway
were down-regulated in the high-risk group in the second validation set (Figure 4F). These
results elucidate that the suppression of DC maturation, chemotaxis, and migration may be
the mechanistic underpinning of the poor survival outcomes of CC patients in the high-risk
group. Enrichment results with significant differences between the high- and low-risk
groups as proved by GSEA based on hallmark gene sets are demonstrated in Figure S3E.
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Figure 4. Validation of the pertinence between aDCRGs and DC activation and infiltration and
exploration of underlying mechanisms. (A) Pearson correlation analysis between aDCRGs and aDC
infiltration abundance in the training and validation sets. *: p < 0.05; **: p < 0.01. (B) Comparison of
CIBERSORT aDC scores between the high- and low-risk groups using the Wilcoxon–Mann–Whitney
test. (C) Pearson correlation analysis between aDCRGs and aDC/DC markers in the training set. *: p
< 0.05; **: p < 0.01. (D–F) DC-relevant enriched gene sets in the high- or low-risk group as probed
using GSEA based on the training set (D), the first validation set (E) and the second validation set (F).
p.adjust: adjusted p-value.

2.5. Validation of the Predictive Value of the aDCRS in Chemotherapy and Immunotherapy
Response

As revealed by the “oncoPredict” package, there was significant correlation between the
risk score and the imputed sensitivity scores of many chemotherapeutic drugs (Figure 5A).
Among them, Oxaliplatin (drug ID: 1089; Figure 5B), Oxaliplatin (drug ID: 1806; Figure 5C),
Camptothecin (Figure 5D), Irinotecan (Figure 5E), Cisplatin (Figure 5F), and 5-Fluorouracil
(5-FU; Figure 5G), most of which are first- or second-line chemotherapeutic drugs when
used alone or in combination recommended by current guidelines [21], were predicted
to yield significantly higher therapeutic resistance in high-risk patients than in low-risk
patients. Additionally, we applied the aDCRS to 67 CC patients in the TCGA-COAD dataset,
whose treatment information was collected and curated by the Cancer Treatment Response
gene signature DataBase (CTR-DB). The corresponding CTR-DB IDs, chemotherapeutic
regimens, and response to treatment are depicted in Table S1. Higher risk scores were
observed in the non-response group compared with those in the response group (Figure 5H),
suggesting the prominent capacity of the aDCRS in predicting chemotherapy response in
CC patients.
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apy response. (A) A volcano plot depicting the results of Pearson correlation analysis between the
risk score and the imputed sensitivity scores of anticancer drugs generated by the “Oncopredict”
package based on 562 patients in the training set. Cor: correlation coefficient. (B–G) Violin plots
depicting the imputed sensitivity score of Oxaliplatin (drug ID: 1089, (B)), Oxaliplatin (drug ID: 1806,
(C)), Camptothecin (D), Irinotecan (E), Cisplatin (F), and 5-Fluorouracil (G) in high- and low-risk
patients. A higher imputed sensitivity score indicates increased resistance. Statistical significance
was determined by Wilcoxon–Mann–Whitney test for Camptothecin, or by Student’s t-test for the
other drugs. (H) Comparison of the risk scores between the response and non-response groups using
Student’s t-test based on 67 CC patients in the TCGA-COAD dataset obtained from the CTR-DB.
(I–K) Comparison of the risk scores between the response and non-response groups based on the
training set (I) and two validation sets (J,K) using TIDE analysis. Statistical significance was de-
termined by Wilcoxon–Mann–Whitney test in the training set and the second validation set, or by
Student’s t-test in the first validation set. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.

Subsequently, Tumor Immune Dysfunction and Exclusion (TIDE) analysis disclosed
that responders to ICB therapies had lower risk scores than non-responders in the training
set (Figure 5I) and two validation sets (Figure 5J,K), indicating the good utility of the aDCRS
in forecasting ICB response.

2.6. Single-Cell RNA Sequencing (ScRNA-Seq) Analysis of aDCRGs

According to the scRNA-seq data from 11 tumor tissues of 10 CC patients in GSE166555,
the TME of CC can be classified into eight cell subtypes (Figure 6A). Among the 17 aDCRGs,
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the expression of RPS4X is ubiquitous in all cell populations, while GAS6 and RPS4X ex-
hibit relatively high expression in DCs (Figure 6B–R). The expression pattern of C16orf78
is not available in the dataset. The results of cell clustering and annotation in detail are
demonstrated in Figure S4.
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Figure 6. ScRNA-seq analysis of aDCRGs based on 11 tumor tissues of 10 CC patients in GSE166555.
(A) Annotation of all cell categories in GSE166555. (B–Q) Expression of each aDCRG in all cell
categories. (R) Violin diagrams exhibiting the expression of aDCRGs in each cell type. Different
colors represent different cell types. Macro/Mono: Macrophage/Monocyte.

