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Abstract: Aphids are a serious threat to rapeseed (Brassica napus L.) production, and cause unman-
ageable loss. Therefore, effective prevention and management strategies are urgently required to
avoid losses. Bacillus amyloliquefaciens AK-12 isolated from a dead aphid with aphicidal activity was
tagged with a green fluorescent protein through a natural transformation. The transformed strains
were checked for stability and growth, and the best-performing strain was tested for its colonization
inside and outside the rapeseed plant. The stability of AK-12-GFP reached more than 95%, and the
growth curve was consistent with that of AK-12. After 30 days of treatment, the colonization of
1 × 106 CFU/g was recorded in rapeseed leaves. Interestingly, AK-12 reduced the aphid transmission
rate compared with the control and improved the growth of the rapeseed seedlings. Meanwhile, the
AK-12 strain also exhibited phosphorus, potassium-solubilizing, and nitrogen-fixing activity, and
produced 2.61 µg/mL of IAA at 24 h. Regulation in the activity of four enzymes was detected after
the AK-12 treatment. Phenylalanine ammonia lyase (PAL) was recorded at a maximum of 86.84 U/g
after 36 h, and catalase (CAT) decreased after 48 h; however, peroxidase (POD) and polyphenol
oxidase (PPO) reached the maximum within 12 h of AK-12 application. Additionally, important
resistance genes related to these enzymes were upregulated, indicating the activation of a defense
response in the rapeseed against aphids. In conclusion, defense enzymes and defense-related gene
activation could improve the pest resistance in rapeseed, which has good application prospects for
the future to be developed into biopesticide.
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1. Introduction

Rapeseed (Brassica napus L.) is the third largest oil crop and holds enormous economic
and nutritional value around the globe [1]. At present, the area under the cultivation
of rapeseed is 17 million hectares, and the total output is more than 24 million tons per
annum worldwide. The main producing countries are China, Canada, India, and others [2].
The crop is an important source of edible vegetable oil and protein [3]. Cabbage aphids
(Brevicoryne brassicae (Linnaeus) are considered one of the most important pests that cause
serious damage to the leaves, flowers, and kernels of rapeseed [4].

At present, the main measures to control aphids include agronomic practices [5–8]
and chemical [9–11], physical [12–14], and biological control. The application of chemical
insecticides has been the most-used strategy till now. The use of chemical pesticides has
many drawbacks, such as environmental pollution, the development of resistance in pests,
and harm to human health [15]. Therefore, it is imperative to devise environmentally
friendly solutions and microbial agents with insecticidal activity may serve as better control
options. Entomopathogenic fungi, such as Fusarium semitectum, Metarhizium anisopliae,
and Lecanicillium lecanii, have been shown to be efficient against aphid prevention and
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control due to their culturable characteristics and wide insecticidal spectrum [16–18]. In
addition, Bacillus atrophaeus [19], B. amyloliquefaciens [20], and Pseudomonas sp. [21,22] have
also been reported to exhibit aphicidal activity. Three different B. amyloliquefaciens strain
cell suspensions were used against the peach–potato aphid (Myzus persicae), with 100%
mortality [20]. The current opportunities and demands for effective biological control are
greater than ever before, considering the fact that biocontrol programs are generally less
frequently performed in developing countries [23,24].

Bacillus is considered one of the most extensively studied plant-beneficial bacteria
for its disease control and growth-promoting efficiency. Bacilli are prioritized due to
their efficient colonization and defense activation in host plants [15,25]. Plant growth
promotion using beneficial bacteria is mainly controlled through the secretion of plant
hormones and by increasing the availability and uptake of nutrients. These bacteria are
known to produce auxins such as indole-3-acetic acid, which stimulate the growth of lateral
roots and root hairs, thereby increasing the surface area for nutrient uptake [26]. Several
Bacilli are known to fix nitrogen and solubilize phosphate and potassium. The enhanced
availability and assimilation of nutrients are directly related to growth promotion and
improved vigor, which indirectly protect plants from deleterious effect of pathogens and
insect pests [27]. In addition to plant growth promotion, Bacilli can boost plant defense
through the induction of resistance, which enables the plant to mount a swift defense
response against pests/pathogens [28]. For instance, Bacillus megaterium induced resistance
in a tea plant by upregulating defense-related enzymes, such as -peroxidase, chitinase,
β-1,3-glucanase, and phenyl alanine ammonia lyase [29]. Therefore, it was hypothesized
that the application of a biocontrol agent may reduce the aphid infestation by activating
the plant defense response and improving plant vigor.

