
Citation: Paudel, P.; Choi, J.S.;

Prajapati, R.; Seong, S.H.; Park, S.E.;

Kang, W.-C.; Ryu, J.-H.; Jung, H.A. In

Vitro Human Monoamine Oxidase

Inhibition and Human Dopamine D4

Receptor Antagonist Effect of Natural

Flavonoids for Neuroprotection. Int.

J. Mol. Sci. 2023, 24, 15859. https://

doi.org/10.3390/ijms242115859

Academic Editor: Yasemin M. Akay

Received: 6 October 2023

Revised: 30 October 2023

Accepted: 31 October 2023

Published: 1 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

In Vitro Human Monoamine Oxidase Inhibition and Human
Dopamine D4 Receptor Antagonist Effect of Natural Flavonoids
for Neuroprotection
Pradeep Paudel 1,*,† , Jae Sue Choi 2,† , Ritu Prajapati 2 , Su Hui Seong 2,3, Se Eun Park 2, Woo-Chang Kang 4,
Jong-Hoon Ryu 4 and Hyun Ah Jung 5,*

1 Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS,
Beltsville, MD 20705, USA

2 Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea;
choijs@pknu.ac.kr (J.S.C.); ritpraz@gmail.com (R.P.); shseong@hnibr.re.kr (S.H.S.);
gogo1685@naver.com (S.E.P.)

3 Natural Products Research Division, Honam National Institute of Biological Resource,
Mokpo 58762, Republic of Korea

4 Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University,
Seoul 02447, Republic of Korea; jokerharry@khu.ac.kr (W.-C.K.); jhryu63@khu.ac.kr (J.-H.R.)

5 Department of Food Science and Human Nutrition, Jeonbuk National University,
Jeonju 54896, Republic of Korea

* Correspondence: pradeep.paudel@usda.gov (P.P.); jungha@jbnu.ac.kr (H.A.J.); Tel.: +1-301-504-5223 (P.P.);
+82-63-270-4882 (H.A.J); Fax: +82-63-270-3854 (H.A.J.)

† These authors contributed equally to this work.

Abstract: Natural flavone and isoflavone analogs such as 3′,4′,7-trihydroxyflavone (1), 3′,4′,7-
trihydroxyisoflavone (2), and calycosin (3) possess significant neuroprotective activity in Alzheimer’s
and Parkinson’s disease. This study highlights the in vitro human monoamine oxidase (hMAO)
inhibitory potential and functional effect of those natural flavonoids at dopamine and serotonin
receptors for their possible role in neuroprotection. In vitro hMAO inhibition and enzyme kinetics
studies were performed using a chemiluminescent assay. The functional effect of three natural
flavonoids on dopamine and serotonin receptors was tested via cell-based functional assays followed
by a molecular docking simulation to predict interactions between a compound and the binding
site of the target protein. A forced swimming test was performed in the male C57BL/6 mouse
model. Results of in vitro chemiluminescent assays and enzyme kinetics depicted 1 as a competitive
inhibitor of hMAO-A with promising potency (IC50 value: 7.57 ± 0.14 µM) and 3 as a competitive
inhibitor of hMAO-B with an IC50 value of 7.19 ± 0.32 µM. Likewise, GPCR functional assays in
transfected cells showed 1 as a good hD4R antagonist. In docking analysis, these active flavonoids
interacted with a determinant-interacting residue via hydrophilic and hydrophobic interactions,
with low docking scores comparable to reference ligands. The post-oral administration of 1 to male
C57BL/6 mice did not reduce the immobility time in the forced swimming test. The results of this
study suggest that 1 and 3 may serve as effective regulators of the aminergic system via hMAO inhi-
bition and the hD4R antagonist effect, respectively, for neuroprotection. The route of administration
should be considered.

Keywords: flavonoids; hMAO; GPCRs; dopamine; antagonist; serotonin; neuroprotection

1. Introduction

According to the United States Centers for Disease Control and Prevention, more than
200 million people, equivalent to roughly 60% of the population, suffer from at least one
neurological disorder in the USA. Neurological disorders vary in severity and range from
tension-type headaches and anxiety to strokes and dementia. Among these 200 million,
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more than 3.4 million have epilepsy, 6.2 million have Alzheimer’s or related dementias, and
40 million have anxiety disorders. Furthermore, major depressive disorder is the leading
cause of disability for people between 15 and 44, and 19% of adults reported experiencing
mental illness in 2019. The causes of these diseases vary, and in some cases, they are not
completely known because they are multifactorial.

Consequently, treatment is very challenging. The rate at which people are seeking
treatment for mental health issues has increased as well. In 2020, 93% more people took a
screening test for anxiety disorders than in 2019, and there was a 62% increase in depression
screenings for the same period [1]. Given the extent to which these disorders proliferate,
the need for novel therapeutic strategies to manage them is urgent.

Tryptophan (TRP) is the most prevalent amino acid, which plays a significant role in
protein biosynthesis, and its metabolites are implicated in central nervous system (CNS)
disorders [2,3]. This amino acid metabolizes to 5-hydroxytryptophan (5-HT) and kynure-
nine (Kyn) via two pathways: the serotonin and kynurenine pathways, respectively [4,5].
Tryptophan hydroxylase 1 or 2 converts tryptophan to 5-hydroxytryptophan (5-HTP),
the first rate-limiting step in the 5-HT pathway. 5-HTP is then decarboxylated by aro-
matic acid decarboxylase (AADC) to form 5-HT, which is metabolized by aralkylamine
N-acetyltransferase (AANAT) to N-acetyl serotonin (NAS) and then by N-acetylserotonin
O-methyltransferase (ASMT) to form melatonin. 5-HT is also metabolized by monoamine
oxidase (MAO) to form 5-hydroxyindoleacetic acid (5-HIAA), which is the main metabo-
lite of 5-HT [6]. Similarly, Trp is converted to kynurenine (Kyn) via indoleamine 2-3-
dioxygenases 1 and 2 and tryptophan 2,3-dioxygenase of the Kyn pathway. Kyn is then
converted to 3-hydroxyKyn (3-HK) via kynurenine 3-monooxygenase. Kynurenine amino-
transferase (KAT) then converts 3-HK to xanthurenic acid (XA), which is converted to
3-hydroxyanthranilic acid (3-HAA) by kynureninase (Kynu). The 3-HAA is metabolized to
picolinic acid (PA) via aminocarboxymuconate-semialdehyde decarboxylase (ACMSD) and
nonenzymatically to quinolinic acid (QA). QA is then metabolized to NAD+ by quinolinate
phosphoribosyl transferase (QPRT) [7]. These tryptophan metabolites play important roles
in many psychiatric disorders, including depression [8,9].