2.7. Establishment and Verification of a Prognostic Nomogram Constituted by the aDCRS and
Clinicopathological Characteristics

In an attempt to improve the predictive performance of the aDCRS, we investigated
the prognostic value of three clinicopathological variables including gender, pathological
stage at diagnosis, and tumor location based on patients in the training set. The baseline
characteristics of patients in the alive and dead groups are demonstrated in Table 1. Uni-
variate Cox-PH regression analysis elucidated that the risk score and pathological stage
were independent predictors for OS probabilities (Table 2). Considering that the selection
of predictive factors can rely on both statistical significance and clinical importance, we
integrated all of the three clinicopathological variables with the risk score and constructed
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a nomogram using multivariate Cox-PH regression (Figure 7A). The results of multivariate
Cox-PH regression analysis are shown in Table 3.

Table 1. Baseline clinicopathological characteristics of 556 patients in the training set.

Variables Alive Dead p-Value(n = 369) (n = 187)

Risk score (median (IQRs)) −0.366 (−0.947, 0.196) 0.679 (−0.010, 1.352) <0.0001

Gender (n (%)) 0.079
Female 175 (47.425) 74 (39.572)
Male 194 (52.575) 113 (60.428)

Pathological stage (n (%)) <0.0001
0/I 30 (8.130) 6 (3.209)
II 183 (49.593) 75 (40.107)
III 136 (36.856) 67 (35.829)
IV 20 (5.420) 39 (20.856)

Tumor location (n (%)) 0.904
Distal 223 (60.434) 114 (60.963)

Proximal 146 (39.566) 73 (39.037)

Continuous variables were compared using the Wilcoxon–Mann–Whitney test. Categorical variables including
gender and tumor location were compared using the Pearson Chi-square test. The categorical variable patho-
logical stage was compared using the continuity correction Chi-square test. All tests were two-sided. IQR:
interquartile range.

Table 2. Univariate Cox-PH regression analysis of candidate variables for predicting CC prognosis
based on the training set.

Variables HR (95% CI) p-Value

Risk score 2.718 (2.346–3.150) <0.0001

Gender 0.061
Female Reference
Male 1.323 (0.987–1.774)

Pathological stage
0/I Reference
II 1.490 (0.648–3.426) 0.347
III 1.912 (0.829–4.409) 0.128
IV 7.760 (3.276–18.382) <0.0001

Tumor location 0.587
Distal Reference

Proximal 1.085 (0.808–1.457)

HR: hazard ratio; CI: confidence interval.

Table 3. Multivariate Cox-PH regression analysis of predictive factors constituting the nomogram
based on the training set.

Variables HR (95% CI) p-Value

Risk score 2.428 (2.079–2.835) <0.0001

Gender 0.468
Female Reference
Male 1.117 (0.829–1.504)

Pathological stage
0/I Reference
II 1.086 (0.471–2.500) 0.847
III 1.237 (0.534–2.865) 0.620
IV 2.848 (1.176–6.898) 0.020

Tumor location 0.520
Distal Reference

Proximal 3.369 (2.228–5.093)

HRs were adjusted for risk score, gender, pathological stage, and tumor location.
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Figure 7. Formulation and validation of a prognostic nomogram incorporating the aDCRS and
clinicopathological features based on the training set. (A) Nomogram for predicting 1-year, 3-year,
and 5-year OS rates. (B) tROC curves exhibit that the nomogram had better discriminatory ability
than the aDCRS. (C) Calibration plots demonstrate a strong pertinence between the actual (y-axis)
and predicted probabilities (x-axis) of 1-year, 3-year, and 5-year OS. The grey line denotes the ideal
fit. The green, red, and blue lines represent nomogram prediction, of which a closer fit to the grey
line indicates better performance. Circles signify nomogram-predicted probabilities, whereas crosses
reflect the bootstrapping-corrected estimates. Error bars stand for the 95% CIs of these estimates.
(D) DCA of the nomogram at 1-year, 3-year, and 5-year follow-up.

The tROC curves of the nomogram model and the aDCRS based on the training set
were delineated for OS status (Figure 7B). The AIC, C-index, and bootstrapping-corrected
C-index values of the nomogram were calculated as 1983.558, 0.781, and 0.774, respectively,
and the 1-year, 3-year, and 5-year AUC values of the nomogram were computed as 0.863,
0.833, and 0.814, respectively, indicating that the nomogram is superior to the aDCRS in
terms of model fit and discriminative power. Furthermore, calibration analysis verified the
reliability of the predicted 1-, 3-, and 5-year OS probabilities (Figure 7C). The decision curves
analysis (DCA) further confirmed that the nomogram had prominent clinical application
value at 1-, 3-, and 5-year follow-up (Figure 7D).

3. Discussion

With the advent of the era of precision medicine, novel prognostic algorithms with
enhanced predictive accuracy and clinical usefulness are urgently warranted to identify
patients most likely to benefit from specific therapies and thereby improve the long-term
outcomes of CRC patients.