In this regard, the present study aimed at using an efficient biocontrol agent isolated
from dead aphids to control the B. brassicae aphid and to explore the colonization dynamics
of Bacillus strains in rapeseed, as well as the defense enzymes and genes involved in the
resistance of plants against aphids. To our knowledge, there have been no reports of using
the colonization dynamics of microbial resources to repel and control aphids, as well as to
improve the crop resistance against aphids.

2. Results
2.1. Comparison of Strain Stability and Growth Curves

The natural transformation was used to successfully introduce green fluorescent
protein into Bacillus AK-2, AK-5, and AK-12 competent cells, and the transformants grew
in the LB agar medium supplemented with 10 µg/mL chloramphenicol. All the three
strains showed nearly the same fluorescence under a UV chamber. The results showed
that with the increase in transduction times, the number of strains that lost fluorescence
began to increase, but AK-12-GFP showed a very stable fluorescence, reaching more than
95.00% after 10 generations. AK-5 also showed a rapid fluorescence decline in the first
five generations, but the decline was slower afterwards, and achieved an 84% stability till
the tenth generation. However, AK-2 was not as stable as the former two, with only 62%
at the tenth generation, showing a rapid loss that could further explain the presence of
negative transformants in AK-2 during the transformation (Figure 1). Furthermore, the
growth rate of the labeled strains was lower than that of the wild-type strains, and the
number of bacteria was not the same as that of the wild-type. This may have been due to
the introduction of the green fluorescent protein vector that increased the metabolic burden
of the strain. This negative effect was less pronounced in AK-12, as compared to AK-5 and
AK-2. Due to the higher stability, AK-12 was used for further experiments.
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teria on and inside the leaves was counted at 1–5, 7, 10, 15, 20, 25, and 30 days after treat-
ment (Figure 2). The colonization of AK-12 gradually increased from 1 to 7 days before 
reaching the highest value and, then, fluctuated at 3 × 106 CFU/g with a significant down-
ward trend after 25 days. The number of bacteria on the leaf surface reached the maximum 
after the first day, followed by a sharp decline. 
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2.3. Strain Colonization Ability to Establish Green Barrier and Control Cabbage Aphids 
2.3.1. Effect of Strains on Cabbage Aphid Transmission 

The colonization of AK-12 stabilized after 5 days of treatment; therefore, 100 aphids 
were seeded in the third row after 5 days and the number of aphids in the treated and 
control plants was recorded every 10 days. The results showed that the number of aphids 
in the treated plants was lower than in the control plants. There was no significant differ-
ence between the number of aphids in the AK-12-treated and CK-2 plants at 10 days, while 
after 20 days, the aphids in the control plants were significantly higher than that in the 
treated plants, showing rapid growth and transmission. The results showed that AK-12 
could significantly reduce the aphid transmission rate. The number of aphids in CK-2 was 
lower than that of CK-1, and the growth rate was also significantly lower than that of CK-
1 (Figure 3). Few aphids were observed only on the leaves of plants treated with AK-12 
(Figure 4A), whereas control plants were highly infested with aphids and severely dam-
aged (Figure 4B). At the same time, a severe powdery mildew infection was observed in 
the control plants (Figure 4B), while the treated plants did not exhibit any disease symp-
toms. In the previous experiments, we tested the fungal inhibition activity of AK-12, and 
no antifungal activity was detected. Therefore, we speculated that the AK-12 strain may 

Figure 1. Stability and growth curves of the bacterial strains. (A) Stability of different GFP-tagged
strains. (B) Growth curves of AK-2 wild type and GFP, (C) AK-12 and GFP, (D) and AK-5 and GFP.