TRP and its metabolites play an important role in alleviating various diseases ranging
from psychiatric/neurological disorders to cancer [10]. This distinctive feature makes
the study of TRP metabolism an exciting area of research for biomedical researchers
focused on developing and identifying new therapeutic targets. Recent research sug-
gests that the kynurenine pathway can improve many biological systems that function
poorly in psychiatric disorders, including the neurotransmitters of the CNS and the
immune-inflammatory system [11,12]. The kynurenine pathway event-targeted process
represents an excellent opportunity to develop effective treatments for neuropsychiatric
disorders [2,13].

Different classes of antidepressant drugs are available on the market for the treatment
of depression with different mechanisms of action, including selective serotonin and nore-
pinephrine reuptake inhibitors (Duloxetine, Venlafaxine, and Levomilancipran), tricyclic
antidepressants (Doxepin, Imipramine, Nortriptyline, and Trimipramine), serotonin re-
uptake inhibitors (Sertraline, Fluoxetine, Citalopram, and Paroxetine), and monoamine
oxidase inhibitors (MAOIs) (Phenelzine, Selegiline, and Tranylcypromine) [14]. How-
ever, these drugs have some side effects. Drugs used to modulate serotonin levels, such
as serotonin reuptake inhibitors, can also cause serotonin toxicity (i.e., serotonin syn-
drome) due to their irreversible properties. Likewise, non-selective and irreversible MAO
inhibitors can cause the cheese effect, hypertension, etc. Dizziness, sexual dysfunction,
dry mouth, slowness of movement, and weight gain [15–17] are other side effects of
traditional antidepressants.

Brain neurotransmitter levels are regulated by MAO-A (serotonin and norepinephrine)
and MAO-B (phenethylamine) or both (dopamine) as preferred substrates [18]. Tranyl-
cypromine and Phenelzine are the classic MAOIs (irreversible and nonselective), and
moclobemide (reversible and selective) is commonly used to treat depression. Selegiline
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and rasagiline are selective MAO-B inhibitors that increase dopamine in the basal gan-
glia for the treatment of Parkinson’s disease. MAO-A inhibitors increase serotonin and
norepinephrine in nerve endings and are thought to reverse the “monoamine deficiency”.
Therefore, MAOIs are the oldest class of antidepressants and are effective in treating
patients with unipolar major depressive disorder (MDD) and certain anxiety disorders.
Although MAOIs are highly effective, clinical use is limited by declining clinical experi-
ence and a lack of understanding of dietary restrictions and drug interactions, and most
psychiatrists rarely prescribe them. However, given the high rates of drug resistance in
patients with major depressive disorder, the clinical efficacy of selected irreversible MAOIs
for treatment-resistant depression, and changes in technology, there has been renewed
interest in the clinical application of MAOIs [19].

Natural flavonoids have a long history of medical use for the treatment of various
medical ailments, including inflammation [20], cancer [21–23], microbial infection [24],
diabetes, and obesity [25]. Isoflavonols such as genistein, glycetein, calcycosin, and 3′,4′,7-
trihydroxy isoflavone as well as coumestans such as coumestrol are the dietary phytoe-
strogens occurring in soybeans and other medicinal plants such as Pueraria lobata [26,27].
These phytoestrogens have shown promising therapeutic effects like anti-cancer [28,29],
anti-melanogenesis [30], anti-diabetic [31,32], anti-obesity [33,34], anti-oxidant [35], anti-
inflammatory [35], neuroprotective [36,37] and anti-depressive [32,38]. Modern research on
natural flavonoids has revealed that dietary consumption of flavonoids and flavonoid-rich
foods significantly improves cognition and delays age-related neurodegenerative disorders
via inhibition of cholinesterase and β-secretase (BACE1), antioxidant mechanisms and
modulation of signaling pathways that are implicated in cognitive and neuroprotective
functions [39,40]. What remains lacking, however, is knowledge of the potential role of
natural flavonoids in regulating aminergic pathways. There is, therefore, a critical need
to define the therapeutic efficacy of natural flavonoids in depression-like animal mod-
els. Without such information, the promise of natural flavonoids for the treatment of
neurodegenerative diseases will likely remain limited.

Our long-term goal is to discover natural flavonoids as hMAO inhibitors and hD4R
antagonists for the management of neurodegenerative diseases, particularly depression.
The overall objectives, which are the next step toward the attainment of our long-term
goal, are to (i) elucidate the mechanism(s) of hMAO inhibition via in vitro enzyme assays
and in silico molecular docking; (ii) evaluate modulating effects on dopamine (DA) and
serotonin (5-HT) receptors via GPCR-functional assays and in silico molecular docking; and
(iii) determine their in vivo anti-depressant efficacy using depression-like animal mod-
els. Our central hypothesis is that natural flavonoids with in vitro hMAO inhibition and
hD4R antagonism have in vivo anti-depressant effects. Therefore, to attain the overall
objectives and test the hypothesis, we emphasized the “One-compound multiple-targets
paradigm” and evaluated the role of three naturally occurring flavonoids, namely, 3′,4′,7-
trihydroxyflavone (1), 3′,4′,7-trihydroxyisoflavone (2), and calycosin (3), in hMAO inhibi-
tion and GPCR modulation, followed by an in vivo anti-depressant effect in depression-like
animal models.