Given that the reciprocal interplay between tumor cells and surrounding immune
cells markedly impacts all stages of tumorigenesis [22], investigation of the activation
and infiltration profiles of immune cells in the TME niche may add a new dimension to
current understanding. It is noteworthy that immune responses mediated by T helper
1 cells in CRC tumors signify a favorable outcome, while immune responses mediated
by T helper 17 cells denote a poor prognosis [23]. Activated tumor-infiltrating B cells
were significantly subdued in CRC with liver metastasis whereas these cells thrived in
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non-metastatic tumors, and their infiltration in primary tumors has proven to repress the
liver metastasis of CRC in animal models [24]. Moreover, the presence of tumor-infiltrating
natural killer (NK) cells generally forecasts favorable clinical outcomes in CRC patients [25],
and attenuated preoperative NK cell activity correlates with lower postoperative OS rates
and lesser cumulative metastasis-free rates in curatively operated stage I–III CRC [26].

Considering that the infiltration abundance of immune cells plays a decisive role
in the long-term outcomes of CRC patients, multinational efforts have been made to
develop a novel immune-related methodology designated “Immunoscore”, which is highly
recommended as an alternative for the TNM system for prognostic classification of CRC
patients. The “Immunoscore” is based on immune densities of two lymphocyte populations
(CD3+ and CD8+ T cells) that infiltrate the core of the tumor (CT) and invasive margin
(IM) as quantified by immunohistochemistry (IHC). It has been revealed to be positively
correlated with OS, DFS, and disease-specific survival while inversely correlated with
relapse incidence [5,27]. Nevertheless, the intrinsic complexity and protocol variability of
IHC inevitably compromise the stability of the results obtained. Additionally, appraisal
of anti-tumor immunity via the “Immunoscore” is improper in biopsies, since an accurate
delineation of the investigated tumor regions (CT and IM) is often no longer feasible [5].

The intricate TME in the CRC niche necessitates multifaceted investigation of the
tumoricidal immunity. DCs are a heterogeneous leukocyte population composed of dis-
tinct subsets that perform diverse and almost contradictory functions including antigen
presentation, T cell activation and differentiation, and immune tolerance [13,28]. Based on
ontogeny, DCs can be basically categorized into conventional DCs (cDCs) and plasmacytoid
DCs (pDCs), which exert distinct influence on T cell polarization [14,16]. pDCs are apt
at eliciting regulatory T cell generation and thereby leading to immune tolerance and
immunosuppression [28,29], while type 1 cDCs are the primary subtype that induce CD8+
T cell-mediated cytotoxicity via antigen cross-presentation [30]. Apart from their mission
in adaptive immunity, DCs play an indispensable role in innate immune responses. Under
the stimuli of microbial insult, DCs can produce large amounts of cytokines that participate
in host defense, including IL-12 and IFNs. DCs can also activate NK cells and NKT cells,
innate lymphocyte populations that swiftly kill selected targets and create a milieu rich in
IL-4, IL-12, and IFN-γ cytokines [13,16].

Considering the multifunctional role that DCs play in innate and adaptive immunity,
it is informative to focus on the prognostic ability of DC-related genes and propose a
DC-oriented scoring mechanism to promote the survival stratification of CC patients. In the
present study, aDC infiltration was identified and validated as the most robust protective
factor for CC prognosis among 22 immune cell types via the CIBERSORT algorithm,
univariate Cox-PH regression, and KM analysis. GSEA further revealed that the poor
survival outcomes of high-risk CC patients may be partially ascribable to inhibition of DC
maturation, chemotaxis, and migration. Previous experimental data exposited that the
suppression of DC maturation can be linked to an increased risk of death in CC patients [31],
further consolidating our findings.

A total of 17 aDCRGs that are significantly associated with OS status of CC patients
were screened out and incorporated into our prognostic gene signature. The previous
literature has explored the pertinence between some of these genes and tumor progression
and patient survival in CRC. CMKLR1 is a G-protein coupled receptor that is abundantly
expressed in immature DCs [32]. Recent studies expounded that CMKLR1 expression
was positively correlated with the tumor size of CRC patients, suggesting that CMKLR1
activity may facilitate tumor progression in CRC [33]. The underlying rationales may
be that CMKLR1 is up-regulated in tumors with low vascularity and low budding in re-
sponse to a hypoxic microenvironment and participates in the regulation of TME [34]. As a
γ-carboxyglutamic acid domain-containing protein that can engender platelet-mediated
thrombosis, GAS6 has been implicated to promote cancer cell proliferation in intestinal
cancer cell lines [35]. In human CRC specimens, GAS6 overexpression is detected in more
than 70% of CRC by IHC, and is positively correlated with less differentiated histological
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grading, advanced lymph nodes status, and tumor stage [36]. Furthermore, the expression
levels of PIWIL4 were significantly higher in cancer than in adjacent mucosa, while EPHB2
expression was higher in adjacent normal tissues than in tumorous tissues. Both overex-
pression of PIWIL4 and attenuated expression of EPHB2 might promote distant metastasis
in CRC [37,38]. In our study, multivariate Cox-PH regression analysis identified CMKLR1,
GAS6, and PIWIL4 as unfavorable factors while treating EPHB2 as a protective factor for
CC prognosis, which is concordant with the aforementioned findings.