2.2. Colonization Dynamics of AK-12

In order to study the colonization efficiency of AK-12, the number of fluorescent
bacteria on and inside the leaves was counted at 1–5, 7, 10, 15, 20, 25, and 30 days after
treatment (Figure 2). The colonization of AK-12 gradually increased from 1 to 7 days
before reaching the highest value and, then, fluctuated at 3 × 106 CFU/g with a significant
downward trend after 25 days. The number of bacteria on the leaf surface reached the
maximum after the first day, followed by a sharp decline.
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Figure 2. External and internal colonization capacity of the AK-12 strain in rapeseed.

2.3. Strain Colonization Ability to Establish Green Barrier and Control Cabbage Aphids
2.3.1. Effect of Strains on Cabbage Aphid Transmission

The colonization of AK-12 stabilized after 5 days of treatment; therefore, 100 aphids
were seeded in the third row after 5 days and the number of aphids in the treated and
control plants was recorded every 10 days. The results showed that the number of aphids in
the treated plants was lower than in the control plants. There was no significant difference
between the number of aphids in the AK-12-treated and CK-2 plants at 10 days, while
after 20 days, the aphids in the control plants were significantly higher than that in the
treated plants, showing rapid growth and transmission. The results showed that AK-12
could significantly reduce the aphid transmission rate. The number of aphids in CK-2 was
lower than that of CK-1, and the growth rate was also significantly lower than that of CK-1
(Figure 3). Few aphids were observed only on the leaves of plants treated with AK-12
(Figure 4A), whereas control plants were highly infested with aphids and severely damaged
(Figure 4B). At the same time, a severe powdery mildew infection was observed in the
control plants (Figure 4B), while the treated plants did not exhibit any disease symptoms.
In the previous experiments, we tested the fungal inhibition activity of AK-12, and no
antifungal activity was detected. Therefore, we speculated that the AK-12 strain may have
induced resistance in the rapeseed plants, which protected the plant from a fungal attack.
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Figure 4. Comparison of AK-12 (A) treatment and CK-1 (B) rapeseed growth.

2.3.2. Effect of AK-12 on Cabbage Aphid Feeding

For both the AK-12 bacterial suspension or supernatant treatment, the number and
growth rate of aphids at different time points were lower than the control group, with up
to 630 aphids/basin (Figure 5), while the plants treated with the suspension (Figure 6A)
and supernatant (Figure 6B) showed better growth after 30 days, as compared with the
control plants. The control rapeseed plants (Figure 6C) grew slowly and collapsed, and the
leaves were scattered; other pests besides the large number of aphids were also observed.
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2.4. Growth Promoting Effect of AK-12 on Rapeseed Plants

The attributes related to the growth-promoting characteristics for AK-12 were tested,
and was shown that it could solubilize P and K and fix N (Figure 7). Further, IAA production
of AK-12 in a 24 h grown culture was quantified to be 2.61 µg/mL, which also highlighted
its potential in plant growth promotion. The plant height, stem width, fresh weight,
and dry weight of each rapeseed plant were measured. The growth status (Figure 7)
and physiological indicators were higher in plants treated with AK-12 than the control;
however, there was no significant difference between the plants treated with foliar spray,
root irrigation, or both (Figure 8, Table 1).

Table 1. Different growth parameters of rapeseed after AK-12 treatment through root irrigation, foliar
spray, and both.

Stem Length (cm) Stem Thick (mm) Fresh Weight (g) Dry Weight (g)

Foliar spray 27.92 ± 1.98 ab 3.62 ± 0.29 ab 4.06 ± 0.51 ab 0.46 ± 0.12 ab

Irrigation 30.7 ± 2.68 a 4.06 ± 0.31 a 5.17 ± 0.63 a 0.59 ± 0.06 a

Foliar spraying and irrigation 29.82 ± 1.81 a 4.08 ± 0.32 a 5.5 ± 1.49 a 0.65 ± 0.17 a

CK 24.6 ± 0.76 b 3.08 ± 0.28 b 2.69 ± 0.20 b 0.28 ± 0.05 b

Note: Different letters in column indicate statistical differences (p < 0.05).
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as a control.