2. Results
2.1. Human Monoamine Oxidase Inhibition

The human monoamine oxidase inhibitory activity of the naturally occurring flavonoids
1–3 (Figure 1) was tested using recombinant hMAO-A and hMAO-B isozymes with non-
specific MAO-A and -B substrates. Table 1 tabulates the in vitro hMAO inhibition po-
tential of flavonoids 1–3 along with reference inhibitors. As shown in Table 1, 3′,4′,7-
trihydroxyflavone (1) showed the most promising inhibition of hMAO-A with an IC50
value of 7.57 ± 0.14 µM.
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lective reference inhibitor safinamide mesylate showed an IC50 value of 0.23 ± 0.01 µM. 
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Figure 1. Chemical structures of test flavonoids.

Table 1. Recombinant human monoamine oxidase (hMAO) inhibitory activity of compounds.

Samples
hMAO-A hMAO-B

SI b
IC50 (µM) a

3′,4′,7-Trihydroxyflavone (1) 7.57 ± 0.14 >150 <0.05
3′,4′,7-Trihydroxyisoflavone (2) 176.79 ± 7.80 71.23 ± 0.06 2.48

Calycosin (3) 113.78 ± 3.39 7.19 ± 0.32 15.82
Deprenyl-HCl c 12.57 ± 0.51 0.38 ± 0.001 33.08

Clorgyline-HCl c 0.02 ± 0.00 NT NT
Safinamide mesylate c NT 0.23 ± 0.01 NT

Inhibition constants (Ki, µM) d Inhibition mode e

3′,4′,7-Trihydroxyflavone (1) 2.03 NT Competitive
Calycosin (3) NT 2.56 Competitive

a The 50% inhibitory concentration (IC50) values (µM) were calculated from a log dose inhibition curve and
expressed as mean ± SD of triplicate experiments. b The selective index (SI) was determined with the ratio of
hMAO-A IC50/hMAO-B IC50.

c Reference control. d Determined using Lineweaver–Burk plot and its secondary
plots. e Determined secondary plot of slopes (Kmapp/Vmaxapp) versus concentrations of inhibitor. NT: Not tested.

Calycosin (3) and 3′,4′,7-trihydroxyisoflavone (2) showed moderate inhibition of
hMAO-A with IC50 values of 113.78 ± 3.39 and 176.79 ± 7.80 µM, respectively. The human
MAO-A-specific reference inhibitor clorgyline-HCl had an IC50 value of 0.02 ± 0.00 µM.

Likewise, for hMAO-B inhibition, calycosin (3) was the most potent among the tested
flavonoids, with an IC50 value of 7.19 ± 0.32 µM. Flavonoid 2 showed moderate hMAO-B
inhibition with an IC50 value of approx. 70 µM. Interestingly, flavonoid 1 was much less
active at hMAO-B inhibition, depicting its selectivity towards hMAO-A. The hMAO-B
selective reference inhibitor safinamide mesylate showed an IC50 value of 0.23 ± 0.01 µM.

Overall, the in vitro enzyme assay depicted the selectivity of 1 and 3 towards hMAO-A
and hMAO-B, respectively. Based on the IC50 values and their selectivity, flavonoids 1 and
3 could be of interest in neurodegenerative diseases.

To better understand the enzyme inhibition mode of the most potent inhibitors (1 for
hMAO-A and 3 for hMAO-B), a kinetic study was conducted in a similar way to enzyme
inhibition but at different substrate concentrations (Figures 2 and 3 and Table 1). From
the Lineweaver-Burk plots in Figures 2A and 3A, increasing concentrations of flavonoids
resulted in constant Vmax and increased Km values. These results demonstrate that the
flavonoids are competitive inhibitors of hMAO-A (flavonoid 1) and hMAO-B (flavonoid 3)
with Ki values of 2.03 and 2.56 µM, respectively.
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2.2. Computational Analysis of Human Monoamine Oxidase Inhibition

From the in vitro enzyme inhibition result, it can be seen that a small change in parent
structure affected the inhibition potency and selectivity over two isoforms. Therefore, to
explain the variation in potency and selectivity and gain insights into enzyme-inhibitor
interactions, computational docking simulation of 1 and 2 binding to the hMAO-A (Figure 4)
and 2 and 3 binding to the hMAO-B (Figure 5) was conducted via AutoDock 4.2 using
the crystal structure of hMAO-A in complex with reversible inhibitor harmine (PDB code:
2Z5X) and hMAO-B in complex with reversible inhibitors safinamide (PDB code: 2V5Z).
The computational docking results of the test ligands revealed that they all bind to the
enzyme with high binding affinity and low binding energy. The binding energies and
interacting residues of the investigated ligands, along with the reference ligands, are shown
in Tables 2 and 3. Among the tested flavonoids, 1 and 2 displayed good binding affinity
to hMAO-A, which was comparable to the binding of the selective hMAO-A reference
inhibitor harmine (−8.43 kcal/mol). Flavonoids 1 and 2 formed H-bond interactions with
Asn181 and Phe208. Additionally, H-bond interactions with Gln215 and Gly443 were also
observed for flavonoid 2−hMAO-A binding. Likewise, interactions with FAD and Phe352
(Pi–Pi T-shaped), Tyr407 and Tyr444 (Pi–Pi Stacked), Ile335 and Leu337 (Pi–Alkyl) were
commonly observed for 1 and 2 binding with the enzyme (Figure 4).
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Table 2. Molecular interaction of hMAO-A (2z5x) active site with active compounds as well as
reported inhibitors.