Moreover, Huang et al., reported that higher expression of ASL was detected in CC
tissues in contrast to adjacent normal tissues, and patients with elevated ASL levels culmi-
nated in poorer survival outcomes [39]. Goto et al., ascertained IL17RB as a cancer stem cell
(CSC)-specific cell surface marker in human CRC and confirmed that continuous ablation
of IL17RB-expressing CSCs robustly subdued tumor growth in vivo [40]. Nonetheless, our
results of multivariate analysis propose divergent trends compared with previous studies
by exhibiting that ASL and IL17RB were protective factors for the OS status of CC patients.
Further experimental and clinical examination are required to clarify the impacts of these
genes on CC prognosis. Additionally, the prognostic significance of C16orf78, LRRC41,
YIPF4, YIPF6, PLEC, INHBB, LY75, APOL3, APOL4, SLC22A1 and RPS4X in CC remain to
be illuminated in subsequent studies.

Previous studies have underscored the pertinence between some of the aDCRGs and
anticancer drug response. The GAS6/AXL signaling pathway has been preclinically and
clinically investigated as a therapeutic target for chemotherapy and immunotherapy in
various cancer types, since the combination of AXL inhibitors with chemotherapeutic
or immunotherapeutic agents can restore sensitivity and overcome therapeutic resistant
tumors [41–43]. Additionally, in patients with hepatocellular carcinoma, the overexpression
of ASL may give rise to drug resistance against arginine deprivation therapy [44], while
targeting a positive feedback loop involving EPHB2 may be a promising therapeutic
strategy to combat cancer stemness and sorafenib resistance [45]. However, the role of
other aDCRGs in anticancer drug response is still far from explicit.

Therefore, we deployed multifaceted approaches including the “oncoPredict” package,
CTR-DB, and TIDE analysis for assessing the utility of the aDCRS in predicting chemother-
apy and immunotherapy response. The “oncoPredict” package disclosed significant corre-
lation between the risk score and estimated sensitivity scores of multitudinous anticancer
drugs. Among them, 5-FU was one of the first chemotherapeutics reported to have an-
ticancer function in different malignancies [46]. Owing to the unsatisfactory therapeutic
effectiveness and apparent side effects when 5-FU was administered alone, a combination
of 5-FU and its chemoprotectant termed leucovorin (LV) has occupied the mainstream
status in systemic treatment of metastatic CRC for a long time [46,47]. Since irinotecan, a
semisynthetic derivative of camptothecin, and oxaliplatin, a diaminocyclohexane platinum
complex were introduced, clinicians have adopted the FOLFIRI (5-FU/LV plus irinotecan)
and FOLFOX (5-FU/LV plus oxaliplatin) as the standard first-line chemotherapy strategy
for metastatic CRC [46,48,49], which have proven to extend overall survival of CRC patients
by approximately 2 years [50]. Our results imply that patients with higher risk scores were
more resistant to these first- or second-line chemotherapeutic agents, thus authenticating
the predictive value of our aDCRS in chemotherapy response.

Additionally, to appraise the potential efficacy of ICB treatment, the primary tar-
gets of which are programmed death 1, programmed death-ligand 1, and cytotoxic T
lymphocyte-associated protein 4 [51], we conducted TIDE analysis and compared the
risk scores between supposed responders and non-responders to ICB therapy. Given that
publicly available gene expression profiles and survival data of CC patients receiving ICB
treatment are currently scarce, we cannot find real response information to draw more
convincing conclusions, and further evaluations are warranted to corroborate the ability of
our aDCRS in predicting ICB response.

In an attempt to improve the predictive performance of the aDCRS, we incorporated
the risk score with clinicopathological variables including gender, pathological stage, and
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tumor location to formulate a prognostic nomogram based on patients in the training set.
Pathological stage at diagnosis is considered the most crucial predictor of survival, with a
5-year survival rate ranging from 91% for localized lesions to 14% for distant diseases [52].
As for anatomic site, proximal CC tends to yield significantly worse 5-year survival and
higher mortality rates when compared to distal CC [53]. Gender disparities in overall death
and 5-year survival rates are also pronounced in CC patients. Although the incidence
of proximal CC is currently lower in men (35%) than in women (44%), indicating more
unfavorable tumor locations in women, the mortality rate of women (11 per 100,000) is
still lower than that in men (15.7 per 100,000) [52]. Such divergence can be boiled down
to both endogenous and environmental factors, including the protective effect of estrogen
and tumor molecular traits that presumably impact treatment response [54,55].

In comparison with previous research, the major strength of our study is that the
aDCRS-based nomogram exhibited exceptional discriminatory ability since the AUC values
for 1-, 3-, and 5-year OS rates were higher than 0.8. Additionally, the calibration plots
illuminate that the nomogram-predicted probabilities for 1-, 3-, and 5-year OS are closely
consilient with the actual probabilities, and the DCA curves illustrate that our model has
abundant net benefit for clinical utilization.