2.5. Induced Resistance Studies of Strain

Peroxidase (POD), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO),
and other defense enzymes play a great role in resistance. After the treatment of the
AK-12 strain, the activity of the four enzymes greatly improved (Figure 9). Among them,
the PAL activity increased after the treatment, reached the maximum of 86.84 U/g at
36 h, and started to decline at 48 h. The catalase activity (CAT) also followed the same
trend, except that the activity of the CAT enzyme decreased sharply at 48 h and was not
significantly different from 0 h. Peroxidase (POD) and polyphenol oxidase (PPO) activity
both reached the maximum after 12 h of treatment, but POD fluctuated after this time,
while PPO decreased and, then, approached the same level as 0 h. Therefore, the AK-12
strain significantly improved the defense enzyme activity and improved the pest resistance
in rapeseed.

After treatment with AK-12, the expression of NPR1 at 6–12 h was downregulated,
which was significantly lower than that of 0 h of the control treatment, whereas the expres-
sion at 36–48 h was significantly higher than that of 0 h. The PDF gene was upregulated
within 72 h, which was significantly higher than 0 h. The expression was stable, reaching
the maximum at 36 h, and the expression was 11 times that of the 0 h control. The chitinase
gene was 6–30 fold upregulated after the AK-12 treatment, with the maximum expression
at 48 h, as compared with 0 h of the control treatment. While the POD and PAL genes were
upregulated throughout the trial and showed a trend of rising first and then decreasing,
the difference was that the POD gene reached the maximum at 24 h, while the PAL gene
was highly expressed at 36 h (Figure 10). Moreover, the expression of the PPO gene was
20–82 times higher at 6 h to 48 h than the 0 h of the control treatment, and the AK-12
treatment showed the highest effect on the PPO gene expression. After the AK-12 treat-
ment, POD, PAL, PPO, and the other resistance-related genes were also upregulated, which
further explained the intrinsic mechanism of the AK-12-induced resistance in rapeseed.



Int. J. Mol. Sci. 2023, 24, 15893 7 of 15
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 9. Changes in defense enzyme activity in rapeseed. (A) PAL enzyme activity. (B) POD en-
zyme activity. (C) PPO enzyme activity. (D) CAT enzyme activity. Note: different letters indicate 
statistical differences (p < 0.05). 

 
Figure 10. The expression of resistance-related genes induced using the AK-12 strain. (A) Relative 
expression of NPR1, POD, and PAL. (B) Relative expression of PDF1.2, chit, and PPO. Note: different 
letters indicate statistical differences (p < 0.05). 

  

Figure 9. Changes in defense enzyme activity in rapeseed. (A) PAL enzyme activity. (B) POD enzyme
activity. (C) PPO enzyme activity. (D) CAT enzyme activity. Note: different letters indicate statistical
differences (p < 0.05).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 9. Changes in defense enzyme activity in rapeseed. (A) PAL enzyme activity. (B) POD en-
zyme activity. (C) PPO enzyme activity. (D) CAT enzyme activity. Note: different letters indicate 
statistical differences (p < 0.05). 

 
Figure 10. The expression of resistance-related genes induced using the AK-12 strain. (A) Relative 
expression of NPR1, POD, and PAL. (B) Relative expression of PDF1.2, chit, and PPO. Note: different 
letters indicate statistical differences (p < 0.05). 

  

Figure 10. The expression of resistance-related genes induced using the AK-12 strain. (A) Relative
expression of NPR1, POD, and PAL. (B) Relative expression of PDF1.2, chit, and PPO. Note: different
letters indicate statistical differences (p < 0.05).

3. Discussion

Aphids are one of the major threats to sustainable agricultural production. In order to
protect crops from damage, farmers tend to apply large quantities of pesticides, which are
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neither cost-effective nor beneficial for plant and environmental health. In this regard, plant-
associated beneficial bacteria have gained much attention for their biocontrol properties.
Previous studies have also shown the great potential of Bacillus sp. for aphid biocontrol [30].