Ligand Binding Score
(kcal/mol)

Interacting Residues a

H-Bond Other Interaction Residues

3′,4′,7-Trihydroxyflavone (1) −8.80 Asn181, Phe208

FAD and Phe208 (Pi–Pi T-shaped),
Tyr407 (Pi–Pi Stacked), Ile335

(Pi–Sigma, Pi–Alkyl), Ile180 and Leu337
(Pi–Alkyl), Cys323 (Pi–Sulfur)

3′,4′,7-Trihydroxyisoflavone (2) −8.54 Gln215, Gly443, Asn181,
Phe208

FAD (Pi–Pi T-shaped), Tyr407 and
Tyr444 (Pi–Pi Stacked), Ile180 and

Ile335 (Pi–Alkyl)

Harmine b −8.43 ND

Tyr407 (Pi–Pi Stacked and Pi–Alkyl),
FAD (van der Waals), Cys323

(Pi–Sulfur), Ile335 (Pi–Sigma, Pi–Alkyl),
Tyr444, Ile180, and Leu337 (Pi–Alkyl)

a All amino acid residues from the enzyme–inhibitor complex were determined with the AutoDock 4.2 program
and Discovery Studio. b Reported inhibitors. ND, Not detected.
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Table 3. Molecular interaction of hMAO-B (2v5z) active site with active compounds as well as
reported inhibitors.

Ligand Binding Score
(kcal/mol)

Interacting Residues a

H-Bond Other Interaction Residues

3′,4′,7-Trihydroxyisoflavone (2) −9.56 Tyr188, Gly434, Cys172,
Ile199

Leu171 and Ile199 (Pi–Sigma), Cys172
(Pi–Sulfur), Tyr398 and Tyr435 (Pi–Pi

Stacked), Tyr326 and FAD (Pi–Pi T-shaped)

Calycosin (3) −9.99 Cys172, Ile199

FAD (Pi–Sigma, Pi–Pi T-shaped), Tyr435
(Pi–Sigma and Pi–Pi Stacked), Tyr398 and

Tyr326 (Pi–Pi T-shaped), Cys172 (Pi–Sulur),
Leu171 and Ile199 (Pi–Sigma)

Safinamide b −9.23 FAD, Tyr435, Gln206
Cys172 (Pi–Sulfur), Tyr326 (Pi–Pi

T-shaped), FAD, Tyr398, Tyr435, Leu171,
and Ile199 (Pi–Alkyl)

a All amino acid residues from the enzyme–inhibitor complex were determined with the AutoDock 4.2 program
and Discovery Studio. b Reported inhibitors.

As tabulated in Table 3, 2 and 3 bound competitively to the catalytic site of hMAO-B
with the best pose, as indicated by their low binding score, which was better than the
reference inhibitor safinamide. The lowest binding score was predicted for the most potent
compound, 3 (−9.99 kcal/mol), followed by 2 (−9.56 kcal/mol). Those test ligands formed
H-bond interactions with Cys172 and Ile199. In addition to this, hydrophobic interactions
with FAD and tyrosine residues (Tyr326, Tyr398, and Tyr435) were observed for 2, 3, and
safinamide binding.

2.3. 3′,4′,7-Trihydroxyflavone as Dopamine D4.4R Antagonist

Test compounds 1–3 were first screened for functional effect over human dopamine
receptors (subtypes D1R, D2LR, D3R, and D4.4R) and serotonin 5HT1AR at a 100 µM con-
centration. The screening result is tabulated in Table 4 and Figure 6. As shown there, only 1
showed significant functional effects at the test concentration on hD4.4R. Flavonoid 1 inhib-
ited the response of 100 µM of dopamine by 134.47 ± 25.54%. Based on the screening result,
the concentration-dependent response was tested for flavonoid 1. As shown in Figure 6A,
flavonoid 1 inhibited the response of the control agonist by 40.9, 57.65, 68.95, and 134.47%
at 12.5, 25, 50, and 100 µM, respectively, yielding an IC50 value of 22.47 ± 2.18 µM.

Table 4. Efficacy values (% stimulation and % inhibition of control against response) of compounds
at dopamine D1, D2L, D3, and D4.4 receptors and 5HT1A receptors at 100 µM.

Target
GPCRs

% Stimulation a (% Inhibition b) EC50
c (IC50

d)

3′,4′,7-Trihydroxyflavone 3′,4′,7-Trihydroxyisoflavone Calycosin Positive Control

hD1R
6.95 ± 14.07 −3.1 ± 5.66 5.65 ± 11.53 0.027
(0.7 ± 5.94) (22.2 ± 13.01) (47.75 ± 15.06) (0.00057)

hD2LR
−22.45 ± 2.05 −18.35 ± 0.78 −13.8 ± 0.28 0.016

(−40.05 ± 8.69) (−25.75 ± 1.91) (−18.65 ± 5.59) (0.012)

hD3R
38.5 ± 5.94 26.43 ± 2.89 26.43 ± 2.89 0.0045

(−0.97 ± 2.73) (−8.0 ± 3.11) (−7.97 ± 1.80) (0.031)

hD4.4R
10.33 ± 7.46 35.8 ± 10.59 33.63 ± 12.10 0.0072

(134.47 ± 25.54) (−11.17 ± 35.99) (−27.33 ± 1.37) (0.14)

h5HT1AR
−2.9 ± 0.28 −1.1 ± 0.42 2.5 ± 0.42 0.0011

(18.05 ± 2.33) (7.3 ± 1.70) (16.75 ± 5.73) (0.0015)
a,b % stimulation and % inhibition of control agonist response at 100 µM of compounds, respectively, were
calculated from a log dose inhibition curve and expressed as mean ± SD of triplicate experiments. c EC50 (nM)
values of standard agonists (D1, D2L, D3, and D4.4: dopamine, 5-HT1A: serotonin). d IC50 (nM) values of standard
antagonists (D1: SCH-23390, D2L: butaclamol, D3: (+)-butaclamol, D4.4: clozapine, and 5-HT1A: (S)-WAY-100635).
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Figure 6. Agonist and antagonist effect (%) of compounds (1: 3′,4′,7-trihydroxyflavone, 2: 3′,4′,7-
Trihydroxyisoflavone, and 3: calycosin) at 100 µM against dopamine D1, D2L, D3, and D4.4 receptors
and 5HT1A receptors (A). Concentration-dependent antagonist effect of 3′,4′,7-trihydroxyflavone (1)
on dopamine D4.4 receptor (B).