There remain several limitations that should be underscored when interpreting our
results. Firstly, the RNA sequencing (RNA-seq) and microarray profiles of 1224 CC pa-
tient samples enrolled in this retrospective study were obtained from publicly available
datasets only instead of prospective clinical trials, so the prognostic robustness and clinical
usefulness of our aDCRS and nomogram should be further validated. Secondly, more de-
tailed basic experiments (both in vitro and in vivo) are warranted to verify the mechanistic
underpinning of the observed association between aDC infiltration and patient survival.
Lastly, some vital clinicopathological parameters, such as age, T stage, N stage, and M stage
were not investigated in this study owing to missing values concerning these parameters of
studied patients in the dataset. We will further refine our nomogram model using patient
information from other datasets in the future.

4. Materials and Methods
4.1. Data Sources and Preprocessing

The microarray datasets GSE39582, GSE17536, and GSE17537 were downloaded from
the Gene Expression Omnibus (GEO) public database (http://www.ncbi.nlm.nih.gov/geo/,
accessed on 2 November 2022). The annotation of gene symbols was anchored in the
corresponding probe in the GPL570 platform (Affymetrix Human Genome U133 Plus
2.0 Array). We utilized the “normalize Between Arrays” function in the “limma” R package
for normalization of the expression values so that they have a similar distribution in a
group of arrays. Moreover, transcriptome RNA-seq profiles and clinical information from
The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov, accessed on 8 November
2022)-colon adenocarcinoma (COAD) dataset were downloaded as transcripts per kilobase
million values and log2 transformed.

To obtain reliable results from downstream analysis, we excluded samples with miss-
ing expression profiles or follow-up information in GEO and TCGA datasets and eventually
enrolled 1224 CC patients in this study. Among them, 562 eligible patients from GSE39582
were employed as the training set. Furthermore, 177 CC patients from GSE17536 and
55 CC patients from GSE17537 were integrated as the first independent validation set.
Additionally, 430 eligible CC patients from TCGA-COAD were employed as the second
independent validation set.

4.2. Immune Infiltration Analysis and Assessment of the Prognostic Value of Immune Cell Types

We utilized the “CIBERSORT” R script [56] with the leukocyte signature matrix and
1000 permutations to quantify the infiltration abundance of 22 immune cell types in each
tumor sample of patients from all datasets (562 from GSE39582, 177 from GSE17536, 55 from
GSE17537, 430 from TCGA-COAD). The results were visualized via heatmaps using the

http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov
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“pheatmap” package. Based on the CIBERSORT scores and OS status of 562 CC patients in
the training set, univariate Cox-PH regression was performed using the “survival” package
to delve into the pertinence between the infiltration degree of distinct immune cell types
and survival outcomes. To consolidate the prognostic value of specific immune cell type,
562 patients were assigned to the high- and low-infiltration groups according to the optimal
cutoff value of CIBERSORT scores of each immune cell type using the “surv_cutpoint”
function of the “survminer” package. KM analysis with log-rank statistical tests was
conducted to compare the OS probabilities between the two groups.

4.3. Screening of Hub Genes and Formulation of the aDCRS

Given that aDC was identified as the protective immune cell type with the strongest
pertinence, differential gene expression analysis was performed between the high- and
low-aDC-infiltration groups using the empirical Bayesian method from the “limma” pack-
age [57]. The DEGs significantly correlated with aDC infiltration degree were filtrated
with the threshold of p-value < 0.01. Based on 556 patients with a follow-up period more
than one month in the training set, univariate Cox-PH regression analysis was utilized to
select the most valuable prognostic genes among the aDC-related DEGs with the criteria
of p-value < 0.05. In order to avoid redundancy or overfitting, we then employed LASSO
regression, which is a linear regression that imposes shrinkage penalty on the magnitude of
the model coefficients using the 10-fold cross-validation approach [58], to identify the genes
with individual nonzero coefficients. Subsequently, we adopted the stepwise multivariate
Cox-PH regression anchored in the AIC by setting “sls” and “sle” as 0.05. DEGs associated
with the OS of CC patients were incorporated into a prognostic gene signature called
“aDCRS”. The signature was established by integrating normalized gene expression values
weighted by their β coefficients in Cox-PH analysis according to the following formula:

risk score = Coef(X1)× Exp(X1) + . . . + Coef(Xn)× Exp(Xn),

where Coef(Xn) and Exp(Xn) represent the coefficient and mRNA expression of certain
hub gene. Furthermore, the mRNA levels of each aDCRG in tumor tissues and adjacent
normal tissues were compared using Student’s t-test or the Wilcoxon–Mann–Whitney test
based on the training set and the second validation set.

4.4. Examination of the Model Fit, Discriminatory Power, and Risk-Stratification Competence of
the aDCRS in Predicting CC Prognosis

Performance of the aDCRS was preliminarily appraised via the AIC, C-index, and
AUC values. Anchored in the concept of entropy, AIC is a well-documented criterion for
measuring the goodness of fit of regression models. A lower AIC value signifies a better
model fit [59]. In tandem, the discriminatory ability of the aDCRS was measured as the
C-index and bootstrapping-corrected C-index as well as the 1-year, 3-year, and 5-year AUC
values using the “survival” package and depicted as tROC curves using the “timeROC”
package. To evaluate the risk-stratification capacity of the aDCRS, we divided patients into
the high- and low-risk groups according to the optimal cutoff value of risk scores using the
“surv_cutpoint” function and utilized the KM method and log-rank tests to assess whether
the OS probabilities were significantly different between the two groups. Moreover, we
further divided CC patients into the alive group and the dead group and compared their
risk scores using Student’s t-test or the Wilcoxon–Mann–Whitney test.