The application of plant growth-promoting rhizobacteria (PGPR) is an environmentally
friendly alternative to the chemicals used in agricultural production and crop protection.
The mechanisms by which PGPR colonizes the rhizosphere include the recognition of
chemical signals and nutrients in root exudates, antioxidant activity, biofilm production,
bacterial motility, and the efficient evasion and suppression of the plant immune system.
One of the approaches that can be used to solve some of the current agricultural problems
is the application of beneficial microorganisms naturally associated with plants, which do
not pose deleterious effects on the environment, human health, and animals [31–33]. In the
present study, Bacillus strains were tagged with GFP and the most stable strain was further
employed to study the antagonistic action against aphids. Among all, AK-12-GFP showed
stable growth in culture media; it could also colonize both on the leaf surface and internal
tissue as an endophyte. However, the endophytic colonization was more stable, as it was at
the maximum until 3 weeks and slowly declined over the course of time. The stability of
the internal colonization is attributed to the protective environment inside the plant tissue,
which might have shielded the bacteria from fluctuations of the external environment.
Bacillus strains are efficient colonizers of plants; for instance, the citrus endophytic strain
Bacillus subtilis L1-21 can colonize in citrus, green soybean, tomato, green bristle grass,
grapes, chili, Sonchusoleraceus, Malvastrum, eggplant, and Malva verticillata, indicating
colonization in multiple plant hosts [34].

Moreover, microbial competition and successful colonization in crops should be con-
sidered in the development and application of biocontrol agents [35]. The relatively stable
colonization of the introduced biocontrol agent in plant is considered important for improv-
ing plant growth and resistance. Our results showed that the number of aphids increased
after 20 days due to a decline in AK-12 colonization. Therefore, it is necessary to ensure that
the colonization of AK-12 remains stable at 3 × 106 CFU/g for the efficient inhibition of
aphid growth. Furthermore, the application of AK-12 also hindered the aphid transmission
to other plants (Figure 3), as a higher number of aphids was recorded in CK-1 plants,
which were adjacent to the plants infested with aphids, whereas the number of aphids was
lower in CK-2 plants, which were adjacent to the AK-12-treated plants. Interestingly, the
application of AK-12 not only reduced the transmission, but also compromised the feeding
ability of the aphids. The damage in the treated plants was minimal, whereas the untreated
plants were severely damaged due to aphids feeding on plant tissues (Figure 6).

PGPR are also well-known for their growth-promoting effects on plants, which they
achieve by producing plant growth-promoting hormones and helping plant in nutrient
assimilation [36]. AK-12 was found to promote growth in rapeseed plants and its IAA
production was quantified to be 2.61 µg/mL, as IAA improves the root hair growth and
lateral root development, which increases the surface area for nutrient uptake. For instance,
the inoculation of B. licheniformis PR2 enhanced the growth parameters of poplar seedlings
and the strain could also produce IAA [37]. A recent study also reported the involvement of
IAA in the growth promotion of maize using B. thuringiensis, as the knock-out mutant of the
IAA gene lost the ability to promote growth [38]. The plants treated with AK-12 through
foliar application and root irrigation exhibited higher growth indexes as compared with
the control plants. The growth promotion could also be attributed to the improved nutrient
availability, as AK-12 could solubilize phosphorus and potassium, as well as fix nitrogen.
The enhanced nutrient assimilation increased the photosynthetic rate, thereby improving
the plant growth. For example, increased nitrogen absorption improves the chlorophyl
content, which promotes photosynthesis and biomass production of the plant [26]. Fur-
thermore, the increase in phosphorus availability though the solubilization of inorganic
phosphate is also known to increase root density and nutrient uptake by plants [39]. After
nitrogen and phosphorus, potassium is the most important plant nutrient that plays a key
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role in the growth, metabolism, and development of plants. Potassium-solubilizing bacteria
are considered significantly important for crop growth [40].