The underlying mechanism of flavonoid 1−hD4.4R binding was predicted via molec-
ular docking simulation using AutoDock 4.2 (Figure 7) and compared with the reference
ligands clorgyline and nemonapride (Figures 8 and 9). Overall docking results, including
the binding score and list of interacting amino acid residues, are tabulated in Table 5. As
tabulated there, flavonoid 1 interacted with the crystal structure of hD4.4R (5WIU) with a
low binding score (−7.71 kcal/mol) that was comparable to the reference ligand clorgyline
(−8.67 kcal/mol), involving H-bond interactions with Val193 (helix V), Leu187 (ECL2),
Ser197, and Ser196 (helix V) and hydrophobic interactions with His414 (helix VI), Leu187
(ECL2), Val193 (helix V), Arg186, and Val116 (helix III).

Table 5. Molecular interaction of hD4R (5WIU) active site with active compound as well as re-
ported antagonists.

Ligand Binding Score
(kcal/mol)

Interacting Residues a

H-Bond Other Interaction Residues

3′,4′,7-Trihydroxyflavone −7.71 Val193, Leu187, Ser197, Ser196
His414 (Pi–Pi T-shaped), Leu187

(Pi–sigma), Val193 (Pi–Alkyl), Arg186
and Val116 (Pi–Alkyl)

Clorgyline b (antagonist) −8.67 Glu95 (salt bridge), Cys185 Cys185 (Pi–alkyl), Leu111 (Pi–alkyl and
Alkyl), Leu90 (Alkyl), VAl87 (Alkyl)

Nemonapride b (antagonist) −11.69 Asp115 (salt bridge), Ser196,
Thr120

Phe91 (Pi–Pi T-shaped), Asp115 (Pi–Pi
T-shaped), Phe410 (Pi–Pi T-shaped,
Pi–alkyl), Val116 (Pi–sigma), Leu111

(Pi–Alkyl), Phe411 (Pi–Alkyl), Tyr407
(Pi–Alkyl), Val193 (Alkyl), Cys119 (Alkyl)

a All amino acid residues from the enzyme–inhibitor complex were determined with the AutoDock 4.2 program
and Discovery Studio. b Reported inhibitors.
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2.4. Behavior of Mice in Forced Swim Test

In the forced swim test, we found no significant differences in the total number of
immobility episodes between the groups (Figure 10). As shown in Figure 10, the immobility
time in the control and test groups is similar. Compound 1 was tested at a dose of 3, 10, and
30 mg/kg p.o., and none of those doses alleviated the immobility time. Only desipramine
at a 15 mg/kg dose p.o. showed a significant reduction in immobility time. Despite being
a potent hMAO inhibitor (Table 1) and hD4.4R antagonist, 1 did not show an effective
reduction in immobility time in the forced swimming test (Figure 10).
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icant at a p-value < 0.01. 
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tive disorders and depressive illnesses. The levels of serotonin and nor-epinephrine are 
regulated by MAO-A in the brain, and thus, MAO-A inhibitors such as tranylcypromine 
and Phenelzine (irreversible and non-selective MAO-inhibitors) and moclobemide (re-
versible and selective MAO-A inhibitors) are used for treating depression [43]. Of the two 
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dopamine and phenylethylamine. Selective MAO-B inhibitors such as selegiline and rasa-
giline enhance the dopamine level in the basal ganglia and are clinically approved for PD 

Figure 10. The effects of 1 (3′,4′,7-trihydroxyflavone) on depressive-like behavior were measured
with the forced swimming test (FST). FST was performed in a transparent cylindrical glass cylinder
with a diameter of 14 cm and a height of 25 cm, filled with 20 cm of water (24 ± 2 ◦C). Mice were
habituated to the experimental environment 1 h before the test. 3′,4′,7-trihydroxyflavone (3, 10, or
30 mg/kg, p.o.) or the same volume of vehicle was administered 1 h before FST. * Statistically
significant at a p-value < 0.01.

3. Discussion

Monoamine oxidases (MAOs) are the mammalian flavoproteins that play important
roles in the deactivation of biological amines such as dopamine, serotonin, norepinephrine,
epinephrine, phenylethylamine, benzylamine, melatonin, tyramine, and tryptamine [41].
Catalytic degradation of biological amines via MAOs increases biogenic amine turnover,
leading to greater oxidative stress and the subsequent acceleration of the neurodegenerative
process [42]. Thus, MAOs are the known targets for many neurodegenerative disorders
and depressive illnesses. The levels of serotonin and nor-epinephrine are regulated by
MAO-A in the brain, and thus, MAO-A inhibitors such as tranylcypromine and Phenelzine
(irreversible and non-selective MAO-inhibitors) and moclobemide (reversible and selective
MAO-A inhibitors) are used for treating depression [43]. Of the two isoforms, MAO-B
predominates in the brain and is responsible for lowering the levels of dopamine and
phenylethylamine. Selective MAO-B inhibitors such as selegiline and rasagiline enhance
the dopamine level in the basal ganglia and are clinically approved for PD treatment [43,44].
Recent studies suggest a close correlation between MAO activity and the progression of
AD, characterized by elevated MAO activity around Aβ plaques [45] and enhanced Aβ