4.5. Verification of the Pertinence between the aDCRGs and DC Activation and Infiltration and
Functional Enrichment Analysis

The CIBERSORT aDC scores in the high- and low-risk groups were compared using
the Wilcoxon–Mann–Whitney test based on the training set. The Pearson correlation test
was implemented between individual aDCRG and CIBERSORT aDC scores based on the
training set, as well as between individual aDCRG and aDC/DC markers based on the
training set and two validation sets.
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Additionally, we downloaded the hallmark gene sets and DC-relevant gene sets from
the Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/index.
jsp, accessed on 27 January 2023) and performed GSEA (https://www.gsea-msigdb.org/
gsea, accessed on 27 January 2023) with the “clusterProfile” package [60]. All transcripts
were ranked by the log2 (fold change). Each run was conducted with 1000 permutations
and a statistical threshold of p < 0.05.

4.6. Investigation of the Practicability of the aDCRS in Predicting Chemotherapy and
Immunotherapy Response

Based on the experimentally screened IC50 values of anticancer drugs in various
intestinal tissue cell lines obtained from the Genomics of Drug Sensitivity in Cancer (GDSC,
http://www.cancerrxgene.org, accessed on 3 February 2023) 2 database, we deployed
the “calcPhenotype” function of the “oncoPredict” package [61] to calculate the imputed
sensitivity scores of 562 patients in the training set and further analyzed the correlation
between the risk score and drug response imputations using Pearson correlation analysis.
We also picked out six chemotherapeutic drugs and compared their predicted therapeutic
effects between the high-risk and low-risk patients using Student’s t-test or the Wilcoxon–
Mann–Whitney test. To further interrogate the practicability of the aDCRS in predicting
chemotherapy response in CC patients, we classified 67 CC patients in the TCGA-COAD
dataset, the data for whom were collected and curated using the CTR-DB (http://ctrdb.
cloudna.cn, accessed on 15 February 2023) into the response and non-response groups, and
compared their risk scores using Student’s t-test.

Furthermore, TIDE (http://tide.dfci.harvard.edu, accessed on 26 February 2023) anal-
ysis was carried out to determine the performance of the aDCRS in distinguishing ICB
response in CC patients. A higher TIDE score signifies an increased risk of tumor immune
escape and a lowered likelihood of gaining benefit from ICB therapy [51]. According to
the “responder” information, patients in the training set and two validation sets were
categorized into the responder and non-responder groups, respectively, with a threshold of
0 and compared using Student’s t-test or the Wilcoxon–Mann–Whitney test.

4.7. Processing of ScRNA-Seq Data and Cell Type Annotations

We employed the “Seurat” package [62] in R version 4.2.2 (The R Foundation, Vienna,
Austria) to process and visualize the scRNA expression profiles of CC patients in dataset
GSE166555 downloaded from GEO. After strict procedures of quality control as reported
by Uhlitz et al. [63], the GSE166555 dataset filtered 34,897 cells from 11 tumor tissues of
10 CC patients. After normalizing the cells with the “NormalizeData” function, we then
normalized the gene expression matrix to the total unique molecular identifier counts
per cell and converted them to the natural log scale using the “ScaleData” function. An-
chored in the highly variable genes, we carried out principle component analysis to detect
significantly available dimensions, termed principle components (PCs) [64]. Afterwards,
the uniform manifold approximation and projection algorithm were applied to reduce
dimensionality with 20 initial PCs and to conducting cluster classification across all cells.
According to a cutoff threshold of |log2 [fold change]| > 0.25, we utilized the “FindAll-
Markers” function to select the marker genes of each cell cluster. Subsequently, different cell
clusters were annotated automatically with the “singleR” package in conformity with the
composition patterns of the marker genes [65]. We then manually scrutinized and corrected
the annotations using classical marker genes provided by the CellMarker 2.0 database [66].

4.8. Establishment and Validation of a Prognostic Nomogram Incorporating the aDCRS and
Clinicopathological Features

In total, 556 CC patients in the training set were categorized into the alive group and
the dead group according to their OS status. Three clinicopathological variables that are
well-recognized factors for CRC mortality anchored in the previous literature [52,53] and
recorded with complete information in 556 patients were chosen as candidate predictors,
including gender, pathological stage at diagnosis, and tumor location. Proximal or distal
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colon cancers were divided at the splenic flexure, and patients were staged according
to the AJCC/UICC TNM classification system. Univariate Cox-PH regression analysis
was conducted to probe their association with OS probabilities. Considering their clinical
importance, we incorporated all of these variables with the risk score to build a prognostic
nomogram using multivariate Cox-PH regression.