PGPR can be beneficial for plants in various ways, not merely limited to growth
promotion. The application of biocontrol bacteria is known to systematically activate the
plant’s immune system. In the absence of pathogen, primed plants do not show major
changes in the expression of defense-related genes, but generate swift defense responses
against pathogen or insect attacks, providing broad-spectrum resistance [41,42]. The
application of biocontrol agent prior to aphid infestations can provide better prevention
through the induction of plant resistance against pests and pathogens. In this regard,
some important enzymes, such as PAL [42–44], CAT [45], PPO [46], and POD [47], have
been shown to be involved in plant resistance against pests and diseases. However, these
enzymes are also activated upon pest infestation as the plant’s defense mechanism, but
primed plants also exhibit similar responses. Therefore, in order to confirm the induction of
resistance, AK-12 was applied to the rapeseed plants prior aphid infestation. The defense
enzymes and genes involved in the resistance displayed maximum values that greatly
improved the resistance inside the host plants against invading enemies. The time of
applying the bioagent is very important for mounting a swift defense response against
plant pests.

In conclusion, we suggest that AK-12 is a potential biocontrol strain with diverse
interactions inside host plants in the presence of aphids. AK-12 did not only provide
growth-promoting effects, but also induced defense against pests. Furthermore, after
the AK-12 treatment, early flowering in rapeseed was observed, which requires a further
in-depth study.

4. Materials and Methods
4.1. Materials, Bacterial Strains, and Reagents

Sunshine 3 rapeseed, widely cultivated in central Yunnan, was grown in pots. Bacillus
subtilis AK-2, AK-5, and B. amyloliquefaciens AK-12 were isolated from naturally dead
aphids. After greenhouse and field experiments, it was determined that it had aphicidal
activity against cabbage aphids (Brevicoryne brassicae) and Pemphigus betae. The plasmid
pHT01-P43GFPmut3a carrying the GFP protein gene was maintained in the Molecular
Plant Pathology Lab at Yunnan Agricultural University, Kunming, China.

Cabbage aphids were collected from an organic vegetable base in Yunnan Yunling
Fresh living Co., Ltd., Kunming, China. B. napus was inoculated in the National Engi-
neering Research Center of Agricultural Biodiversity Application Technology of Yunnan
Agricultural University. More than 1000 wingless adult aphids were selected and inocu-
lated on potted rapeseed seedlings. Rapeseed seedlings were replaced and added regularly,
and aphids were collected to form a stable population for reserve.

Luria Bertani (LB) medium: 5 g/L yeast powder (yeast extract), 10 g/L trypsin
(tryptone), 10 g/L chlorination (NaCl); solid LB medium was prepared with 12 g/L agar
powder added to the above formulation. Ampicillin and chloramphenicol were purchased
from Shanghai Biotechnology Bioengineering Technology Service Co., Ltd. Shanghai,
China with a final concentration of 100 µg/mL, 10 µg/mL, and pHT01-P43GFPmut3a
was incubated in LB liquid medium at a final concentration of 100 µg/mL ampicillin
and incubated overnight for plasmid DNA extraction using the Shanghai Production
plasmid extraction kit. CAT, POD, PAL, and PPO kits were purchased from Suzhou King
Biotechnology Co., Ltd., Suzhou, China

4.2. Natural Transformation of GFP-Harboring Vactor in the Bacterial Strains

The vector pHT01-P43GFPmut3a harboring gene-encoding green fluorescent protein
was introduced to Bacillus cells following the two-step method provided by [48]. The
freshly streaked Bacillus was transferred to the liquid LB medium and incubated at 37 ◦C
with 160 rpm for 16 h. After incubation, 200 µL of the bacterial suspension was inoculated
with 6 mL of the liquid GCHE medium. The cultures were incubated at 37 ◦C at 160 rpm
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for 4–5 h. When its OD600 reached approximately 1.4, the cell cultures were evenly divided
into two portions, followed by centrifugation at 5000× g for 6 min at room temperature.
Further, 2 mL of a transformation buffer and 50 ng of exogenous DNA were added to the
precipitated bacterial suspension. After mixing well for 7 h at 37 ◦C at 90 rpm, 500 µL of
chloramphenicol (8 µg/mL) was added and kept on a shaker for 3 h. A total of 300 µL of
the supernatant was centrifugated at 10,000 rpm for 4 min and uniformly spread on an LB
plate supplemented with 10 µg/mL of chloramphenicol, followed by incubation at 37 ◦C.
No fluorescent colonies were observed the next day or the third day in a UV chamber.
Successfully transformed single colonies were picked and cultured overnight in the LB
liquid medium with a final concentration of 10 µg/mL chloramphenicol and stored in 40%
glycerol (1:1) for future use.