production in neurons with increased MAO-B levels [46]. Further, siRNA silencing of
MAO-B in the primary cortical neurons considerably lowered intracellular Aβ levels [46].
Also, multiple pharmacological studies have demonstrated the neuroprotective role of
MAO inhibitors in the prevention and treatment of AD [47].
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Natural products based on flavonoids–scaffolds possess different biological and phar-
macological properties such as antioxidant, anti-inflammatory, neuroprotective, acetyl-
cholinesterase (AChE), and butyrylcholinesterase (BChE) inhibition, anti-Aβ fibril forma-
tion, β-secretase, and MAO inhibition [48]. Also, recent studies demonstrate that flavonoids
modulate CNS GPCRs such as dopamine, serotonin, and vasopressin receptors. For in-
stance, Park et al. (2020) identified luteolin, 3′,4′,5,7-tetrahydroxyflavone, as dopamine D4
and vasopressin V1A receptor antagonists. Additionally, they found that it is an MAO-A
inhibitor with an IC50 value of 8.57 ± 0.47 µM [49]. Likewise, a prenylated flavanone,
kurarinone, was also found to be a D1AR antagonist and a D2L and D4 agonist [50]. 3′,4′,7-
Trihydroxyflavone (1) decreases NO production and exerts an anti-neuroinflammatory
effect through the inhibition of the JNK-STAT1 pathway in microglia [51]. Further, 1 protects
the neuronal cells from H2O2-induced oxidative stress and cytotoxicity [52]. From different
studies, calycosin (3), a 3′,7-dihydroxy-4′methoxyisoflavone, has exhibited neuroprotective
effects mediated through its anti-oxidant and anti-inflammatory actions [53–55]. An in vitro
and in vivo study by Yang et al. (2018) revealed that 3 attenuates the MPTP-induced in-
flammatory response and alleviates dyskinesia and sensory disturbances in MPTP-induced
PD mice, thus suggesting its potential use against PD [55]. Also, Oh et al. (2020) identified
it as a selective hMAO-B inhibitor [56]. Coumestrol is another isoflavonoid phytoestrogen
whose protective actions against neonatal hypoxia-ischemia [57], cerebral ischemia [58],
and amyloid beta-induced and LPS-induced toxicity on mouse astrocytes have been es-
tablished [59]. Our previous study demonstrated the anti-Alzheimer’s, anti-oxidant, and
anti-depressant properties of coumestrol [60,61]. These findings led us to the investigation
of compounds 1 and 3, along with 2, an isoflavone analog of 1, against hMAO, since the
hMAO inhibition potential of 1 and 2 is yet to be explored. Given the evidence that the
flavonoids can modulate dopamine and serotonin receptors [62], we used GPCR functional
assays to test these compounds for their functional activity.

In the hMAO-A inhibition assay, flavonoid 1 showed significant inhibition of hMAO-A
with an IC50 value of 7.57 ± 0.14 µM. While the isoflavone analogs 2 and 3 showed only a
modest inhibition against hMAO-A. However, in the case of the hMAO-B inhibition assay,
3 displayed a notable inhibition with an IC50 value of 7.19± 0.32 µM. Compound 2 showed
moderate inhibition of hMAO-A with IC50 values of 71.23 ± 0.06 µM. From a structural
point of view, calycosin (3) is an O-methylated isoflavone, and 2 is its structural analog.
The structural difference between 2 and 3 is that the 4′-methoxy group in 3 is replaced with
a hydroxy group in 2. Both showed mild inhibition of hMAO-A, but the effect is good
at hMAO-B. Interestingly, 3 showed a ten-times more potent effect (IC50: 7.19 ± 0.32 µM)
than 2 (IC50: 71.23 ± 0.06 µM). Comparing the results, we can assume that the 4′-methyl
substitution in the isoflavone ring increases the hMAO-B inhibition effect. MAO inhibition
is strongly dependent on the presence of a (p-OH-substituted) phenyl at C2, unsaturation
at the C2–C3 positions of the structure, the possibility of establishing hydrophobic interac-
tions, and ring planarity [63]. Corroborating with the earlier study, compound 3 showed
selective hMAO-B inhibition [56]. However, IC50 values vary, which may be due to different
experimental conditions. The enzyme kinetic study of 1 and 3 on hMAO-A and hMAO-B
revealed the competitive inhibition mode. Interactions with this aromatic cage-forming
covalent FAD coenzyme and tyrosine residues of the active site of hMAO-A are considered
important for catalytic activity [64]. Compounds 1 and 2 have many common hydrophobic
interactions with hMAO-A active site residues such as FAD, Tyr407, Ile335, and Ile180;
however, additional interaction with Phe208 via Pi–Pi T-shaped bond might be responsible
for its specificity towards hMAO-A and higher potency. Phe208 and Ile335 are critical
residues for inhibitor selectivity [65]. Considering the inhibition of hMAO-A and hD4.4R
antagonism by 1, we conducted the forced swimming test to evaluate its anti-depressive
activities. Unfortunately, we did not observe any positive effects (Figure 10). Our data
are surprising, as previous studies have shown treatment with oral antidepressants may
reduce the immobility time of Swiss mice in the Porsolt test in various experimental con-
ditions [66,67]. As discussed earlier [68], the lack of efficacy of oral administration could
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be the reason behind the ineffectiveness of 1 in reducing immobility time to show an
anti-depressant effect.

In the GPCR functional assay, only 1 showed significant functional effects at the
test concentration on hD4.4R. Flavonoid 1 inhibited the response of the control agonist at
hD4.4R with an IC50 value of 22.47 ± 2.18 µM. The 4-oxo group in the C-ring of flavonoid
1 formed an H-bond interaction with Leu187, and the hydroxyl group at position C-3′ in
the B-ring formed H-bond interactions with Ser196, Ser197, and Val193. The dopamine
D4 receptor (D4R) plays important roles in cognition, attention, and decision making, and
pharmacological activation of D4R could be useful in treating cognitive deficits associated
with schizophrenia [69–72] and attention-deficit/hyperactivity disorder [72,73]. While D4R
antagonism may be useful in treating substance use disorder [74] and L-DOPA-induced
dyskinesias (LID) [75].

The etiology of LID is unknown. Previous studies have suggested that LID may be
associated with L-DOPA-induced increases in synaptic DA levels in the caudate puta-
men [76,77]. In addition, D4Rs are found in the basal ganglia region, which is a key region
for dyskinesia [78]. So D4R antagonists could fill the gap in LID attenuation in PD pa-
tients [79]. Likewise, the most recent study has shown that D4R antagonists selectively
inhibit the growth of glioblastoma neural stem cells [80]. Therefore, novel D4R-selective
ligands have promise for developing medications for neuropsychiatric conditions. This
study highlights the antagonistic effect of 1 on D4R. To our knowledge, this is the first study
to report this specific effect of this compound.