The goodness of fit of the nomogram model was appraised via the AIC. The discrimi-
natory ability was measured as the C-index and bootstrapping-corrected C-index as well as
the 1-year, 3-year, and 5-year AUC values using the “survival” package and depicted as the
tROC curves using the “timeROC” package. Moreover, the calibration of the nomogram
was assessed by comparing the predicted and actual probabilities of 1-, 3-, and 5-year
survival outcomes. Bootstraps with 1000 resamples were employed for these activities.
Moreover, the clinical utility of the nomogram was judged via DCA at 1-, 3-, and 5-year
follow up.

4.9. Bioinformatic and Statistical Analysis

The Shapiro–Wilk test was utilized to examine the distribution of continuous variables.
Continuous variables with normal distribution were compared using Student’s t-test.
Continuous variables with non-normal distribution were compared using the Wilcoxon–
Mann–Whitney test. Categorical variables were compared using the Pearson Chi-square test
or continuity correction Chi-square test. IBM SPSS Statistics 20 (IBM Corp., Armonk, NY,
USA) and R software (version 4.0.3, http://www.r-project.org, accessed on 24 April 2022)
were used to analyze data and plot graphs, unless otherwise specified. A p-value < 0.05
was considered statistically significant.

5. Conclusions

To summarize, based on transcriptome profiles and clinical data of CC samples from
the GEO and TCGA databases, we went beyond conventional risk scoring models targeting
tumor cells alone and established an aDC-oriented signature constituting 17 DEGs that were
significantly correlated with both aDC infiltration abundance and OS probabilities to predict
the survival outcomes and response to chemotherapy and immunotherapy of CC patients.
Furthermore, we integrated the signature with clinicopathological features to derive a
prognostic nomogram, which was corroborated to have enhanced predictive accuracy,
prominent discriminative ability, and outstanding clinical utility. The aDCRS serves as
a powerful analytical tool that incorporates putative genomic biomarkers predictive of
survival outcomes and anticancer drug response of CC patients and will facilitate the
development of novel cancer therapeutic strategies in the future.
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DFS disease-free survival
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AUC area under the curve
GSEA Gene Set Enrichment Analysis
CTR-DB Cancer Treatment Response gene signature DataBase
TIDE Tumor Immune Dysfunction and Exclusion
ICB Immune checkpoint blockade
ScRNA-seq Single-Cell RNA Sequencing
DCA decision curves analysis
IFN-γ interferon-γ
NK natural killer
CT the core of the tumor
IM invasive margin
IHC immunohistochemistry
cDCs conventional DCs
pDCs plasmacytoid DCs
CSC cancer stem cell
LV leucovorin
RNA-seq RNA sequencing
GEO Gene Expression Omnibus
PCs principle components
IQRs interquartile ranges

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Ciardiello, F.; Ciardiello, D.; Martini, G.; Napolitano, S.; Tabernero, J.; Cervantes, A. Clinical management of metastatic colorectal
cancer in the era of precision medicine. CA Cancer J. Clin. 2022, 72, 372–401. [CrossRef] [PubMed]

3. Vogel, J.D.; Felder, S.I.; Bhama, A.R.; Hawkins, A.T.; Langenfeld, S.J.; Shaffer, V.O.; Thorsen, A.J.; Weiser, M.R.; Chang, G.J.;
Lightner, A.L.; et al. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of
Colon Cancer. Dis. Colon Rectum 2021, 65, 148–177. [CrossRef] [PubMed]

4. Argilés, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb,
J.; et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020,
31, 1291–1305. [CrossRef]

5. Galon, J.; Mlecnik, B.; Bindea, G.; Angell, H.K.; Berger, A.; Lagorce, C.; Lugli, A.; Zlobec, I.; Hartmann, A.; Bifulco, C.; et al.
Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 2014, 232, 199–209. [CrossRef]

https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.3322/caac.21728
https://www.ncbi.nlm.nih.gov/pubmed/35472088
https://doi.org/10.1097/DCR.0000000000002323
https://www.ncbi.nlm.nih.gov/pubmed/34775402
https://doi.org/10.1016/j.annonc.2020.06.022
https://doi.org/10.1002/path.4287


Int. J. Mol. Sci. 2023, 24, 15959 19 of 21

6. Angell, H.K.; Bruni, D.; Barrett, J.C.; Herbst, R.; Galon, J. The Immunoscore: Colon Cancer and beyond. Clin. Cancer Res. 2020,
26, 332–339. [CrossRef]

7. Bruni, D.; Angell, H.K.; Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat.
Rev. Cancer 2020, 20, 662–680. [CrossRef]

8. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
9. Chen, F.; Zhuang, X.; Lin, L.; Yu, P.; Wang, Y.; Shi, Y.; Hu, G.; Sun, Y. New horizons in tumor microenvironment biology:

Challenges and opportunities. BMC Med. 2015, 13, 45. [CrossRef]
10. Dzobo, K.; Senthebane, D.A.; Dandara, C. The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited.

Cancers 2023, 15, 376. [CrossRef] [PubMed]
11. Junttila, M.R.; de Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013,

501, 346–354. [CrossRef]
12. Schmitt, M.; Greten, F.R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol. 2021, 21, 653–667. [CrossRef]
13. Mellman, I.; Steinman, R.M. Dendritic cells: Specialized and regulated antigen processing machines. Cell 2001, 106, 255–258.