4.3. Comparison of Strain Stability and Growth Curves

The Bacillus strain with a green fluorescence was cultured on LB agar supplemented
with chloramphenicol. A single colony was obtained and streaked on the plate with the
corresponding antibiotic, followed by overnight incubation at 37 ◦C at 160 rpm. In an LB
broth of 0.1% (v/v), a culture was grown under the same conditions for 50 h. Before each
transfer, the samples were serially diluted to a 10X gradient dilution and evenly spread
on antibiotic-free LB plates for 16 h at 37 ◦C. The number of colonies that emitted the
green fluorescence was then recorded under a UV chamber. The stability was checked by
calculating the percentage of the total colonies. Single colonies of wild-type and fluorescent
bacteria in the LB broth medium and corresponding antibiotics were cultured overnight at
37 ◦C at 160 rpm, the concentration was adjusted to OD600 of approximately 1.0 with fresh
sterile LB broth, and the OD600 of the bacterial suspension was measured every 2 h; 8 to
21 h, every 3 h; 21 to 48 h, and 48 h. The growth curves of the different GFP-marked strains
and the wild-type strains were constructed between the time of sampling at the horizontal
axis and the OD600 values of the broth at the vertical axis.

4.4. External and Internal Colonization of AK-12 in Rapeseed Leaves

The fluorescent bacteria were cultured in an LB medium supplemented with chlo-
ramphenicol (10 µg/mL) at 37 ◦C and 160 rpm for 2 days. The bacterial concentration
was adjusted to 1 × 109 CFU/mL and 40 mL/basin was applied to 30 potted rapeseed
plants. Subsequently, the colonization was tested for 30 days and sampling was carried
out after 5 days. Three plants were randomly sampled from each treatment; the tissue
homogenized with a sterilized mortar (0.1 g plus 900 µL of deionized water), diluted
10 times, and a corresponding dilution was evenly spread on the LB plates. In total, 100 µL
from each concentration was spread on three LB agar plates (10 µg/mL chloramphenicol)
and three dilutions were selected for the experiment. The number of fluorescent colonies
was counted the next day under a fluorescent inverted microscope. In order to check the
internal colonization of strains, sampled leaves were surface sterilized with an alcohol
gradient and 2.5% sodium hypochlorite for 2 min, followed by rinsing with sterile water.
After the surface sterilization, the aforementioned process was carried out. A sterility check
was performed by plating 100 µL of water from the last wash. The plates were incubated at
37 °C overnight and colonies were counted under a UV chamber.

4.5. AK-12 Colonization Ability to Establish Green Barrier against Aphids
4.5.1. Effect of AK-12 on Aphid Transmission

In order to explore the effect of the bacterial suspension (AK-12-S) treatment on
aphids, the rapeseed seedlings were arranged in four rows and treated with AK-12S
(1 × 109 CFU/mL, 40 mL/basin). Further, 100 aphids with consistent vitality and body
size were inoculated to each pot in the third row (Figure 11). The number of aphids in the
rapeseed seedlings was recorded regularly to observe the transmission pattern.
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transmission study.

4.5.2. Effect of Strains on Aphid Feeding

After the seed germination, 5 seedlings were transplanted into one pot. The pots were
placed in a greenhouse for 20 days and, then, the potted rapeseed seedlings with the same
growth rate were selected for a further experiment. The pots were treated and arranged
into 4 combinations and placed in the greenhouse to ensure the same spacing (10 cm), with
4 pots being used for each treatment (Figure 12). A wild-type culture solution was sprayed
on line 2, following the method mentioned in Section 4.5.1, line 3 was inoculated with
aphids, and the rest was sprayed with equal amounts of sterile water, and two peripheral
rows served as the controls. In total, 100 aphids with a consistent body size were inoculated
in each basin (Figure 11). The number and movement of aphids in the rapeseed seedlings
were recorded every 10 days.
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4.6. Growth Promotion in Rapeseed Treated with AK-12