Limitations and Future Directions

Our study highlights the in vitro human monoamine oxidase inhibition and modulat-
ing effect on dopamine (DA) and serotonin (5-HT) receptors via GPCR-functional assays
and predicts the binding mode. In silico molecular dynamics studies predicting the stability
of ligand–receptor complexes are lacking. Penetration into the central nervous system
and the stability of the ligand–receptor complex remain to be studied in vivo. The small
number of test compounds limited the structure–activity relationship. The effects of the
tested flavonoids at the cellular or organismal level remain unknown because in silico
modeling cannot account for interactions between compounds and other unrelated targets.
Also, other routes of administration should be considered, as the oral route might not be
effective for anti-depressant effects.

In the future, a more detailed understanding of hD4.4R signaling and regulation,
especially using in vivo models, will be critical to ensuring the activity of these natural
flavonoids, particularly 1 in neurogenerative diseases. The anti-depressant effect of 1
should be evaluated from different routes of administration to conclude our hypothesis—
natural flavonoids with in vitro hMAO inhibition and hD4.4R antagonism have in vivo
anti-depressant effects.

4. Materials and Methods
4.1. Flavonoids, Chemicals, and Reagents

Flavonoids 1 and 2 were obtained from Indofine Chemical Company, Inc. (Hillsbor-
ough, NJ, USA). Flavonoid 3 was isolated from the n-hexane fraction of Pueraria lobata
root. The purity of the isolated compounds was considered to be >98%, as evidenced by
spectral data [31]. An MAO-GloTM assay kit was purchased from Promega (Promega
Corporation, Madison, WI, USA). Transfected CHO and Ba/F3 cells were obtained from
Eurofins Scientific (Le Bois I’Eveque, France). Hank’s balanced salt solution (HBSS), Dul-
becco’s modified Eagle medium, and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES) buffers were obtained from Invitrogen (Carlsbad, CA, USA). The hMAO isozymes
and reference drugs clorgyline-HCl, safinamide mesylate salt, l-deprenyl HCl, dopamine,
(S)-WAY-100635, serotonin, and butaclamol were purchased from Sigma-Aldrich (St. Louis,
MO, USA). All chemicals and solvents used for column chromatography were of reagent
grade and purchased from commercial sources.
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4.2. In Vitro Human MAO Inhibition and Enzyme Kinetics

A chemiluminescent assay was performed in a white, opaque 96-well plate using
the MAO-Glo kit (Promega, Madison, WI, USA) to evaluate human monoamine oxidase
(hMAO) inhibitory potential. Detailed experimental conditions and procedures were
reported previously [81,82]. The test compounds were evaluated at different concentrations
to obtain an IC50 value. The percent of inhibition (%) was obtained with the following
equation: % Inhibition = (Ac − As)/Ac × 100, where Ac is the absorbance of the control and
As is the absorbance of the sample. For hMAO-A, clorgyline was used as a positive control.
Whereas for hMAO-B, safinamide mesylate was a reference compound. l-Deprenyl HCl
was also used as a positive control for both hMAO-A and hMAO-B inhibition assays.

The kinetic analysis of hMAO inhibition was analyzed at different concentrations of
hMAO substrate depending on the isozyme (40, 80, and 160 µM for hMAO-A and 4, 8, and
16 µM for hMAO-B) following the same method of enzyme inhibition. The concentrations
of the test compounds for the kinetic study are presented in Figures 2 and 3. Kinetic
parameters were analyzed using SigmaPlot (v12.0, SPP Inc., Chicago, IL, USA).

4.3. Cell-Based Functional GPCR Assay

Cell-based functional GPCR assays were conducted in CHO cells and Ba/F3 cells
transfected with a plasmid containing the GPCR gene of interest. The functional activity of
the test compounds (agonist or antagonist) was evaluated by measuring their effects on
cAMP modulation or Ca2+ ion mobilization, depending on the receptor type. All assays
were performed at Eurofins Cerep (Le Bois I’Eveque, France) following their in-house
protocol, as stated in our previous reports [83–85].

4.3.1. Measurement of cAMP Level

The functional activity of the test compounds on D1R, D3R, and D4R was assessed
by evaluating the effect on cAMP modulation. For this, stable transfectants (CHO-D1R,
CHO-D3R, and CHO-D4R) were suspended in HBSS (Invitrogen, Carlsbad, CA, USA)
containing 20 mM of HEPES buffer and 500 µM of 3-isobutyl-1-methylxanthine, distributed
into microplates (5 × 103 cells/well), and incubated for 30 min at room temperature (RT) in
the absence (control) or presence of the test compounds (6.25, 12.5, 25, 50, and 100 µM) or
reference agonist (DA). In the D3R and D4R assays, the adenylyl cyclase activator NKH
477 was added at a final concentration of 1.5 and 0.7 µM and incubated for 30 and 10 min,
respectively, at 37 ◦C. Then, the cells were lysed, and a fluorescence acceptor (D2-labeled
cAMP) and fluorescence donor (an anti-cAMP antibody with europium cryptate) were
added. The fluorescence transfer was measured at λex = 337 nm and λem = 620 and 665 nm
using a microplate reader (Envision, Perkin Elmer, Waltham, MA, USA) after 60 min of
incubation at RT. Agonist effects are expressed as the % of the control response to 10 µM of
DA for D1R and 300 nM of DA for D3R/D4R. Similarly, antagonist effects are expressed
as the % inhibition of the control response to DA at 300 nM for D1R, 10 nM for D3R, and
100 nM for D4R. The reference agonist DA and antagonists SCH 23390, (+)-butaclamol, and
clozapine were used to validate the study.