[CrossRef] [PubMed]
14. Rescigno, M. Intestinal dendritic cells. Adv. Immunol. 2010, 107, 109–138. [PubMed]
15. Wang, Y.; Xiang, Y.; Xin, V.W.; Wang, X.W.; Peng, X.C.; Liu, X.Q.; Wang, D.; Li, N.; Cheng, J.T.; Lyv, Y.N.; et al. Dendritic cell

biology and its role in tumor immunotherapy. J. Hematol. Oncol. 2020, 13, 107. [CrossRef]
16. Eisenbarth, S.C. Dendritic cell subsets in T cell programming: Location dictates function. Nat. Rev. Immunol. 2019, 19, 89–103.

[CrossRef]
17. Malietzis, G.; Lee, G.H.; Jenkins, J.T.; Bernardo, D.; Moorghen, M.; Knight, S.C.; Al-Hassi, H.O. Prognostic Value of the Tumour-

Infiltrating Dendritic Cells in Colorectal Cancer: A Systematic Review. Cell Commun. Adhes. 2015, 22, 9–14. [CrossRef] [PubMed]
18. Karthaus, N.; Torensma, R.; Tel, J. Deciphering the message broadcast by tumor-infiltrating dendritic cells. Am. J. Pathol. 2012,

181, 733–742. [CrossRef] [PubMed]
19. Dadabayev, A.R.; Sandel, M.H.; Menon, A.G.; Morreau, H.; Melief, C.J.; Offringa, R.; van der Burg, S.H.; Janssen-van Rhijn, C.;

Ensink, N.G.; Tollenaar, R.A.; et al. Dendritic cells in colorectal cancer correlate with other tumor-infiltrating immune cells. Cancer
Immunol. Immunother. 2004, 53, 978–986. [CrossRef]

20. Nakayama, Y.; Inoue, Y.; Minagawa, N.; Katsuki, T.; Nagashima, N.; Onitsuka, K.; Tsurudome, Y.; Sako, T.; Hirata, K.; Nagata,
N.; et al. Relationships between S-100 protein-positive cells and clinicopathological factors in patients with colorectal cancer.
Anticancer Res. 2003, 23, 4423–4426.

21. Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Arain, M.A.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.;
Farkas, L.; et al. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021,
19, 329–359. [CrossRef] [PubMed]

22. Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41.
[CrossRef]

23. Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome.
Nat. Rev. Cancer 2012, 12, 298–306. [CrossRef] [PubMed]

24. Xu, Y.; Wei, Z.; Feng, M.; Zhu, D.; Mei, S.; Wu, Z.; Feng, Q.; Chang, W.; Ji, M.; Liu, C.; et al. Tumor-infiltrated activated B cells
suppress liver metastasis of colorectal cancers. Cell Rep. 2022, 40, 111295. [CrossRef]

25. Pietropaolo, G.; Scarno, G.; Stabile, H.; Grimaldi, A.; Gismondi, A.; Santoni, A.; Sciumè, G. NK cell and ILC heterogeneity in
colorectal cancer. New perspectives from high dimensional data. Mol. Asp. Med. 2021, 80, 100967. [CrossRef]

26. Kondo, E.; Koda, K.; Takiguchi, N.; Oda, K.; Seike, K.; Ishizuka, M.; Miyazaki, M. Preoperative natural killer cell activity as a
prognostic factor for distant metastasis following surgery for colon cancer. Dig. Surg. 2003, 20, 445–451. [CrossRef] [PubMed]

27. Pagès, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F.S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D.; et al. International
validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet 2018,
391, 2128–2139. [CrossRef] [PubMed]

28. Lee, Y.S.; Radford, K.J. The role of dendritic cells in cancer. Int. Rev. Cell Mol. Biol. 2019, 348, 123–178.
29. Fu, C.; Jiang, A. Dendritic Cells and CD8 T Cell Immunity in Tumor Microenvironment. Front. Immunol. 2018, 9, 3059. [CrossRef]
30. Hildner, K.; Edelson, B.T.; Purtha, W.E.; Diamond, M.; Matsushita, H.; Kohyama, M.; Calderon, B.; Schraml, B.U.; Unanue, E.R.;

Diamond, M.S.; et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science
2008, 322, 1097–1100. [CrossRef] [PubMed]

31. Michielsen, A.J.; Noonan, S.; Martin, P.; Tosetto, M.; Marry, J.; Biniecka, M.; Maguire, A.A.; Hyland, J.M.; Sheahan, K.D.;
O’Donoghue, D.P.; et al. Inhibition of dendritic cell maturation by the tumor microenvironment correlates with the survival of
colorectal cancer patients following bevacizumab treatment. Mol. Cancer Ther. 2012, 11, 1829–1837. [CrossRef]

32. Wittamer, V.; Franssen, J.D.; Vulcano, M.; Mirjolet, J.F.; Le Poul, E.; Migeotte, I.; Brézillon, S.; Tyldesley, R.; Blanpain, C.; Detheux,
M.; et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids.
J. Exp. Med. 2003, 198, 977–985. [CrossRef] [PubMed]
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