
Citation: Fuochi, V.; Furneri, P.M.

Applications of Probiotics and Their

Potential Health Benefits. Int. J. Mol.

Sci. 2023, 24, 15915. https://

doi.org/10.3390/ijms242115915

Received: 27 October 2023

Accepted: 30 October 2023

Published: 2 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Editorial

Applications of Probiotics and Their Potential Health Benefits
Virginia Fuochi * and Pio Maria Furneri

Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania,
95124 Catania, Italy; furneri@unict.it
* Correspondence: virginia.fuochi@unict.it

Probiotics have garnered significant attention in recent years due to their potential
health benefits and their role in promoting a balanced gut microbiome. This topic was
aimed at delving into the applications of probiotics and their wide-ranging impacts on
human health. The 20th century witnessed a significant shift in probiotic research, starting
with the groundbreaking work of the scientist Elie Metchnikoff. He postulated that the
consumption of lactic acid bacteria, commonly found in fermented dairy products, could
confer health benefits by modulating the gut microbiota. His pioneering ideas paved the
way for further scientific inquiries into the world of probiotics.

Recently, innovative methods have been developed for the discovery of strains that
could be beneficial for both humans and livestock animals [1–3]. Phenotypic tests could
be employed to assess the necessary characteristics for strains to be considered probiotics,
such as resistance to bile salts, cytoprotective effects against oxidative stress, and inhibition
of pathogens [4–7]. Moreover, it appears that artificial intelligence algorithms could identify
new probiotics and distinguish them from pathogens in the human gut by determining
the informational content within tRNA sequences as key genomic features for probiotic
characterization [8]. Furthermore, transcriptomic analysis has proven to be valuable in
assessing the potential antimicrobial mechanisms exhibited by certain probiotic strains like
Lactobacillus rhamnosus SCB0119 [9].

One of the most intriguing aspects of probiotics is their potential to modulate the im-
mune system. Research suggests that certain strains of probiotics could enhance both innate
and adaptive immune responses. This modulation could have far-reaching implications for
conditions ranging from allergies to autoimmune disorders, offering a promising avenue for
therapeutic intervention. For instance, treatment with L. reuteri could regulate the intestinal
microbial composition and enhance tryptophan metabolism, leading to the production
of aryl hydrocarbon receptor ligands, including indole lactic acid and indole-propionic
acid. These ligands activate AHR signaling, effectively reducing the aberrant Th2-type
response, and prove to be an effective alternative for alleviating atopic dermatitis [10].
Further, the administration of a heat-killed mixture of Lactococcus lactis subsp. cremoris and
L. paracasei subsp. paracasei demonstrated the modulation of immune T cell balance and
the suppression of IgE production in mice with house dust mite extract-induced atopic
dermatitis, thus reducing the associated symptoms [11].

Several studies have demonstrated that not only bacterial cells themselves, but also
their supernatant products, induce immunomodulatory activity by stimulating phagocyto-
sis in macrophagic cells, thereby enhancing the expression of immunomodulators such as
NO, TNF-alpha, IL-6, iNOS, and COX-2 [12]. Furthermore, it has been demonstrated that
certain probiotic strains are able to exert their immunomodulatory properties in mucosal
sites, both when alive and when inactivated. For instance, it appears that the mbf protein
is not implicated in the immunobiotic effects induced by these strains, providing equal
protection against inflammatory damage [13].

Probiotics have shown remarkable promise in managing various gastrointestinal
disorders. Conditions such as irritable bowel syndrome, inflammatory bowel disease,
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gastric and colorectal cancers, and antibiotic-associated diarrhea have all been the subjects
of extensive probiotic research [14]. Studies indicate that specific strains of probiotics
could alleviate symptoms, reduce inflammation, and restore gut homeostasis in individuals
suffering from these conditions. For instance, heat-killed B. bifidum MG731, L. reuteri
MG5346, and L. rhamnosus MG5200 induced greater apoptosis in human gastric cancer
MKN1 cells. Oral administration of a single dose of this mixture significantly delayed
tumor growth [15]. Moreover, strains such as Bifidobacterium longum, Lactobacillus plantarum
and Pediococcus acidilactici have shown to alleviate ETEC-induced diarrhea by regulating
the immune response, rebalancing intestinal microbiota, and improving carbohydrate
metabolism [16]. Therefore, probiotics have demonstrated a noteworthy anti-inflammatory
effect, showcasing their potential as a valuable intervention in managing inflammatory
conditions [17].

The role of probiotics in metabolic health has garnered increasing attention, particu-
larly in the context of obesity and hypercholesterolemia. For instance, oral administration
of recombinant probiotics expressing lactoferrin could improve diet-induced lipid accu-
mulation and inflammation in non-alcoholic fatty liver disease [18]. Moreover, emerging
evidence suggests that certain probiotic strains may influence metabolic pathways, leading
to promotion of the intestinal transformation of ellagic acid, which leads to the upregulation
of liver bile synthesis, thus preventing hypercholesterolemia [19]. These findings hold
significant implications for the prevention and management of metabolic disorders.

The gut–brain axis, a bidirectional communication network between the gastroin-
testinal tract and the central nervous system, has emerged as a pivotal area of research.
Probiotics, by modulating the gut microbiota, may have the potential to impact mental
health conditions such as anxiety, depression, and even cognitive functioning [20]. This
exciting avenue of research underscores the holistic nature of probiotic health benefits.

The application of probiotics in pulmonary medicine represents a particularly promis-
ing frontier. Studies have demonstrated the potential of probiotics for preventing and
treating conditions like COVID-19 [21]. These findings open up new avenues for improving
health-stimulating pulmonary immunity through the intestine–lung axis.

While the potential benefits of probiotics are substantial, several challenges and consid-
erations also warrant attention. These include strain-specific effects, individual variabilities
in microbial composition, and the need for personalized probiotic interventions. Addition-
ally, regulatory standards for probiotic products vary globally, underscoring the importance
of robust research and quality control measures. Furthermore, the advancement of probi-
otics as potent treatments for human health problems relies heavily on surmounting the
technological challenges to production. By prioritizing cellular vitality, component integrity,
and host interactions, and through the careful selection of strains, we can pave the way for
probiotics to reach their full potential in promoting human health and well-being [22]. This
endeavor demands collaborative efforts from researchers, technologists, and healthcare
professionals to drive innovation and ensure a healthier future.

In conclusion, nowadays, the study of probiotics is approached through the One
Health perspective, acknowledging the intricate interplay between human, animal, and
environmental health [2,23,24]. This underscores the imperative for interdisciplinary col-
laboration in tackling global health issues, recognizing that the welfare of humans, animals,
and ecosystems is intimately intertwined.
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