4.3.2. Measurement of Intracellular [Ca2+] Levels

The functional activity of the test compounds on D2R and 5HT1AR was tested by
fluorimetrically evaluating their effect on cytosolic Ca2+ ion mobilization. In brief, CHO-
D2R and Ba/F3-5HT1AR cells were separately suspended in HBSS (Invitrogen, Carlsbad,
CA, USA) complemented with 20 mM HEPES buffer and distributed into microplates
(1 × 105 cells/well). Then, a fluorescent probe (Fluo8, AAT Bioquest, Sunnyvale, CA,
USA) mixed with probenecid in HBSS (Invitrogen, Carlsbad, CA, USA) supplemented with
20 M HEPES (Invitrogen) (pH 7.4) was added to each well, and the cells were allowed
to equilibrate for 60 min at 37 ◦C. Thereafter, the plates were positioned in a microplate
reader (FlipR Tetra, Molecular Device), and compounds 1–3 (6.25, 12.5, 25, 50, and 100 µM),
reference agonist, or HBSS (basal control) were added. We then measured the fluorescent
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intensity, which varied in proportion to the free cytosolic Ca2+ ion concentration. Agonist
effects are expressed as the % of the control response to 10 µM DA for D2R and 2.5 µM
serotonin for 5HT1AR. Similarly, antagonist effects are expressed as the % inhibition of
the control response to 700 nM DA for D2R and 30 nM serotonin for 5HT1AR. Reference
agonists (DA and serotonin) and antagonists (butaclamol and (S)-WAY-100635) were used
to validate the study.

4.4. In Silico Molecular Docking Simulation

Automated single docking simulations were carried out with AutoDock 4.2 [86]. X-ray
crystallographic structures of hMAO-A and hMAO-B were obtained from the PDB with
IDs 2BXR and 2BYB. The 3D chemical structures of four test compounds were obtained
from PubChem Compound (NCBI, CIDs 5,322,065, 5,284,648, and 5,280,448 for compounds
1–3, respectively). The crystal structures of the reference compounds safinamide, harmine,
nemonapride, and clorgyline were also obtained from NCBI under CIDs 131,682, 5,280,953,
156,333, and 4380, respectively. Water and ligand molecules were removed using Discovery
Studio (v17.2, Accelrys, San Diego, CA, USA). In the case of the human MAO isozymes,
the co-factor flavin adenine dinucleotide (FAD) was retained. X-ray crystallographic
structures with PBD IDs 5WIU (the best resolution structure of hD4R) were used for the
hD4 receptor [87]. The Lamarckian genetic algorithm method in AutoDock 4.2 was applied.
For the docking calculations, Gasteiger charges were added by default, and all the torsions
were allowed to rotate. The grid maps were generated with the AutoGrid program. The
docking protocol for rigid and flexible ligand docking consisted of 10 independent genetic
algorithms, and other parameters were set using the defaults in the AutoDock Tools. The
docking results were visualized using Discovery Studio.

4.5. Animal

Male C57BL/6 mice (22–26 g, 7 weeks) were purchased from Orient Bio Inc. (Seongnam-
si, Korea), a branch of Charles River Laboratories (Seoul, Republic of Korea), and kept in the
University Animal Care Unit for 1 week before the experiments. Five animals were housed
per cage and allowed access to water and food ad libitum; the environment was maintained
at a constant temperature (23± 1 ◦C) and humidity (60± 10%) under a 12 h light/dark
cycle (the lights were on from 07:30 to 19:30 h). The treatment and maintenance of the
animals were carried out according to the Animal Care and Use Guidelines of Dong-A
University, Republic of Korea. All in vivo experiments were performed according to the
protocols approved by the Institutional Animal Care and Use Committee of Dong-A Uni-
versity (approved protocol numbers: DIACUC-approved-17-20) and were per the National
Institutes of Health guidelines.

4.6. Forced Swim Test

A forced swim test (FST) was performed in a transparent cylindrical glass cylinder
with a diameter of 14 cm and a height of 25 cm filled with 20 cm of water (24 ± 2 ◦C).
Mice were habituated to the experimental environment 1 h before the test. The 3′,4′,7-
trihydroxyflavone (3, 10, or 30 mg/kg, p.o.) or the same volume of vehicle was administered
1 h before FST. As a positive control, desipramine (15 mg/kg, i.p.) was administered
30 min before FST. Mice were immersed in water and recorded with a video camera for
a total of 6 min. Immobility time was analyzed for the last 4 min of the 6 min using a
video-based Ethovision System (Noldus, Wageningen, The Netherlands).

4.7. Statistical Analysis

Statistical analysis was performed with One-way ANOVA and Student’s t-test using
Microsoft Excel 2016 (Microsoft Corporation, Redmond, WA, USA). All in vitro experi-
ments were carried out in triplicate on three individual days and are expressed as the
mean ± standard deviation (SD). Differences were considered statistically significant at a
p-value < 0.01 compared to the vehicle-treated control group.
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5. Conclusions

Our study is the first to assess the dopamine (DA) and serotonin (5-HT) receptors mod-
ulating activity and hMAO inhibitory potency of natural flavonoids 1–3. Little is known
about the pharmacological importance of these flavonoids in regulating GCPR. GPCR
functional screening revealed that 1 possesses hD4.4R antagonist properties. Likewise, 1
showed promising inhibition of hMAO-A, and 3 was the most potent inhibitor of hMAO-B.
Due to the multifactorial complexities associated with NDDs such as AD and PD, molecules
with multitargeting properties and minimal toxicity hold promise as potential therapeutic
approaches. Therefore, the versatility of 1 may help target different root causes of NDD
and improve related symptoms. A recent study confirmed that intravenous injections of
cannabidiol can induce long-term antidepressant-like effects [88]. The findings indicated
that 10 mg/kg cannabidiol (i.v.) or 100 mg/kg CBD (p.o.) administered weekly for four
weeks can significantly improve depressive symptoms. In contrast, no significant effects
were observed at 10 mg/kg cannabidiol p.o. In our study, oral administration of 1 in the
male C57BL/6 mice model at a dose of up to 30 mg/kg did not show an antidepressant
effect. So, the effect should be evaluated at different routes of administration or at higher
doses following p.o. administration. Further, in vivo studies are needed to support the
regulatory role of DAR in vitro and to observe the efficacy of 1 in alleviating DAergic
neurodegeneration and disease conditions in animal models.
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