After 24 h of culture incubation, 10 µL of the bacterial solution was inoculated in
nitrogen-free solid medium, PKO inorganic media, and dissolved potassium screening
medium to detect solid N, dissolved P, and K activity [49]. The quantitative determination
of the IAA concentration was performed following Glickman. et al., 1995 [50]. Different
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strains were cultured for 24 h at 37 ◦C and 160 r/min. The culture was centrifuged at
10,000 r/min for 10 min, followed by the mixing of 4 mL of a supernatant with an equal
volume of Salksowski colorimetric solution. It was kept for 30 min and OD530 was recorded.
The rapeseed seedlings at the two-leaf stage were treated with AK-12 (1 × 109 CFU/mL,
40 mL/pot) through root irrigation, foliar spraying, and root irrigation combined with
foliar spraying. Each treatment was performed in triplicate and sterile water was applied
as a control. After 30 days of treatment, the physiological traits were measured.

4.7. Study of Induced Resistance in Rapeseed Due to AK-12

To determine the effect of AK-12 on rapeseed resistance, the plants were treated with
1 × 109 CFU/mL, 40 mL per each pot, and aphids were infested later, as mentioned in
Section 4.5.1. After 30 days, the leaves were sampled from treated and control plants
of the same age to check the activity of defense enzymes, including peroxidase (POD),
phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and catalase (CAT), at
6 h, 12 h, 24 h, 36 h, and 48 h. To further study the expression level of the resistance-
related genes, the rapeseed seedlings were treated after 30 days with bacterial broth
(1 × 109 CFU/mL) for 0 h, 6 h, 12 h, 24 h, 48 h, and 72 h. Three replicates were used
for each treatment, each with 5 rapeseed seedlings. The genes involved in defense acti-
vation, such as NPR1 (nonexpressor of pathogenesis-related gene1), plant defensin gene
PDF 1.2, and chitinase encoding Chit gene, and genes encoding defense-related enzymes,
such as phenylalanine ammonia lyase PAL, peroxidase POD, and polyphenol oxidase PPO,
were investigated.

The quantitative PCR primers were designed according to the reference gene tubulin
and target genes (Table 2). RNA was extracted using the TransZolTMUp RNA kit, according
to the operating instructions of Dongyang Textile, Biotechnology Co., Ltd. (Shanghai,
China). A Rever Tra Ace qPCR RT Kit was used to reverse transcribe the RNA into cDNA
and the concentration was quantified to 100 ng/mL by using a Nanodrop. Relative fluores-
cence quantitative PCR reactions were performed using the SYBR ® Green I fluorescent
dye method, following the instructions of the Toyo Spinning SYBR ® Green Realtime PCR
Master Mix.

Table 2. The primers used in this study.

Primers Primer-F Sequence (5′-3′) Primers-R Sequence (5′-3′)

Tubulin GAGCGACCCACATACACCAATC AACCTCAACGAAGCAGTCAACG

NPR1 ACGCTTCTTTCCACGATGTTCAG GCTTCTTCAGTTGACGCTCTTCC

PDF1.2 GGGACCATGCTCAAGAGACAG AACAACGGCGGCGGAATC

chit TCGGCAGTATCATCTCAAGTTCC TTTACGGGCAGTGGTATCGC

POD ACACACATTTGGAAGAGCAAGATG CGTCTACGGTTGGATCAGGATTAC

PPO TGGGTTTAGGAGGGCTGTATGG TGAGATCAGGAGGTGGTATAGGAG

PAL CGGTTTGCCCTCTAATCTCACTG GACATCTTGGTTGTGTTGTTCAGC

Note: In the names of the primers, F and R stand for forward (F) and reverse (R) primers, respectively. All the
sequences were generated in the present study.

4.8. Data Statistics and Analysis

SPSS23.0 and GraphPad Prism 9.4.0 were used for the data analysis and the plots were
designed using Adobe Illustrator 2020 (24.0.2).
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